// Copyright 2004 The Trustees of Indiana University. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // Authors: Douglas Gregor // Andrew Lumsdaine #ifndef BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP #define BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP #include #include #include #include #include #include #include // for std::min and std::max namespace boost { struct square_distance_attractive_force { template T operator()(typename graph_traits::edge_descriptor, T k, T d, const Graph&) const { return d * d / k; } }; struct square_distance_repulsive_force { template T operator()(typename graph_traits::vertex_descriptor, typename graph_traits::vertex_descriptor, T k, T d, const Graph&) const { return k * k / d; } }; template struct linear_cooling { typedef T result_type; linear_cooling(std::size_t iterations) : temp(T(iterations) / T(10)), step(0.1) { } linear_cooling(std::size_t iterations, T temp) : temp(temp), step(temp / T(iterations)) { } T operator()() { T old_temp = temp; temp -= step; if (temp < T(0)) temp = T(0); return old_temp; } private: T temp; T step; }; struct all_force_pairs { template void operator()(const Graph& g, ApplyForce apply_force) { typedef typename graph_traits::vertex_iterator vertex_iterator; int i, N = num_vertices(g); #pragma omp parallel for default(shared) private(i) schedule(dynamic) for (i = 0; i < N; ++i) { typename graph_traits::vertex_descriptor v = vertex(i, g); if (v == graph_traits::null_vertex()) continue; for (int j = i+1; j < N; ++j) { typename graph_traits::vertex_descriptor u = vertex(j, g); if (u == graph_traits::null_vertex()) continue; apply_force(u, v); apply_force(v, u); } } } }; template struct grid_force_pairs { template explicit grid_force_pairs(Dim width, Dim height, PositionMap position, const Graph& g) : width(width), height(height), position(position) { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif // BOOST_NO_STDC_NAMESPACE two_k = Dim(2) * sqrt(width*height / num_vertices(g)); } template void operator()(const Graph& g, ApplyForce apply_force) { typedef typename graph_traits::vertex_iterator vertex_iterator; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef std::list bucket_t; typedef std::vector buckets_t; std::size_t columns = std::size_t(width / two_k + Dim(1)); std::size_t rows = std::size_t(height / two_k + Dim(1)); buckets_t buckets(rows * columns); int i, N = num_vertices(g); #pragma omp parallel for default(shared) private(i) schedule(dynamic) for (i = 0; i < N; ++i) { typename graph_traits::vertex_descriptor v = vertex(i, g); if (v == graph_traits::null_vertex()) continue; std::size_t column = std::size_t((position[v].x + width / 2) / two_k); std::size_t row = std::size_t((position[v].y + height / 2) / two_k); if (column >= columns) column = columns - 1; if (row >= rows) row = rows - 1; #pragma omp critical { buckets[row * columns + column].push_back(v); } } N = rows * columns; #pragma omp parallel for default(shared) private(i) schedule(dynamic) for (i = 0; i < N; ++i) { std::size_t row = i / rows; std::size_t column = i % rows; bucket_t& bucket = buckets[row * columns + column]; typedef typename bucket_t::iterator bucket_iterator; for (bucket_iterator u = bucket.begin(); u != bucket.end(); ++u) { // Repulse vertices in this bucket bucket_iterator v = u; for (++v; v != bucket.end(); ++v) { apply_force(*u, *v); apply_force(*v, *u); } std::size_t adj_start_row = row == 0? 0 : row - 1; std::size_t adj_end_row = row == rows - 1? row : row + 1; std::size_t adj_start_column = column == 0? 0 : column - 1; std::size_t adj_end_column = column == columns - 1? column : column + 1; for (std::size_t other_row = adj_start_row; other_row <= adj_end_row; ++other_row) for (std::size_t other_column = adj_start_column; other_column <= adj_end_column; ++other_column) if (other_row != row || other_column != column) { // Repulse vertices in this bucket bucket_t& other_bucket = buckets[other_row * columns + other_column]; for (v = other_bucket.begin(); v != other_bucket.end(); ++v) apply_force(*u, *v); } } } } private: Dim width; Dim height; PositionMap position; Dim two_k; }; template inline grid_force_pairs make_grid_force_pairs(Dim width, Dim height, const PositionMap& position, const Graph& g) { return grid_force_pairs(width, height, position, g); } template void scale_graph(const Graph& g, PositionMap position, Dim left, Dim top, Dim right, Dim bottom) { if (num_vertices(g) == 0) return; if (bottom > top) { using std::swap; swap(bottom, top); } typedef typename graph_traits::vertex_iterator vertex_iterator; // Find min/max ranges Dim minX = position[*vertices(g).first].x, maxX = minX; Dim minY = position[*vertices(g).first].y, maxY = minY; vertex_iterator vi, vi_end; for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); minX = min BOOST_PREVENT_MACRO_SUBSTITUTION (minX, position[*vi].x); maxX = max BOOST_PREVENT_MACRO_SUBSTITUTION (maxX, position[*vi].x); minY = min BOOST_PREVENT_MACRO_SUBSTITUTION (minY, position[*vi].y); maxY = max BOOST_PREVENT_MACRO_SUBSTITUTION (maxY, position[*vi].y); } // Scale to bounding box provided for (tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) { position[*vi].x = ((position[*vi].x - minX) / (maxX - minX)) * (right - left) + left; position[*vi].y = ((position[*vi].y - minY) / (maxY - minY)) * (top - bottom) + bottom; } } namespace detail { template struct fr_apply_force { typedef typename graph_traits::vertex_descriptor vertex_descriptor; fr_apply_force(const PositionMap& position, const DisplacementMap& displacement, RepulsiveForce repulsive_force, Dim k, const Graph& g) : position(position), displacement(displacement), repulsive_force(repulsive_force), k(k), g(g) { } void operator()(vertex_descriptor u, vertex_descriptor v) { #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif // BOOST_NO_STDC_NAMESPACE if (u != v) { Dim delta_x = position[v].x - position[u].x; Dim delta_y = position[v].y - position[u].y; Dim dist = sqrt(delta_x * delta_x + delta_y * delta_y); Dim fr = repulsive_force(u, v, k, dist, g); Dim dx = delta_x / dist * fr; Dim dy = delta_y / dist * fr; Dim& x = displacement[v].x; Dim& y = displacement[v].y; #pragma omp atomic x += dx; #pragma omp atomic y += dy; } } private: PositionMap position; DisplacementMap displacement; RepulsiveForce repulsive_force; Dim k; const Graph& g; }; } // end namespace detail template void fruchterman_reingold_force_directed_layout (const Graph& g, PositionMap position, Dim width, Dim height, AttractiveForce attractive_force, RepulsiveForce repulsive_force, ForcePairs force_pairs, Cooling cool, DisplacementMap displacement) { typedef typename graph_traits::vertex_iterator vertex_iterator; typedef typename graph_traits::vertex_descriptor vertex_descriptor; typedef typename graph_traits::edge_iterator edge_iterator; typedef typename graph_traits::edge_descriptor edge_descriptor; #ifndef BOOST_NO_STDC_NAMESPACE using std::sqrt; #endif // BOOST_NO_STDC_NAMESPACE Dim area = width * height; // assume positions are initialized randomly Dim k = sqrt(area / num_vertices(g)); detail::fr_apply_force apply_force(position, displacement, repulsive_force, k, g); std::vector edge_list; edge_list.reserve(num_edges(g)); edge_iterator e, e_end; for (tie(e, e_end) = edges(g); e != e_end; ++e) edge_list.push_back(*e); Dim temp = cool(); if (temp) do { // Calculate repulsive forces int i, N = num_vertices(g); #pragma omp parallel for default(shared) private(i) schedule(dynamic) for (i = 0; i < N; ++i) { typename graph_traits::vertex_descriptor v = vertex(i, g); if (v == graph_traits::null_vertex()) continue; displacement[v].x = 0; displacement[v].y = 0; } force_pairs(g, apply_force); // Calculate attractive forces N = edge_list.size(); #pragma omp parallel for default(shared) private(i) schedule(dynamic) for (i = 0; i < N; ++i) { edge_descriptor e = edge_list[i]; vertex_descriptor v = source(e, g); vertex_descriptor u = target(e, g); Dim delta_x = position[v].x - position[u].x; Dim delta_y = position[v].y - position[u].y; Dim dist = sqrt(delta_x * delta_x + delta_y * delta_y); Dim fa = attractive_force(e, k, dist, g); displacement[v].x -= delta_x / dist * fa; displacement[v].y -= delta_y / dist * fa; displacement[u].x += delta_x / dist * fa; displacement[u].y += delta_y / dist * fa; } // Update positions N = num_vertices(g); #pragma omp parallel for default(shared) private(i) schedule(dynamic) for (i = 0; i < N; ++i) { typename graph_traits::vertex_descriptor v = vertex(i, g); if (v == graph_traits::null_vertex()) continue; BOOST_USING_STD_MIN(); BOOST_USING_STD_MAX(); Dim disp_size = sqrt(displacement[v].x * displacement[v].x + displacement[v].y * displacement[v].y); position[v].x += displacement[v].x / disp_size * min BOOST_PREVENT_MACRO_SUBSTITUTION (disp_size, temp); position[v].y += displacement[v].y / disp_size * min BOOST_PREVENT_MACRO_SUBSTITUTION (disp_size, temp); position[v].x = min BOOST_PREVENT_MACRO_SUBSTITUTION (width / 2, max BOOST_PREVENT_MACRO_SUBSTITUTION(-width / 2, position[v].x)); position[v].y = min BOOST_PREVENT_MACRO_SUBSTITUTION (height / 2, max BOOST_PREVENT_MACRO_SUBSTITUTION(-height / 2, position[v].y)); } } while ( (temp = cool()) ); } namespace detail { template struct fr_force_directed_layout { template static void run(const Graph& g, PositionMap position, Dim width, Dim height, AttractiveForce attractive_force, RepulsiveForce repulsive_force, ForcePairs force_pairs, Cooling cool, DisplacementMap displacement, const bgl_named_params&) { fruchterman_reingold_force_directed_layout (g, position, width, height, attractive_force, repulsive_force, force_pairs, cool, displacement); } }; template<> struct fr_force_directed_layout { template static void run(const Graph& g, PositionMap position, Dim width, Dim height, AttractiveForce attractive_force, RepulsiveForce repulsive_force, ForcePairs force_pairs, Cooling cool, error_property_not_found, const bgl_named_params& params) { std::vector > displacements(num_vertices(g)); fruchterman_reingold_force_directed_layout (g, position, width, height, attractive_force, repulsive_force, force_pairs, cool, make_iterator_property_map (displacements.begin(), choose_const_pmap(get_param(params, vertex_index), g, vertex_index), simple_point())); } }; } // end namespace detail template void fruchterman_reingold_force_directed_layout (const Graph& g, PositionMap position, Dim width, Dim height, const bgl_named_params& params) { typedef typename property_value, vertex_displacement_t>::type D; detail::fr_force_directed_layout::run (g, position, width, height, choose_param(get_param(params, attractive_force_t()), square_distance_attractive_force()), choose_param(get_param(params, repulsive_force_t()), square_distance_repulsive_force()), choose_param(get_param(params, force_pairs_t()), make_grid_force_pairs(width, height, position, g)), choose_param(get_param(params, cooling_t()), linear_cooling(100)), get_param(params, vertex_displacement_t()), params); } template void fruchterman_reingold_force_directed_layout(const Graph& g, PositionMap position, Dim width, Dim height) { fruchterman_reingold_force_directed_layout (g, position, width, height, attractive_force(square_distance_attractive_force())); } } // end namespace boost #endif // BOOST_GRAPH_FRUCHTERMAN_REINGOLD_FORCE_DIRECTED_LAYOUT_HPP