Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Tiago Peixoto
graphtool
Commits
bd375efd
Commit
bd375efd
authored
May 21, 2013
by
Tiago Peixoto
Browse files
Improve checkpointing in blockmodel.py
parent
bc4b3707
Changes
1
Hide whitespace changes
Inline
Sidebyside
src/graph_tool/community/blockmodel.py
View file @
bd375efd
...
...
@@ 943,34 +943,63 @@ def mc_get_dl(state, nsweep, greedy, rng, checkpoint, checkpoint_state,
if
verbose
:
print
(
"beta = %g"
%
beta
)
min_dl
=
S
count
=
0
while
True
:
delta
,
nmoves
=
mcmc_sweep
(
state
,
beta
=
float
(
"inf"
))
delta
,
nmoves
=
mcmc_sweep
(
state
,
beta
=
beta
)
S
+=
delta
if
S
<
min_dl
:
min_dl
=
S
count
=
0
elif
S
>
max_dl
:
max_dl
=
S
count
=
0
else
:
count
+=
1
checkpoint_state
[
B
][
"S"
]
=
S
checkpoint_state
[
B
][
"min_dl"
]
=
min_dl
checkpoint_state
[
B
][
"max_dl"
]
=
max_dl
checkpoint_state
[
B
][
"count"
]
=
count
if
checkpoint
is
not
None
:
checkpoint
(
state
,
S
,
delta
,
nmoves
)
checkpoint
(
state
,
S
,
delta
,
nmoves
,
checkpoint_state
)
if
verbose
:
print
(
"beta = inf"
)
if
not
greedy
:
checkpoint_state
[
B
][
"greedy"
]
=
True
min_dl
=
S
count
=
0
while
count
<=
abs
(
nsweep
):
delta
,
nmoves
=
mcmc_sweep
(
state
,
beta
=
float
(
"inf"
))
S
+=
delta
if
S
<
min_dl
:
min_dl
=
S
count
=
0
else
:
count
+=
1
if
count
>
abs
(
nsweep
):
break
checkpoint_state
[
B
][
"S"
]
=
S
checkpoint_state
[
B
][
"min_dl"
]
=
min_dl
checkpoint_state
[
B
][
"count"
]
=
count
if
checkpoint
is
not
None
:
checkpoint
(
state
,
S
,
delta
,
nmoves
,
checkpoint_state
)
return
state
.
_BlockState__min_dl
()
def
get_b_dl
(
g
,
bs
,
bs_start
,
B
,
nsweep
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
=
None
,
verbose
=
False
):
prev_dl
=
float
(
"inf"
)
if
B
in
bs
:
def
get_b_dl
(
g
,
bs
,
B
,
nsweep
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
=
None
,
checkpoint_state
=
None
,
verbose
=
False
):
if
B
not
in
checkpoint_state
:
checkpoint_state
[
B
]
=
{}
if
B
in
bs
and
checkpoint_state
[
B
].
get
(
"done"
,
False
):
return
bs
[
B
][
0
]
elif
B
in
bs
_start
:
elif
B
in
bs
:
if
verbose
:
print
(
"starting from previous result for B=%d"
%
B
)
prev_dl
,
b
=
bs_start
[
B
]
b
=
bs
[
B
][
1
]
state
=
BlockState
(
g
,
b
=
b
.
copy
(),
clabel
=
clabel
,
deg_corr
=
deg_corr
)
else
:
checkpoint_state
[
B
]
=
{}
n_iter
=
0
bs_keys
=
[
k
for
k
in
bs
.
keys
()
if
type
(
k
)
!=
str
]
B_sup
=
max
(
bs_keys
)
if
len
(
bs_keys
)
>
0
else
B
...
...
@@ 994,8 +1023,9 @@ def get_b_dl(g, bs, bs_start, B, nsweep, anneal, greedy, clabel, deg_corr, rng,
bg_state
=
BlockState
(
cg
,
B
=
B
,
clabel
=
blabel
,
vweight
=
vcount
,
eweight
=
ecount
,
deg_corr
=
deg_corr
)
mc_get_dl
(
bg_state
,
nsweep
=
nsweep
,
greedy
=
greedy
,
rng
=
rng
,
checkpoint
=
checkpoint
,
anneal
=
anneal
,
verbose
=
verbose
)
dl
=
mc_get_dl
(
bg_state
,
nsweep
=
nsweep
,
greedy
=
greedy
,
rng
=
rng
,
checkpoint
=
None
,
checkpoint_state
=
None
,
anneal
=
anneal
,
verbose
=
verbose
)
### FIXME: the following could be improved by moving it to the C++
### side
...
...
@@ 1005,16 +1035,16 @@ def get_b_dl(g, bs, bs_start, B, nsweep, anneal, greedy, clabel, deg_corr, rng,
for
v
in
g
.
vertices
():
b
[
v
]
=
bg_state
.
b
[
bmap
[
b
[
v
]]]
checkpoint_state
[
B
]
=
{}
bs
[
B
]
=
[
dl
,
b
.
copy
()]
state
=
BlockState
(
g
,
b
=
b
,
B
=
B
,
clabel
=
clabel
,
deg_corr
=
deg_corr
)
dl
=
mc_get_dl
(
state
,
nsweep
=
nsweep
,
greedy
=
greedy
,
rng
=
rng
,
checkpoint
=
checkpoint
,
anneal
=
anneal
,
verbose
=
verbose
)
checkpoint
=
checkpoint
,
checkpoint_state
=
checkpoint_state
,
anneal
=
anneal
,
verbose
=
verbose
)
if
dl
<
prev_dl
:
bs
[
B
]
=
[
dl
,
state
.
b
.
copy
()]
else
:
bs
[
B
]
=
bs_start
[
B
]
dl
=
prev_dl
bs
[
B
]
=
[
dl
,
state
.
b
.
copy
()]
checkpoint_state
[
B
][
"done"
]
=
True
return
dl
def
fibo
(
n
):
...
...
@@ 1035,8 +1065,8 @@ def is_fibo(x):
def
minimize_blockmodel_dl
(
g
,
deg_corr
=
True
,
nsweeps
=
100
,
adaptive_convergence
=
True
,
anneal
=
1.
,
greedy_cooling
=
True
,
max_B
=
None
,
min_B
=
1
,
mid_B
=
None
,
b_cache
=
None
,
b_start
=
None
,
clabel
=
None
,
checkpoint
=
None
,
verbose
=
False
):
clabel
=
None
,
mid_B
=
None
,
b_cache
=
None
,
checkpoint
=
None
,
checkpoint
_state
=
None
,
verbose
=
False
):
r
"""Find the block partition of an unspecified size which minimizes the description
length of the network, according to the stochastic blockmodel ensemble which
best describes it.
...
...
@@ 1072,6 +1102,9 @@ def minimize_blockmodel_dl(g, deg_corr=True, nsweeps=100, adaptive_convergence=T
mid_B : ``int`` (optional, default: ``None``)
Middle of the range which brackets the minimum. If not supplied, will be
automatically determined.
clabel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
Constraint labels on the vertices, such that vertices with different
labels cannot belong to the same block.
b_cache : :class:`dict` with ``int`` keys and (``float``, :class:`~graph_tool.PropertyMap`) values (optional, default: ``None``)
If provided, this corresponds to a dictionary where the keys are the
number of blocks, and the values are tuples containing two values: the
...
...
@@ 1079,12 +1112,6 @@ def minimize_blockmodel_dl(g, deg_corr=True, nsweeps=100, adaptive_convergence=T
in this dictionary will not be computed, and will be used unmodified as
the solution for the corresponding number of blocks. This can be used to
continue from a previously unfinished run.
b_start : :class:`dict` with ``int`` keys and (``float``, :class:`~graph_tool.PropertyMap`) values (optional, default: ``None``)
Like `b_cache`, but the partitions present in the dictionary will be
used as the starting point of the minimization.
clabel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
Constraint labels on the vertices, such that vertices with different
labels cannot belong to the same block.
checkpoint : function (optional, default: ``None``)
If provided, this function will be called after each call to
:func:`mcmc_sweep`. This can be used to store the current state, so it
...
...
@@ 1092,17 +1119,26 @@ def minimize_blockmodel_dl(g, deg_corr=True, nsweeps=100, adaptive_convergence=T
.. codeblock:: python
def checkpoint(state, L, delta, nmoves):
def checkpoint(state, L, delta, nmoves
, checkpoint_state
):
...
where `state` is either a :class:`~graph_tool.community.BlockState`
instance or ``None``, `L` is the current description length, `delta` is
the entropy difference in the last MCMC sweep, and `nmoves` is the
number of accepted block membership moves.
number of accepted block membership moves. The ``checkpoint_state``
argument is an opaque object which specifies the current state of the
algorithm, which can be stored via :mod:`pickle`, and supplied via the
``checkpoint_state`` option below to continue from an interrupted run.
This function will also be called when the MCMC has finished for the
current value of :math:`B`, in which case ``state == None``, and the
remaining parameters will be zero.
remaining parameters will be zero, except the last.
checkpoint_state : object (optional, default: ``None``)
If provided, this will specify an exact point of execution from which
the algorithm will continue. The expected object is an opaque type which
wiil be passed to the callback of the ``checkpoint`` option above, and
can be stored by :mod:`pickle`. This must be used in conjunction with
the option ``b_cache`` to continue from an interrupted run.
verbose : ``bool`` (optional, default: ``False``)
If ``True``, verbose information is displayed.
...
...
@@ 1208,25 +1244,25 @@ def minimize_blockmodel_dl(g, deg_corr=True, nsweeps=100, adaptive_convergence=T
greedy
=
greedy_cooling
if
b_start
is
None
:
b_start
=
{}
bs
=
b_cache
if
bs
is
None
:
bs
=
{}
if
checkpoint_state
is
None
:
checkpoint_state
=
{}
while
True
:
f_max
=
get_b_dl
(
g
,
bs
,
b_start
,
max_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
verbose
)
f_mid
=
get_b_dl
(
g
,
bs
,
b_start
,
mid_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
verbose
)
f_min
=
get_b_dl
(
g
,
bs
,
b_start
,
min_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
verbose
)
f_max
=
get_b_dl
(
g
,
bs
,
max_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
checkpoint_state
,
verbose
)
f_mid
=
get_b_dl
(
g
,
bs
,
mid_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
checkpoint_state
,
verbose
)
f_min
=
get_b_dl
(
g
,
bs
,
min_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
checkpoint_state
,
verbose
)
if
verbose
:
print
(
"bracket:"
,
min_B
,
mid_B
,
max_B
,
f_min
,
f_mid
,
f_max
)
if
checkpoint
is
not
None
:
checkpoint
(
None
,
0
,
0
,
0
)
checkpoint
(
None
,
0
,
0
,
0
,
checkpoint_state
)
if
f_max
>
f_mid
>
f_min
:
max_B
=
mid_B
...
...
@@ 1248,10 +1284,10 @@ def minimize_blockmodel_dl(g, deg_corr=True, nsweeps=100, adaptive_convergence=T
else
:
x
=
get_mid
(
min_B
,
mid_B
)
f_x
=
get_b_dl
(
g
,
bs
,
b_start
,
x
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
verbose
)
f_mid
=
get_b_dl
(
g
,
bs
,
b_start
,
mid_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
verbose
)
f_x
=
get_b_dl
(
g
,
bs
,
x
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
checkpoint_state
,
verbose
)
f_mid
=
get_b_dl
(
g
,
bs
,
mid_B
,
nsweeps
,
anneal
,
greedy
,
clabel
,
deg_corr
,
rng
,
checkpoint
,
checkpoint_state
,
verbose
)
if
verbose
:
print
(
"bisect: ("
,
min_B
,
mid_B
,
max_B
,
") >"
,
x
,
f_x
)
#, is_fibo((mid_B  min_B)), is_fibo((max_B  mid_B)))
...
...
@@ 1268,7 +1304,7 @@ def minimize_blockmodel_dl(g, deg_corr=True, nsweeps=100, adaptive_convergence=T
return
bs
[
best_B
][
1
],
bs
[
best_B
][
0
],
bs
if
checkpoint
is
not
None
:
checkpoint
(
None
,
0
,
0
,
0
)
checkpoint
(
None
,
0
,
0
,
0
,
checkpoint_state
)
if
f_x
<
f_mid
:
if
max_B

mid_B
>
mid_B

min_B
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment