Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
What's new
10
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Tiago Peixoto
graph-tool
Commits
9ca10d2f
Commit
9ca10d2f
authored
Dec 02, 2009
by
Tiago Peixoto
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Small documentation and test fixes
parent
cfc67930
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
62 additions
and
66 deletions
+62
-66
src/graph_tool/centrality/__init__.py
src/graph_tool/centrality/__init__.py
+62
-62
src/graph_tool/generation/__init__.py
src/graph_tool/generation/__init__.py
+0
-4
No files found.
src/graph_tool/centrality/__init__.py
View file @
9ca10d2f
...
@@ -104,24 +104,24 @@ def pagerank(g, damping=0.8, prop=None, epslon=1e-6, max_iter=None,
...
@@ -104,24 +104,24 @@ def pagerank(g, damping=0.8, prop=None, epslon=1e-6, max_iter=None,
>>> seed(42)
>>> seed(42)
>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
>>> pr = gt.pagerank(g)
>>> pr = gt.pagerank(g)
>>> print pr.
get_array()
>>> print pr.
a
[ 0.
99988081
0
.3
9997616 0.80428057 0.43237369
0.2 0.7
583032
9
[ 0.
89482844
1
.3
7847566 0.24 1.30716676
0.2 0.7
039700
9
0.4
1447482 1.56621542 0.30841665
0.86
432715 0.79374139 0.54573086
0.4
0205781 0.74783725 1.37167015 0.66836587
0.
5
86
8133 0.47968714
0.89372179 0.93590145 0.25159724 1.12033843 0.2 0.98486039
1.52225854 1.07388611 0.76316432 0.39214247 0.9302883 0.86455762
0.
2819140
4
0
.8
8133806 0.31166878 1.73878838 0.6903469 0.94100349
0.
7754626
4
1
.8
7740317 0.25482139 0.29902553 0.2 0.24756383
0.
25159724 0.32248278 1.03788472 0.58022932
0.
3
50
09064 0.94542317
0.
97205301 0.29727392 1.34742309 0.30905457
0.
5
50
32542 0.56654712
0.
85751934 0.69608227 1.11373543 1.13477707 0.2 0.71559888
0.
40895463 0.77928729 0.73227413 0.59911926 1.39946277 0.72793699
0.30461189 0.2 1.02871995 1.14657561
0.2 0.2
5031945
2.27008393 0.88929335 0.48636962 0.73070609
0.2 0.2
32
0.
51841423 0.44709022 0.75239816 0.76551737 0.25638281 1.51657252
0.
96857512 2.97683022 0.58581032 0.80217847 0.37896569 0.93866821
0.
30841665 0.59707408 0.34179258 1.0590272 2.16427996 0.51196274
0.
27337672 0.98201842 0.48551839 1.22651796 0.73263045 0.43013228
1.
2264604
1
.7
1578696 0.85838961 0.41931136 0.96797602 0.618823
67
1.
00971133
0
.7
2075953 0.66715456 0.58705749 0.74286661 0.377858
67
1.
07826603 0.2984934 1.1305187 0.75006564 0.48066231 1.61759314
1.
8475279 0.26432925 0.33994628 0.97319326 0.78104447 0.2
0.
73870051 1.08374044 0.38258693 0.98112013 0.2
0.2
5590818
0.
33333761 0.51756267 0.47811583 0.85905246 1.46428623
0.2
1.
17500568 1.2288973 0.29613246 1.45937444 0.39997616 1.18311783
1.
70687671 1.0107342 0.94504737 1.29858046 2.19707395 0.55931282
0.
67063807 0.39229458 0.72314004 0.88473325 0.32859279 0.40656244
0.
85129509 1.09493368 1.22168331 0.64108136 0.70690188 0.2
0.
5
17
54349 0.5315028 0.5519627
4
0
.2
335463 1.56357203 0.91464458
0.
3
17
36266 0.42372513 0.79429328 1.4474966
4
1
.2
0741669 0.65763236
0.4
6999727 1.06779933 0.4852867 0.48933035
0.5
8
99
7931 0.52883683
0.4
0895463 0.62628812 0.32671006 0.85626447
0.599
25496 0.3399879
0.
79385874 0.59244805 0.99896399 1.0470592
]
0.
81215046 0.71506902 2.25678844 1.04882679
]
References
References
----------
----------
...
@@ -201,24 +201,24 @@ def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
...
@@ -201,24 +201,24 @@ def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
>>> seed(42)
>>> seed(42)
>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
>>> vb, eb = gt.betweenness(g)
>>> vb, eb = gt.betweenness(g)
>>> print vb.
get_array()
>>> print vb.
a
[ 0.0
6129648 0.02004734 0.04305659 0.01071136
0. 0.025
202
8
[ 0.0
3047981 0.07396685 0.00270882 0.044637
0. 0.0
3
25
904
8
0.0
0679622 0.06981881 0.00541371 0.02462107 0.05328111 0.0107051
0.0
243547 0.04265909 0.06274696 0.01778475 0.03502657 0.02692273
0.05
981227 0. 0.01315561 0.00131498
0. 0.0
1883264
0.05
170277 0.05522454 0.02303023 0.0038858
0. 0.0
4852871
0.0
1663386 0.03195175 0.01942617 0.13693745 0.01378875 0.00962001
0.0
2398655 0.00232365 0. 0.01064643 0. 0.01105872
0.0
1325009 0.04685362 0.03839758 0.03395201 0.02160984 0.0172759
3
0.0
3564021 0.0222059 0.05170383 0.00140447 0.03935299 0.0264481
3
0.0
478231
0. 0.0
3826993 0.05124999 0. 0.
0.0
1831885
0. 0.0
453981 0.04552396 0.1242787 0.04983878
0.0
0705917 0.
0.0
2190356 0.04505211
0. 0.00
676
41
9
0.0
7248363 0.04676976
0.0
3481327 0.04473583
0. 0.00
27
41
7
0.0
0110802 0.00169839 0.08733666
0.
1
05
46473
0. 0.
12058932
0.0
1061048 0.0470108 0.01059109
0.05
290495
0. 0.
02541583
0. 0.0
0907921 0.02182859 0.08865455 0. 0.041801
7
0. 0.0
4012033 0.02616307 0.09056515 0.01640322 0.0159900
7
0.0
3500162 0.07492683 0.03856307
0.0
4
30
0598 0.02173347 0.00488363
0.0
2784563 0.05008998 0.03788222
0.030
28745 0.01097982 0.00178571
0.0
3739852 0.01113193 0.04386369 0.02994719 0.03383728
0.
0.0
5804645 0.01015181 0.0061582 0.0255485 0.05504439
0.
0.0
9230395 0.05449223 0.02507715 0.04944675 0. 0.00215935
0.0
0179516 0.03367643 0.00304982 0.02333254 0.00843039 0.
0.0
4371057 0.01749238 0.00104315 0.04688928 0.00444627 0.0178016
0.0
5947385 0.01936996 0.0521946 0.04928937 0.03955121 0.01360865
0.0
1358585 0.02193068 0.03184527 0.05640358 0.00214389 0.03922583
0.0
2942447 0. 0.05149102 0.01054765 0. 0.
0.0
2195544 0.02613584 0.02246488 0.00066481 0.0755375 0.03142692
0.0
0537915 0.01251828 0.01097982 0.06667564 0.04090169 0.02161779
0.0
4533332 0.03188087 0.04227853
0.0
39
263
2
8 0.00
810412 0.02888085
0.0
2941671 0.01793679 0.02360528
0.02638
257
0.00
62989 0.00946123
0.
0455241 0.01373183 0.07029039
0.04
38289
2]
0.
0.02255701 0.05081734
0.04
84665
2]
References
References
----------
----------
...
@@ -283,7 +283,7 @@ def central_point_dominance(g, betweenness):
...
@@ -283,7 +283,7 @@ def central_point_dominance(g, betweenness):
>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
>>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
>>> vb, eb = gt.betweenness(g)
>>> vb, eb = gt.betweenness(g)
>>> print gt.central_point_dominance(g, vb)
>>> print gt.central_point_dominance(g, vb)
0.
108411171667
0.
0980212339559
References
References
----------
----------
...
@@ -359,31 +359,31 @@ def eigentrust(g, trust_map, vprop=None, norm=False, epslon=1e-6, max_iter=0,
...
@@ -359,31 +359,31 @@ def eigentrust(g, trust_map, vprop=None, norm=False, epslon=1e-6, max_iter=0,
>>> trust.get_array()[:] = random(g.num_edges())*42
>>> trust.get_array()[:] = random(g.num_edges())*42
>>> t = gt.eigentrust(g, trust, norm=True)
>>> t = gt.eigentrust(g, trust, norm=True)
>>> print t.get_array()
>>> print t.get_array()
[ 1.
78295032e-02 1.10159977
e-0
3
8.27504534e-03 3.34579667
e-0
3
[ 1.
04935746e-02 2.82745068
e-0
2
0.00000000e+00 1.81121002
e-0
2
0.00000000e+00
9.28795883e-03 7.56225537e-03 2.0377228
8e-02
0.00000000e+00
3.70898521e-03 1.00108703e-03 1.2962063
8e-02
6.
87447
577
e-0
4
8.87085111e-03 2.84707349e-03 2.55095571
e-03
1.71
874
0
47e-0
2
7.07523828e-03 8.29873222e-03 1.79259666
e-03
7.65302351
e-0
3
5.06044724
e-02
3
.9
8617107
e-0
4
1.
0289
782
2
e-0
2
4.08925756
e-0
2
1.55855653
e-02
2
.9
2256968
e-0
3
1.
71520
782e-0
3
0
.0
0000000e+00 6.76980749
e-0
3
6
.9
1342330
e-0
4
1.13998018
e-02
5
.0
4335865e-03 1.25678184
e-0
2
1
.9
2903241
e-0
2
2.46642649
e-02
1.
91846222
e-0
3
3.74940757
e-0
2
8.65907932e-03 5.76596060
e-0
3
1.
76431290
e-0
4
1.85066489
e-0
4
0.00000000e+00 4.52686439
e-0
4
1
.1
1786939
e-0
5
8.20855949
e-0
4
9
.4
505608
5e-0
3
1.76099276
e-0
2
7
.1
3943855
e-0
3
2.36002975
e-0
3
1
.4
436616
5e-0
2
4.39632543
e-0
4
2.67746802e-03 1.0318216
4e-0
2
1.80748361
e-0
2
8.49781556
e-0
3
7.50316671e-03 8.1352188
4e-0
3
3.98083843
e-0
3
1.04883920
e-0
2
7.
89442825e-03 1.11838761
e-0
2
0
.0
0000000e+00 4.37095317
e-03
7.
42099689e-03 2.46651355
e-0
3
2
.0
8148781e-02 8.02104873
e-03
2.5
0451228
e-0
5
0.00000000e+00 6.04054677e-03 1.51361293
e-0
2
2.5
9366573
e-0
2
2.11125347e-02 7.45781416e-03 6.62338254
e-0
3
0.00000000e+00
1.62557422e-04 1.02859153
e-0
3
3.38079641
e-0
3
0.00000000e+00
0.00000000e+00 1.72521147
e-0
2
4.74346499
e-0
2
3.06115271
e-03 2.
96226918
e-0
3
7.40021010
e-0
5
1.6409693
2e-0
2
8.10593668
e-03 2.
27229702
e-0
2
2.21525586
e-0
3
6.2422305
2e-0
3
1.12026631e-03 3.33521569e-03 1.77214999e-03 6.62472745
e-0
3
2.59753300e-03 9.15181124e-03 3.67310718e-03 1.18998211
e-0
2
3.17014482e-02 1.93793538e-03 5.24056364
e-0
2
4.04200200
e-02
1.66177496e-02 6.44748287e-03 8.01978992
e-0
3
1.48621102
e-02
2.96053927
e-0
2
2.06294202e-03 2.93045979e-02 1.87688605
e-03
6.65606246
e-0
3
3.39887550e-03 1.20188240e-02 3.51012614
e-03
1.13962350
e-02
6
.9
4033709
e-0
3
1.
57347756
e-0
2
3.97987237
e-03
2.79661104
e-02
7
.9
0103914
e-0
5
1.
18015521
e-0
3
8.17179744
e-03
1.
15994824
e-0
3
1.81252731e-02 2.06848985
e-0
2
3.73314296
e-0
3
1.
05694658
e-0
2
0.00000000e+00 4.49123443
e-0
4
9.80728243
e-0
4
1.27163202e-03 1.08081901
e-02 0.00000000e+00
2.25590063e-04
2.70933271e-03 1.61865322e-02 2.13504124
e-02 0.00000000e+00
8.55970439
e-0
3
4.
15387826
e-0
2
8.6179207
6e-0
5
6
.4
8435253
e-02
1.17773123
e-0
2
4.
63490203
e-0
3
1.7933196
6e-0
2
1
.4
6366115
e-02
5.61799591
e-0
3
4.
6909668
6e-0
2
4.24627753
e-0
3
9.16721227
e-0
4
3.26856602
e-0
2
4.
3112600
6e-0
3
1.68787878
e-0
2
2.02752156
e-0
2
4.865223
62e-0
3
4.42735866e-03 5.50595265
e-0
4
3.12087221e-03
1.482030
62e-0
2
1.17346898e-03 7.87933309
e-0
3
0.00000000e+00
8.75442087
e-03
4
.25
588041
e-03
2.91851609
e-0
3
1.80331544
e-0
6
1.13274458
e-03
2
.25
418313
e-03
1.27966643
e-0
2
2.46154526
e-0
2
2.89281502
e-0
2
1.75099401
e-0
2
1.14704807
e-0
2
3.30940821
e-0
2
7.15248968
e-0
3
8.35660945
e-0
3
3.88259360
e-0
3
5.95428313
e-0
3
2.84005465
e-0
3
4.92435108e-03 4.34713976e-03 2.72336599
e-03
1.16751480
e-0
4
5.78637193e-03 6.50575506e-03 1.47111816
e-03
9.37679329
e-0
3
8.64912360
e-0
3
3.96113432
e-0
3
1.07637051
e-02]
1.22855215
e-0
2
1.34294277
e-0
2
4.03141738
e-0
2
2.77313687
e-02]
References
References
----------
----------
...
...
src/graph_tool/generation/__init__.py
View file @
9ca10d2f
...
@@ -253,10 +253,6 @@ def random_rewire(g, strat= "uncorrelated", parallel_edges = False,
...
@@ -253,10 +253,6 @@ def random_rewire(g, strat= "uncorrelated", parallel_edges = False,
self_loops : bool (optional, default: False)
self_loops : bool (optional, default: False)
If True, self-loops are allowed.
If True, self-loops are allowed.
Returns
-------
None
See Also
See Also
--------
--------
random_graph: random graph generation
random_graph: random graph generation
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment