Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
graph-tool
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
40
Issues
40
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Tiago Peixoto
graph-tool
Commits
7f73bc97
Commit
7f73bc97
authored
Jan 28, 2017
by
Tiago Peixoto
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update docstrings
parent
c0c1d44d
Pipeline
#248
failed with stage
in 0 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
39 additions
and
24 deletions
+39
-24
doc/demos/inference/inference.rst
doc/demos/inference/inference.rst
+7
-6
src/graph_tool/inference/blockmodel.py
src/graph_tool/inference/blockmodel.py
+32
-18
No files found.
doc/demos/inference/inference.rst
View file @
7f73bc97
...
...
@@ -110,7 +110,7 @@ The `stochastic block model
the simplest generative process based on the notion of groups of
nodes [holland-stochastic-1983]_. The `microcanonical
<https://en.wikipedia.org/wiki/Microcanonical_ensemble>`_ formulation
[peixoto-nonparametric-201
6
]_ of the basic or "traditional" version takes
[peixoto-nonparametric-201
7
]_ of the basic or "traditional" version takes
as parameters the partition of the nodes into groups
:math:`\boldsymbol b` and a :math:`B\times B` matrix of edge counts
:math:`\boldsymbol e`, where :math:`e_{rs}` is the number of edges
...
...
@@ -182,7 +182,7 @@ degree distributions. A better model for such networks is called the
it is defined just like the traditional model, with the addition of the
degree sequence :math:`\boldsymbol k = \{k_i\}` of the graph as an
additional set of parameters (assuming again a microcanonical
formulation [peixoto-nonparametric-201
6
]_).
formulation [peixoto-nonparametric-201
7
]_).
The nested stochastic block model
...
...
@@ -461,7 +461,7 @@ case of the `C. elegans` network we have
Since it yields the smallest description length, the degree-corrected
fit should be preferred. The statistical significance of the choice can
be accessed by inspecting the posterior odds ratio
[peixoto-nonparametric-201
6
]_
[peixoto-nonparametric-201
7
]_
.. math::
...
...
@@ -918,7 +918,7 @@ Model class selection
When averaging over partitions, we may be interested in evaluating which
**model class** provides a better fit of the data, considering all
possible parameter choices. This is done by evaluating the model
evidence [peixoto-nonparametric-201
6
]_
evidence [peixoto-nonparametric-201
7
]_
.. math::
...
...
@@ -1383,8 +1383,9 @@ References
blockmodels and community structure in networks"
,
Phys
.
Rev
.
E
83
,
016107
(
2011
),
:
doi
:`
10.1103
/
PhysRevE
.83.016107
`,
:
arxiv
:`
1008.3926
`
..
[
peixoto
-
nonparametric
-
2016
]
Tiago
P
.
Peixoto
,
"Nonparametric
Bayesian inference of the microcanonical stochastic block model"
..
[
peixoto
-
nonparametric
-
2017
]
Tiago
P
.
Peixoto
,
"Nonparametric
Bayesian inference of the microcanonical stochastic block model"
,
Phys
.
Rev
.
E
95
012317
(
2017
),
:
doi
:`
10.1103
/
PhysRevE
.95.012317
`,
:
arxiv
:`
1610.02703
`
..
[
peixoto
-
parsimonious
-
2013
]
Tiago
P
.
Peixoto
,
"Parsimonious module
...
...
src/graph_tool/inference/blockmodel.py
View file @
7f73bc97
...
...
@@ -738,7 +738,8 @@ class BlockState(object):
degree_dl
=
True
,
degree_dl_kind
=
"distributed"
,
edges_dl
=
True
,
dense
=
False
,
multigraph
=
True
,
deg_entropy
=
True
,
recs
=
True
,
exact
=
True
,
**
kwargs
):
r
"""Calculate the entropy associated with the current block partition.
r
"""Calculate the entropy (a.k.a. negative log-likelihood) associated
with the current block partition.
Parameters
----------
...
...
@@ -777,14 +778,15 @@ class BlockState(object):
Notes
-----
The "entropy" of the state is
minus th
e log-likelihood of the
The "entropy" of the state is
the negativ
e log-likelihood of the
microcanonical SBM, that includes the generated graph
:math:`\boldsymbol{A}` and the model parameters :math:`\boldsymbol{\theta}`,
:math:`\boldsymbol{A}` and the model parameters
:math:`\boldsymbol{\theta}`,
.. math::
\
mathcal{S}
&= - \ln P(\boldsymbol{A},\boldsymbol{\theta}) \\
&= - \ln P(\boldsymbol{A}|\boldsymbol{\theta}) - \ln P(\boldsymbol{\theta}).
\
Sigma
&= - \ln P(\boldsymbol{A},\boldsymbol{\theta}) \\
&= - \ln P(\boldsymbol{A}|\boldsymbol{\theta}) - \ln P(\boldsymbol{\theta}).
This value is also called the `description length
<https://en.wikipedia.org/wiki/Minimum_description_length>`_ of the data,
...
...
@@ -837,7 +839,7 @@ class BlockState(object):
if ``multigraph == False``, otherwise we replace :math:`{n\choose
m}\to\left(\!\!{n\choose m}\!\!\right)` above, where
:math:`\left(\!\!{n\choose m}\!\!\right) = {n+m-1\choose m}`. A
dense
:math:`\left(\!\!{n\choose m}\!\!\right) = {n+m-1\choose m}`. A
"dense"
entropy for the degree-corrected model is not available, and if
requested will raise a :exc:`NotImplementedError`.
...
...
@@ -856,7 +858,10 @@ class BlockState(object):
P(\boldsymbol{k}|\boldsymbol{e},\boldsymbol{b}) = \prod_r\left(\!\!{n_r\choose e_r}\!\!\right)^{-1}.
2. ``degree_dl_kind == "distributed"``
This corresponds to a noninformative prior, where the degrees are
sampled from a uniform distribution.
2. ``degree_dl_kind == "distributed"`` (default)
.. math::
...
...
@@ -868,6 +873,10 @@ class BlockState(object):
<https://en.wikipedia.org/wiki/Partition_(number_theory)>`_ of
integer :math:`n` into at most :math:`m` parts.
This corresponds to a prior for the degree sequence conditioned on
the degree frequencies, which are themselves sampled from a uniform
hyperprior. This option should be preferred in most cases.
3. ``degree_dl_kind == "entropy"``
.. math::
...
...
@@ -881,10 +890,20 @@ class BlockState(object):
only an approximation of the description length. It is meant to be
used only for comparison purposes, and should be avoided in practice.
For the directed case, the above expressions are duplicated for the in-
and out-degrees.
References
----------
.. [peixoto-nonparametric-2017] Tiago P. Peixoto, "Nonparametric
Bayesian inference of the microcanonical stochastic block model",
Phys. Rev. E 95 012317 (2017), :doi:`10.1103/PhysRevE.95.012317`,
:arxiv:`1610.02703`
.. [peixoto-hierarchical-2014] Tiago P. Peixoto, "Hierarchical block
structures and high-resolution model selection in large networks ",
Phys. Rev. X 4, 011047 (2014), :doi:`10.1103/PhysRevX.4.011047`,
:arxiv:`1310.4377`.
"""
if
_bm_test
()
and
kwargs
.
get
(
"test"
,
True
):
...
...
@@ -1083,7 +1102,7 @@ class BlockState(object):
return
self
.
_state
.
get_move_prob
(
int
(
v
),
s
,
self
.
b
[
v
],
c
,
True
)
def
get_edges_prob
(
self
,
missing
,
spurious
=
[],
entropy_args
=
{}):
"""Compute the joint log-probability of the missing and spurious edges given by
r
"""Compute the joint log-probability of the missing and spurious edges given by
``missing`` and ``spurious`` (a list of ``(source, target)``
tuples, or :meth:`~graph_tool.Edge` instances), together with the
observed edges.
...
...
@@ -2150,15 +2169,10 @@ def model_entropy(B, N, E, directed=False, nr=None, allow_empty=True):
.. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module
inference in large networks", Phys. Rev. Lett. 110, 148701 (2013),
:doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
.. [peixoto-hierarchical-2014] Tiago P. Peixoto, "Hierarchical block
structures and high-resolution model selection in large networks ",
Phys. Rev. X 4, 011047 (2014), :doi:`10.1103/PhysRevX.4.011047`,
:arxiv:`1310.4377`.
.. [peixoto-model-2016] Tiago P. Peixoto, "Model selection and hypothesis
testing for large-scale network models with overlapping groups",
Phys. Rev. X 5, 011033 (2016), :doi:`10.1103/PhysRevX.5.011033`,
:arxiv:`1409.3059`.
.. [peixoto-nonparametric-2017] Tiago P. Peixoto, "Nonparametric
Bayesian inference of the microcanonical stochastic block model",
Phys. Rev. E 95 012317 (2017), :doi:`10.1103/PhysRevE.95.012317`,
:arxiv:`1610.02703`
"""
if
directed
:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment