blockmodel.py 121 KB
Newer Older
1
2
3
4
5
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2015 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import division, absolute_import, print_function
import sys
if sys.version_info < (3,):
    range = xrange

26
27
from .. import _degree, _prop, Graph, GraphView, libcore, _get_rng, PropertyMap
from .. stats import label_self_loops
28
from .. spectral import adjacency
29
30
import random
from numpy import *
31
import numpy
32
33
from scipy.optimize import fsolve, fminbound
import scipy.special
34
from collections import defaultdict
35
36
import copy
import heapq
37
38
39
40

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_community as libcommunity")

41
__test__ = False
42

43
44
45
46
47
48
49
50
def set_test(test):
    global __test__
    __test__ = test

def _bm_test():
    global __test__
    return __test__

51
52
53
54
55
56
57
58
59
60
61
62
def get_block_graph(g, B, b, vcount, ecount):
    cg, br, vcount, ecount = condensation_graph(g, b,
                                                vweight=vcount,
                                                eweight=ecount,
                                                self_loops=True)[:4]
    cg.vp["count"] = vcount
    cg.ep["count"] = ecount
    cg = Graph(cg, vorder=br)

    cg.add_vertex(B - cg.num_vertices())
    return cg

63
64
65
66
67
68
69
70
class BlockState(object):
    r"""This class encapsulates the block state of a given graph.

    This must be instantiated and used by functions such as :func:`mcmc_sweep`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
71
        Graph to be modelled.
72
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
73
        Edge multiplicities (for multigraphs or block graphs).
74
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
75
        Vertex multiplicities (for block graphs).
76
77
78
79
80
81
82
83
    b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Initial block labels on the vertices. If not supplied, it will be
        randomly sampled.
    B : ``int`` (optional, default: ``None``)
        Number of blocks. If not supplied it will be either obtained from the
        parameter ``b``, or set to the maximum possible value according to the
        minimum description length.
    clabel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
84
85
        Constraint labels on the vertices. If supplied, vertices with different
        label values will not be clustered in the same group.
86
87
88
    deg_corr : ``bool`` (optional, default: ``True``)
        If ``True``, the degree-corrected version of the blockmodel ensemble will
        be assumed, otherwise the traditional variant will be used.
89
90
91
92
    max_BE : ``int`` (optional, default: ``1000``)
        If the number of blocks exceeds this number, a sparse representation of
        the block graph is used, which is slightly less efficient, but uses less
        memory,
93
94
    """

95
96
    _state_ref_count = 0

97
    def __init__(self, g, eweight=None, vweight=None, b=None,
98
99
                 B=None, clabel=None, deg_corr=True,
                 max_BE=1000, **kwargs):
100
101
        BlockState._state_ref_count += 1

102
        # initialize weights to unity, if necessary
103
104
        if eweight is None:
            eweight = g.new_edge_property("int")
105
            eweight.fa = 1
106
107
108
109
        elif eweight.value_type() != "int32_t":
            eweight = eweight.copy(value_type="int32_t")
        if vweight is None:
            vweight = g.new_vertex_property("int")
110
            vweight.fa = 1
111
112
        elif vweight.value_type() != "int32_t":
            vweight = vweight.copy(value_type="int32_t")
113
114
115
        self.eweight = g.own_property(eweight)
        self.vweight = g.own_property(vweight)

116
117
118
119
        self.is_weighted = False
        if ((g.num_edges() > 0 and self.eweight.fa.max() > 1) or
            kwargs.get("force_weighted", False)):
            self.is_weighted = True
120
121
122

        # configure the main graph and block model parameters
        self.g = g
123

124
125
        self.E = int(self.eweight.fa.sum())
        self.N = int(self.vweight.fa.sum())
126
127
128

        self.deg_corr = deg_corr

129
        # ensure we have at most as many blocks as nodes
130
        if B is not None and b is None:
131
132
            B = min(B, self.g.num_vertices())

133
        if b is None:
134
            # create a random partition into B blocks.
135
136
            if B is None:
                B = get_max_B(self.N, self.E, directed=g.is_directed())
137
138
            B = min(B, self.g.num_vertices())
            ba = random.randint(0, B, self.g.num_vertices())
139
            ba[:B] = arange(B)        # avoid empty blocks
140
141
            if B < self.g.num_vertices():
                random.shuffle(ba)
142
            b = g.new_vertex_property("int")
143
            b.fa = ba
144
145
            self.b = b
        else:
146
147
148
149
150
151
            # if a partition is available, we will incorporate it.
            if isinstance(b, numpy.ndarray):
                self.b = g.new_vertex_property("int")
                self.b.fa = b
            else:
                self.b = b = g.own_property(b.copy(value_type="int"))
152
            if B is None:
153
154
155
156
                B = int(self.b.fa.max()) + 1

        # if B > self.N:
        #     raise ValueError("B > N!")
157

158
        if self.b.fa.max() >= B:
159
            raise ValueError("Maximum value of b is larger or equal to B! (%d vs %d)" % (self.b.fa.max(), B))
160
161

        # Construct block-graph
162
        self.bg = get_block_graph(g, B, self.b, self.vweight, self.eweight)
163
164
165
166
        self.bg.set_fast_edge_removal()

        self.mrs = self.bg.ep["count"]
        self.wr = self.bg.vp["count"]
167

168
169
170
171
172
173
174
175
176
        del self.bg.ep["count"]
        del self.bg.vp["count"]

        self.mrp = self.bg.degree_property_map("out", weight=self.mrs)

        if g.is_directed():
            self.mrm = self.bg.degree_property_map("in", weight=self.mrs)
        else:
            self.mrm = self.mrp
177
178
179

        self.vertices = libcommunity.get_vector(B)
        self.vertices.a = arange(B)
180
        self.B = B
181

182
183
        if clabel is not None:
            if isinstance(clabel, PropertyMap):
184
                self.clabel = self.g.own_property(clabel.copy())
185
186
187
188
            else:
                self.clabel = self.g.new_vertex_property("int")
                self.clabel.a = clabel
        else:
189
190
191
192
193
194
195
            self.clabel = self.g.new_vertex_property("int")

        self.emat = None
        if max_BE is None:
            max_BE = 1000
        self.max_BE = max_BE

196
        self.overlap = False
197
198
199
        self.ignore_degrees = kwargs.get("ignore_degrees", None)
        if self.ignore_degrees is None:
            self.ignore_degrees = g.new_vertex_property("bool", False)
200

201
202
203
204
        # used by mcmc_sweep()
        self.egroups = None
        self.nsampler = None
        self.sweep_vertices = None
205
206
        self.overlap_stats = libcommunity.overlap_stats()
        self.partition_stats = libcommunity.partition_stats()
207
        self.edges_dl = False
208

209
        # computation cache
210
211
212
213
214
        E = g.num_edges()
        N = g.num_vertices()
        libcommunity.init_safelog(int(5 * max(E, N)))
        libcommunity.init_xlogx(int(5 * max(E, N)))
        libcommunity.init_lgamma(int(3 * max(E, N)))
215

216
    def __del__(self):
Tiago Peixoto's avatar
Tiago Peixoto committed
217
218
219
220
221
222
        try:
            BlockState._state_ref_count -= 1
            if BlockState._state_ref_count == 0:
                libcommunity.clear_safelog()
                libcommunity.clear_xlogx()
                libcommunity.clear_lgamma()
223
        except (ValueError, AttributeError, TypeError):
Tiago Peixoto's avatar
Tiago Peixoto committed
224
            pass
225

226
227
228
229
230
231
    def __repr__(self):
        return "<BlockState object with %d blocks,%s for graph %s, at 0x%x>" % \
            (self.B, " degree corrected," if self.deg_corr else "", str(self.g),
             id(self))


232
233
    def __init_partition_stats(self, empty=True, edges_dl=False):
        self.edges_dl = edges_dl
234
235
236
237
        if not empty:
            self.partition_stats = libcommunity.init_partition_stats(self.g._Graph__graph,
                                                                     _prop("v", self.g, self.b),
                                                                     _prop("e", self.g, self.eweight),
238
                                                                     self.N, self.B,
239
240
                                                                     edges_dl,
                                                                     _prop("v", self.g, self.ignore_degrees))
241
242
243
244
245
        else:
            self.partition_stats = libcommunity.partition_stats()



246
247
    def copy(self, g=None, eweight=None, vweight=None, b=None, B=None,
             deg_corr=None, clabel=None, overlap=False):
248
249
250
251
252
253
        r"""Copies the block state. The parameters override the state properties, and
         have the same meaning as in the constructor. If ``overlap=True`` an
         instance of :class:`~graph_tool.community.OverlapBlockState` is
         returned."""

        if not overlap:
254
            state = BlockState(self.g if g is None else g,
255
256
                               eweight=self.eweight if eweight is None else eweight,
                               vweight=self.vweight if vweight is None else vweight,
257
258
259
260
                               b=self.b.copy() if b is None else b,
                               B=(self.B if b is None else None) if B is None else B,
                               clabel=self.clabel if clabel is None else clabel,
                               deg_corr=self.deg_corr if deg_corr is None else deg_corr,
261
262
                               max_BE=self.max_BE,
                               ignore_degrees=self.ignore_degrees)
263
        else:
264
            state = OverlapBlockState(self.g if g is None else g,
265
266
267
268
269
270
271
272
273
274
275
                                      b=b if b is not None else self.b,
                                      B=(self.B if b is None else None) if B is None else B,
                                      clabel=self.clabel if clabel is None else clabel,
                                      deg_corr=self.deg_corr if deg_corr is None else deg_corr,
                                      max_BE=self.max_BE)

        if not state.__check_clabel():
            b = state.b.a + state.clabel.a * state.B
            continuous_map(b)
            state = state.copy(b=b)

276
            if _bm_test():
277
278
279
280
281
282
283
284
285
286
287
288
289
                assert state.__check_clabel()

        return state


    def __getstate__(self):
        state = dict(g=self.g,
                     eweight=self.eweight,
                     vweight=self.vweight,
                     b=self.b,
                     B=self.B,
                     clabel=self.clabel,
                     deg_corr=self.deg_corr,
290
291
                     max_BE=self.max_BE,
                     ignore_degrees=self.ignore_degrees)
292
293
294
295
296
297
        return state

    def __setstate__(self, state):
        self.__init__(**state)
        return state

298
299
    def get_block_state(self, b=None, vweight=False, deg_corr=False,
                        overlap=False, **kwargs):
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        r"""Returns a :class:`~graph_tool.community.BlockState`` corresponding to the
        block graph. The parameters have the same meaning as the in the constructor."""


        state = BlockState(self.bg, eweight=self.mrs,
                           vweight=self.wr if vweight else None,
                           b=self.bg.vertex_index.copy("int") if b is None else b,
                           clabel=self.get_bclabel(),
                           deg_corr=deg_corr,
                           max_BE=self.max_BE)
        if overlap:
            state = state.copy(overlap=True)
        n_map = self.b.copy()
        return state, n_map

    def get_bclabel(self):
        r"""Returns a :class:`~graph_tool.PropertyMap`` corresponding to constraint
        labels for the block graph."""

        bclabel = self.bg.new_vertex_property("int")
        reverse_map(self.b, bclabel)
        pmap(bclabel, self.clabel)
        return bclabel

    def __check_clabel(self):
        b = self.b.a + self.clabel.a * self.B
        continuous_map(b)
        b2 = self.b.copy()
        continuous_map(b2.a)
        return (b == b2.a).all()

331
332
333
334
    def __get_emat(self):
        if self.emat is None:
            self.__regen_emat()
        return self.emat
335
336

    def __regen_emat(self):
337
338
339
340
        if self.B <= self.max_BE:
            self.emat = libcommunity.create_emat(self.bg._Graph__graph)
        else:
            self.emat = libcommunity.create_ehash(self.bg._Graph__graph)
341

342
    def __build_egroups(self, empty=False):
343
344
        self.esrcpos = self.g.new_edge_property("int")
        self.etgtpos = self.g.new_edge_property("int")
345

346
        self.egroups = libcommunity.build_egroups(self.g._Graph__graph,
347
348
349
350
351
                                                  self.bg._Graph__graph,
                                                  _prop("v", self.g, self.b),
                                                  _prop("e", self.g, self.eweight),
                                                  _prop("e", self.g, self.esrcpos),
                                                  _prop("e", self.g, self.etgtpos),
352
                                                  self.is_weighted, empty)
353

354
    def __build_nsampler(self, empty=False):
355
        self.nsampler = libcommunity.init_neighbour_sampler(self.g._Graph__graph,
356
                                                            _prop("e", self.g, self.eweight),
357
                                                            True, empty)
358
359
360
361
362
363

    def __cleanup_bg(self):
        emask = self.bg.new_edge_property("bool")
        emask.a = self.mrs.a[:len(emask.a)] > 0
        self.bg.set_edge_filter(emask)
        self.bg.purge_edges()
364
        self.emat = None
365
366
367
368
369
370
371
372
373
374

    def get_blocks(self):
        r"""Returns the property map which contains the block labels for each vertex."""
        return self.b

    def get_bg(self):
        r"""Returns the block graph."""
        return self.bg

    def get_ers(self):
375
376
        r"""Returns the edge property map of the block graph which contains the :math:`e_{rs}` matrix entries.
        For undirected graphs, the diagonal values (self-loops) contain :math:`e_{rr}/2`."""
377
378
379
380
381
382
383
384
        return self.mrs

    def get_er(self):
        r"""Returns the vertex property map of the block graph which contains the number
        :math:`e_r` of half-edges incident on block :math:`r`. If the graph is
        directed, a pair of property maps is returned, with the number of
        out-edges :math:`e^+_r` and in-edges :math:`e^-_r`, respectively."""
        if self.bg.is_directed():
385
            return self.mrp, self.mrm
386
387
388
389
390
391
392
        else:
            return self.mrp

    def get_nr(self):
        r"""Returns the vertex property map of the block graph which contains the block sizes :math:`n_r`."""
        return self.wr

393
394
395
    def entropy(self, complete=True, dl=False, partition_dl=True,
                degree_dl=True, edges_dl=True, dense=False, multigraph=True,
                norm=False, dl_ent=False, **kwargs):
396
        r"""Calculate the entropy associated with the current block partition.
397
398
399
400
401
402
403
404

        Parameters
        ----------
        complete : ``bool`` (optional, default: ``False``)
            If ``True``, the complete entropy will be returned, including constant
            terms not relevant to the block partition.
        dl : ``bool`` (optional, default: ``False``)
            If ``True``, the full description length will be returned.
405
406
407
408
409
410
411
412
        partition_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the partition description length
            will be considered.
        edges_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the edge matrix description length
            will be considered.
        degree_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the degree sequence description
413
            length will be considered.
414
415
416
        dense : ``bool`` (optional, default: ``False``)
            If ``True``, the "dense" variant of the entropy will be computed.
        multigraph : ``bool`` (optional, default: ``False``)
417
418
419
420
421
422
423
            If ``True``, the multigraph entropy will be used.
        norm : ``bool`` (optional, default: ``True``)
            If ``True``, the entropy will be "normalized" by dividing by the
            number of edges.
        dl_ent : ``bool`` (optional, default: ``False``)
            If ``True``, the description length of the degree sequence will be
            approximated by its entropy.
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

        Notes
        -----
        For the traditional blockmodel (``deg_corr == False``), the entropy is
        given by

        .. math::

          \mathcal{S}_t &\cong E - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
          \mathcal{S}^d_t &\cong E - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

        for undirected and directed graphs, respectively, where :math:`e_{rs}`
        is the number of edges from block :math:`r` to :math:`s` (or the number
        of half-edges for the undirected case when :math:`r=s`), and :math:`n_r`
        is the number of vertices in block :math:`r` .

        For the degree-corrected variant with "hard" degree constraints the
        equivalent expressions are

        .. math::

            \mathcal{S}_c &\cong -E -\sum_kN_k\ln k! - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
            \mathcal{S}^d_c &\cong -E -\sum_{k^+}N_{k^+}\ln k^+!  -\sum_{k^-}N_{k^-}\ln k^-! - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

        where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
        block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
450
        \sum_se_{sr}` are the numbers of out- and in-edges adjacent to block
451
452
        :math:`r`, respectively.

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
        If ``dense == False`` and ``multigraph == True``, the entropy used will
        be of the "Poisson" model, with the additional term:

        .. math::

            {\mathcal{S}_{cm}^{(d)}} = \mathcal{S}_c^{(d)} + \sum_{i>j} \ln A_{ij}! + \sum_i \ln A_{ii}!!


        If ``dl == True``, the description length :math:`\mathcal{L}_t` of the
        model will be returned as well, as described in
        :func:`model_entropy`. Note that for the degree-corrected version the
        description length is

        .. math::

            \mathcal{L}_c = \mathcal{L}_t + \sum_r\min\left(\mathcal{L}^{(1)}_r, \mathcal{L}^{(2)}_r\right),

        with

        .. math::

              \mathcal{L}^{(1)}_r &= \ln{\left(\!\!{n_r \choose e_r}\!\!\right)}, \\
              \mathcal{L}^{(2)}_r &= \ln\Xi_r + \ln n_r! - \sum_k \ln n^r_k!,

        and :math:`\ln\Xi_r \simeq 2\sqrt{\zeta(2)e_r}`, where :math:`\zeta(x)`
        is the `Riemann zeta function
        <https://en.wikipedia.org/wiki/Riemann_zeta_function>`_, and
        :math:`n^r_k` is the number of nodes in block :math:`r` with degree
        :math:`k`. For directed graphs we have instead :math:`k \to (k^-, k^+)`,
        and :math:`\ln\Xi_r \to \ln\Xi^+_r + \ln\Xi^-_r` with :math:`\ln\Xi_r^+
        \simeq 2\sqrt{\zeta(2)e^+_r}` and :math:`\ln\Xi_r^- \simeq
        2\sqrt{\zeta(2)e^-_r}`.

        If ``dl_ent=True`` is passed, this will be approximated instead by
487
488
489

        .. math::

490
            \mathcal{L}_c \simeq \mathcal{L}_t - \sum_rn_r\sum_kp^r_k\ln p^r_k,
491

492
        where :math:`p^r_k = n^r_k / n_r`.
493

494
495
        If the "dense" entropies are requested (``dense=True``), they will be
        computed as
496
497
498
499
500
501
502
503
504
505
506
507
508

        .. math::

            \mathcal{S}_t  &= \sum_{r>s} \ln{\textstyle {n_rn_s \choose e_{rs}}} + \sum_r \ln{\textstyle {{n_r\choose 2}\choose e_{rr}/2}}\\
            \mathcal{S}^d_t  &= \sum_{rs} \ln{\textstyle {n_rn_s \choose e_{rs}}},

        for simple graphs, and

        .. math::

            \mathcal{S}_m  &= \sum_{r>s} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)} + \sum_r \ln{\textstyle \left(\!\!{\left(\!{n_r\choose 2}\!\right)\choose e_{rr}/2}\!\!\right)}\\
            \mathcal{S}^d_m  &= \sum_{rs} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)},

509
510
511
        for multigraphs (i.e. ``multigraph == True``). A dense entropy for the
        degree-corrected model is not available, and if requested will return a
        :exc:`NotImplementedError`.
512

513
514
        If ``complete == False`` constants in the above equations which do not
        depend on the partition of the nodes will be omitted.
515

516
517
        Note that in all cases if ``norm==True`` the value returned corresponds
        to the entropy `per edge`, i.e. :math:`(\mathcal{S}_{t/c}\; [\,+\,\mathcal{L}_{t/c}])/ E`.
518
519
        """

520
521
522
        xi_fast = kwargs.get("xi_fast", False)
        dl_deg_alt = kwargs.get("dl_deg_alt", True)

523
524
525
        E = self.E
        N = self.N

526
527
        if dense:
            if self.deg_corr:
528
                raise NotImplementedError('A degree-corrected "dense" entropy is not yet implemented')
529

530
            S = libcommunity.entropy_dense(self.bg._Graph__graph,
531
532
533
                                            _prop("e", self.bg, self.mrs),
                                            _prop("v", self.bg, self.wr),
                                            multigraph)
534
535
        else:
            S = libcommunity.entropy(self.bg._Graph__graph,
536
537
538
539
540
                                      _prop("e", self.bg, self.mrs),
                                      _prop("v", self.bg, self.mrp),
                                      _prop("v", self.bg, self.mrm),
                                      _prop("v", self.bg, self.wr),
                                      self.deg_corr)
541

542
            if _bm_test():
543
544
545
                assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                random=random, dl=dl,
                                                                                                partition_dl=partition_dl,
546
                                                                                                edges_dl=edges_dl,
547
548
                                                                                                dense=dense, multigraph=multigraph,
                                                                                                norm=norm)))
549
550
551
552
553
            if self.deg_corr:
                S -= E
            else:
                S += E

554
555
            if complete:
                if self.deg_corr:
556
557
558
                    S += libcommunity.deg_entropy_term(self.g._Graph__graph,
                                                       libcore.any(),
                                                       self.overlap_stats,
559
560
561
                                                       self.N,
                                                       _prop("e", self.g, self.eweight),
                                                       _prop("v", self.g, self.ignore_degrees))
562

563
564
565
566
                if multigraph:
                    S += libcommunity.entropy_parallel(self.g._Graph__graph,
                                                       _prop("e", self.g, self.eweight))

567
                if _bm_test():
568
569
570
                    assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                    random=random, dl=dl,
                                                                                                    partition_dl=partition_dl,
571
                                                                                                    edges_dl=edges_dl,
572
573
                                                                                                    dense=dense, multigraph=multigraph,
                                                                                                    norm=norm)))
574
        if dl:
575
576
577
578
579
580
581
582
            if partition_dl:
                if self.partition_stats.is_enabled():
                    S += self.partition_stats.get_partition_dl()
                else:
                    self.__init_partition_stats(empty=False)
                    S += self.partition_stats.get_partition_dl()
                    self.__init_partition_stats(empty=True)

583
                if _bm_test():
584
585
586
                    assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                    random=random, dl=dl,
                                                                                                    partition_dl=partition_dl,
587
                                                                                                    edges_dl=edges_dl,
588
589
                                                                                                    dense=dense, multigraph=multigraph,
                                                                                                    norm=norm)))
590
591
592
            if edges_dl:
                actual_B = (self.wr.a > 0).sum()
                S += model_entropy(actual_B, N, E, directed=self.g.is_directed(), nr=False)
593

594
            if self.deg_corr and degree_dl:
595
596
597
598
599
600
                if self.partition_stats.is_enabled():
                    S_seq = self.partition_stats.get_deg_dl(dl_ent, dl_deg_alt, xi_fast)
                else:
                    self.__init_partition_stats(empty=False)
                    S_seq = self.partition_stats.get_deg_dl(dl_ent, dl_deg_alt, xi_fast)
                    self.__init_partition_stats(empty=True)
601

602
                S += S_seq
603

604
                if _bm_test():
605
606
607
                    assert not isnan(S_seq) and not isinf(S_seq), "invalid entropy %g (%s) " % (S_seq, str(dict(complete=complete,
                                                                                                                random=random, dl=dl,
                                                                                                                partition_dl=partition_dl,
608
                                                                                                                edges_dl=edges_dl,
609
610
611
                                                                                                                dense=dense, multigraph=multigraph,
                                                                                                                norm=norm)))

612
        if _bm_test():
613
614
615
            assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                            random=random, dl=dl,
                                                                                            partition_dl=partition_dl,
616
                                                                                            edges_dl=edges_dl,
617
618
619
620
621
622
623
                                                                                            dense=dense, multigraph=multigraph,
                                                                                            norm=norm)))

        if norm:
            return S / E
        else:
            return S
624

625
626
627
    def get_matrix(self):
        r"""Returns the block matrix (as a sparse :class:`~scipy.sparse.csr_matrix`),
        which contains the number of edges between each block pair.
628

629
630
631
632
633
634
        .. warning::

           This corresponds to the adjacency matrix of the block graph, which by
           convention includes twice the amount of edges in the diagonal entries
           if the graph is undirected.

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
        Examples
        --------

        .. testsetup:: get_matrix

           gt.seed_rng(42)
           np.random.seed(42)
           from pylab import *

        .. doctest:: get_matrix

           >>> g = gt.collection.data["polbooks"]
           >>> state = gt.BlockState(g, B=5, deg_corr=True)
           >>> for i in range(1000):
           ...     ds, nmoves = gt.mcmc_sweep(state)
650
           >>> m = state.get_matrix()
651
652
           >>> figure()
           <...>
653
           >>> matshow(m.todense())
654
655
656
657
658
659
660
661
662
663
664
665
666
           <...>
           >>> savefig("bloc_mat.pdf")

        .. testcleanup:: get_matrix

           savefig("bloc_mat.png")

        .. figure:: bloc_mat.*
           :align: center

           A  5x5 block matrix.

       """
667

668
        return adjacency(self.bg, weight=self.mrs)
669
670


671
def model_entropy(B, N, E, directed=False, nr=None):
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
    r"""Computes the amount of information necessary for the parameters of the traditional blockmodel ensemble, for ``B`` blocks, ``N`` vertices, ``E`` edges, and either a directed or undirected graph.

    A traditional blockmodel is defined as a set of :math:`N` vertices which can
    belong to one of :math:`B` blocks, and the matrix :math:`e_{rs}` describes
    the number of edges from block :math:`r` to :math:`s` (or twice that number
    if :math:`r=s` and the graph is undirected).

    For an undirected graph, the number of distinct :math:`e_{rs}` matrices is given by,

    .. math::

       \Omega_m = \left(\!\!{\left(\!{B \choose 2}\!\right) \choose E}\!\!\right)

    and for a directed graph,

    .. math::
       \Omega_m = \left(\!\!{B^2 \choose E}\!\!\right)


    where :math:`\left(\!{n \choose k}\!\right) = {n+k-1\choose k}` is the
    number of :math:`k` combinations with repetitions from a set of size :math:`n`.

    The total information necessary to describe the model is then,

    .. math::

698
699
       \mathcal{L}_t = \ln\Omega_m + \ln\left(\!\!{B \choose N}\!\!\right) + \ln N! - \sum_r \ln n_r!,

700

701
702
    where the remaining term is the information necessary to describe the
    block partition, where :math:`n_r` is the number of nodes in block :math:`r`.
703

704
705
    If ``nr`` is ``None``, it is assumed :math:`n_r=N/B`.

706
707
708
    References
    ----------

Tiago Peixoto's avatar
Tiago Peixoto committed
709
710
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
Tiago Peixoto's avatar
Tiago Peixoto committed
711
712
713
    .. [peixoto-hierarchical-2014] Tiago P. Peixoto, "Hierarchical block structures and high-resolution
       model selection in large networks ", Phys. Rev. X 4, 011047 (2014), :doi:`10.1103/PhysRevX.4.011047`,
       :arxiv:`1310.4377`.
714
715
716

    """

717
718
719
720
    if directed:
        x = (B * B);
    else:
        x = (B * (B + 1)) / 2;
721
722
723
724
725
    if nr is False:
        L = lbinom(x + E - 1, E)
    else:
        L = lbinom(x + E - 1, E) + partition_entropy(B, N, nr)
    return L
726

727
def lbinom(n, k):
728
    return scipy.special.gammaln(float(n + 1)) - scipy.special.gammaln(float(n - k + 1)) - scipy.special.gammaln(float(k + 1))
729

730
731
732
733
734
735
def lbinom_careful(n, k):
    return libcommunity.lbinom_careful(n, k)

def lbinom_fast(n, k):
    return libcommunity.lbinom_fast(n, k)

736
737
738
739
def partition_entropy(B, N, nr=None):
    if nr is None:
        S = N * log(B) + log1p(-(1 - 1./B) ** N)
    else:
740
        S = lbinom(B + N - 1, N) + scipy.special.gammaln(N + 1) - scipy.special.gammaln(nr + 1).sum()
741
    return S
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

def get_max_B(N, E, directed=False):
    r"""Return the maximum detectable number of blocks, obtained by minimizing:

    .. math::

        \mathcal{L}_t(B, N, E) - E\ln B

    where :math:`\mathcal{L}_t(B, N, E)` is the information necessary to
    describe a traditional blockmodel with `B` blocks, `N` nodes and `E`
    edges (see :func:`model_entropy`).

    Examples
    --------

    >>> gt.get_max_B(N=1e6, E=5e6)
    1572

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
762
763
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
764
765
766
767


    """

768
769
770
    def Sdl(B, S, N, E, directed=False):
        return S + model_entropy(B, N, E, directed) / E

771
772
773
774
    B = fminbound(lambda B: Sdl(B, -log(B), N, E, directed), 1, E,
                  xtol=1e-6, maxfun=1500, disp=0)
    if isnan(B):
        B = 1
775
    return min(N, max(int(ceil(B)), 2))
776

777
def get_akc(B, I, N=numpy.inf, directed=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
778
    r"""Return the minimum value of the average degree of the network, so that some block structure with :math:`B` blocks can be detected, according to the minimum description length criterion.
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

    This is obtained by solving

    .. math::

       \Sigma_b = \mathcal{L}_t(B, N, E) - E\mathcal{I}_{t/c} = 0,

    where :math:`\mathcal{L}_{t}` is the necessary information to describe the
    blockmodel parameters (see :func:`model_entropy`), and
    :math:`\mathcal{I}_{t/c}` characterizes the planted block structure, and is
    given by

    .. math::

        \mathcal{I}_t &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{w_rw_s}\right),\\
        \mathcal{I}_c &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{m_rm_s}\right),

    where :math:`m_{rs} = e_{rs}/2E` (or :math:`m_{rs} = e_{rs}/E` for directed
    graphs) and :math:`w_r=n_r/N`. We note that :math:`\mathcal{I}_{t/c}\in[0,
    \ln B]`. In the case where :math:`E \gg B^2`, this simplifies to

    .. math::

       \left<k\right>_c &= \frac{2\ln B}{\mathcal{I}_{t/c}},\\
       \left<k^{-/+}\right>_c &= \frac{\ln B}{\mathcal{I}_{t/c}},

    for undirected and directed graphs, respectively. This limit is assumed if
    ``N == inf``.

    Examples
    --------

    >>> gt.get_akc(10, log(10) / 100, N=100)
812
    2.414413200430159
813
814
815

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
816
817
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
818
819

    """
820
    if N != numpy.inf:
821
        if directed:
822
            get_dl = lambda ak: model_entropy(B, N, N * ak, directed) / N * ak - N * ak * I
823
        else:
824
            get_dl = lambda ak: model_entropy(B, N, N * ak / 2., directed) * 2 / (N * ak)  - N * ak * I / 2.
825
826
827
828
829
830
831
832
        ak = fsolve(lambda ak: get_dl(ak), 10)
        ak = float(ak)
    else:
        ak = 2 * log(B) / S
        if directed:
            ak /= 2
    return ak

833
834
def mcmc_sweep(state, beta=1., c=1., niter=1, dl=False, dense=False,
               multigraph=False, node_coherent=False, confine_layers=False,
835
               sequential=True, parallel=False, vertices=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
836
               target_blocks=None, verbose=False, **kwargs):
837
    r"""Performs a Markov chain Monte Carlo sweep on the network, to sample the block partition according to a probability :math:`\propto e^{-\beta \mathcal{S}_{t/c}}`, where :math:`\mathcal{S}_{t/c}` is the blockmodel entropy.
838
839
840

    Parameters
    ----------
841
    state : :class:`~graph_tool.community.BlockState`, :class:`~graph_tool.community.OverlapBlockState` or :class:`~graph_tool.community.CovariateBlockState`
842
        The block state.
843
    beta : ``float`` (optional, default: `1.0`)
844
        The inverse temperature parameter :math:`\beta`.
845
846
847
848
849
    c : ``float`` (optional, default: ``1.0``)
        This parameter specifies how often fully random moves are attempted,
        instead of more likely moves based on the inferred block partition.
        For ``c == 0``, no fully random moves are attempted, and for ``c == inf``
        they are always attempted.
850
851
    niter : ``int`` (optional, default: ``1``)
        Number of sweeps to perform.
852
853
854
    dl : ``bool`` (optional, default: ``False``)
        If ``True``, the change in the whole description length will be
        considered after each vertex move, not only the entropy.
855
856
857
858
859
    dense : ``bool`` (optional, default: ``False``)
        If ``True``, the "dense" variant of the entropy will be computed.
    multigraph : ``bool`` (optional, default: ``False``)
        If ``True``, the multigraph entropy will be used. Only has an effect
        if ``dense == True``.
860
861
862
863
    node_coherent : ``bool`` (optional, default: ``False``)
        If ``True``, and if the ``state`` is an instance of
        :class:`~graph_tool.community.OverlapBlockState`, then all half-edges
        incident on the same node are moved simultaneously.
864
865
866
867
868
    confine_layers : ``bool`` (optional, default: ``False``)
        If ``True``, and if the ``state`` is an instance of
        :class:`~graph_tool.community.CovariateBlockState`, with an
        *overlapping* partition, the half edges will only be moved in such a way
         that inside each layer the group membership remains non-overlapping.
869
870
871
872
873
    sequential : ``bool`` (optional, default: ``True``)
        If ``True``, the move attempts on the vertices are done in sequential
        random order. Otherwise a total of `N` moves attempts are made, where
        `N` is the number of vertices, where each vertex can be selected with
        equal probability.
874
875
876
877
878
879
880
881
882
883
    parallel : ``bool`` (optional, default: ``False``)
        If ``True``, the updates are performed in parallel (multiple
        threads).

        .. warning::

            If this is used, the Markov Chain is not guaranteed to be sampled with
            the correct probabilities. This is better used in conjunction with
            ``beta=float('inf')``, where this is not an issue.

Tiago Peixoto's avatar
Tiago Peixoto committed
884
    vertices : ``list of ints`` (optional, default: ``None``)
885
886
        A list of vertices which will be attempted to be moved. If ``None``, all
        vertices will be attempted.
887
888
889
    target_blocks : ``list of ints`` (optional, default: ``None``)
        A list of groups to which the corresponding vertices will to be forcibly
        moved. If ``None``, the standard MCMC rules will be applied.
890
891
892
893
894
895
    verbose : ``bool`` (optional, default: ``False``)
        If ``True``, verbose information is displayed.

    Returns
    -------

896
    dS : ``float``
897
       The entropy difference (in nats) after the sweeps.
898
899
900
901
902
903
904
    nmoves : ``int``
       The number of accepted block membership moves.


    Notes
    -----

905
    This algorithm performs a Markov chain Monte Carlo sweep on the network,
906
907
    where the block memberships are randomly moved, and either accepted or
    rejected, so that after sufficiently many sweeps the partitions are sampled
908
    with probability proportional to :math:`e^{-\beta\mathcal{S}_{t/c}}`, where
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
    :math:`\mathcal{S}_{t/c}` is the blockmodel entropy, given by

    .. math::

      \mathcal{S}_t &\cong - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
      \mathcal{S}^d_t &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

    for undirected and directed traditional blockmodels (``deg_corr == False``),
    respectively, where :math:`e_{rs}` is the number of edges from block
    :math:`r` to :math:`s` (or the number of half-edges for the undirected case
    when :math:`r=s`), and :math:`n_r` is the number of vertices in block
    :math:`r`, and constant terms which are independent of the block partition
    were dropped (see :meth:`BlockState.entropy` for the complete entropy). For
    the degree-corrected variant with "hard" degree constraints the equivalent
    expressions are

    .. math::

       \mathcal{S}_c &\cong  - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
       \mathcal{S}^d_c &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

    where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
    block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
    \sum_se_{sr}` are the number of out- and in-edges adjacent to block
    :math:`r`, respectively.

    The Monte Carlo algorithm employed attempts to improve the mixing time of
936
937
    the Markov chain by proposing membership moves :math:`r\to s` with
    probability :math:`p(r\to s|t) \propto e_{ts} + c`, where :math:`t` is the
938
    block label of a random neighbour of the vertex being moved. See
939
    [peixoto-efficient-2014]_ for more details.
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

    This algorithm has a complexity of :math:`O(E)`, where :math:`E` is the
    number of edges in the network.

    Examples
    --------
    .. testsetup:: mcmc

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: mcmc

       >>> g = gt.collection.data["polbooks"]
       >>> state = gt.BlockState(g, B=3, deg_corr=True)
       >>> pv = None
       >>> for i in range(1000):        # remove part of the transient
       ...     ds, nmoves = gt.mcmc_sweep(state)
       >>> for i in range(1000):
       ...     ds, nmoves = gt.mcmc_sweep(state)
       ...     pv = gt.collect_vertex_marginals(state, pv)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.pdf")
       <...>

    .. testcleanup:: mcmc

       gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.png")

    .. figure:: polbooks_blocks_soft.*
       :align: center

       "Soft" block partition of a political books network with :math:`B=3`.

     References
    ----------

    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey,
       Samuel Leinhardt, "Stochastic blockmodels: First steps",
978
979
       Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.,
       :doi:`10.1016/0378-8733(83)90021-7`
980
981
    .. [faust-blockmodels-1992] Katherine Faust, and Stanley
       Wasserman. "Blockmodels: Interpretation and Evaluation." Social Networks
982
       14, no. 1-2 (1992): 5-61. :doi:`10.1016/0378-8733(92)90013-W`
983
984
985
986
    .. [karrer-stochastic-2011] Brian Karrer, and M. E. J. Newman. "Stochastic
       Blockmodels and Community Structure in Networks." Physical Review E 83,
       no. 1 (2011): 016107. :doi:`10.1103/PhysRevE.83.016107`.
    .. [peixoto-entropy-2012] Tiago P. Peixoto "Entropy of Stochastic Blockmodel
987
988
989
990
991
       Ensembles." Physical Review E 85, no. 5 (2012): 056122.
       :doi:`10.1103/PhysRevE.85.056122`, :arxiv:`1112.6028`.
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module
       inference in large networks", Phys. Rev. Lett. 110, 148701 (2013),
       :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
992
    .. [peixoto-efficient-2014] Tiago P. Peixoto, "Efficient Monte Carlo and greedy
993
994
995
       heuristic for the inference of stochastic block models", Phys. Rev. E 89,
       012804 (2014), :doi:`10.1103/PhysRevE.89.012804`, :arxiv:`1310.4378`.
    .. [peixoto-model-2015] Tiago P. Peixoto, "Model selection and hypothesis
996
       testing for large-scale network models with overlapping groups",
997
       Phys. Rev. X 5, 011033 (2015), :doi:`10.1103/PhysRevX.5.011033`,
998
       :arxiv:`1409.3059`.
999
1000
    """

1001
1002
1003
1004
1005
    nmerges = kwargs.get("nmerges", 0)
    merge_map = kwargs.get("merge_map", None)
    coherent_merge = kwargs.get("coherent_merge", False)
    edges_dl = kwargs.get("edges_dl", False)

1006
    if state.B == 1:
1007
1008
        return 0., 0

1009
    if vertices is not None:
1010
1011
1012
        temp = libcommunity.get_vector(len(vertices))
        temp.a = vertices
        vertices = temp
1013
        state.sweep_vertices = vertices
1014
1015
    elif (state.sweep_vertices is None or
          len(state.sweep_vertices.a) < state.g.num_vertices()):
1016
1017
1018
1019
        vertices = libcommunity.get_vector(state.g.num_vertices())
        vertices.a = state.g.vertex_index.copy("int").fa
        state.sweep_vertices = vertices

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    if target_blocks is not None:
        temp = libcommunity.get_vector(len(target_blocks))
        temp.a = target_blocks
        target_blocks = temp
        if len(target_blocks) != len(state.sweep_vertices):
            raise ValueError("'target_blocks' must have the same length as 'vertices'")
    else:
        target_blocks = libcommunity.get_vector(0)


1030
    random_move = c == numpy.inf
1031

1032
    bclabel = state.get_bclabel()
1033

1034
1035
1036
1037
    if nmerges == 0 or merge_map is None:
        merge_map = state.g.vertex_index.copy("int")

    if nmerges > 0:
1038
        beta = numpy.inf
1039

1040
1041
    nsampler = []
    ncavity_sampler = []
1042

1043
1044
1045
1046
1047
1048
1049
    main_state = state
    if isinstance(state, CovariateBlockState):
        states = state.states
        covariate = True
    else:
        states = [state]
        covariate = False
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    for l, state in enumerate(states):

        if l == 0 and (random_move or nmerges > 0):
            state._BlockState__build_egroups(empty=True)
        elif state.egroups is None:
            state._BlockState__build_egroups(empty=False)

        if nmerges == 0:
            if state.nsampler is None:
                state._BlockState__build_nsampler(empty=state.overlap)
            nsampler.append(state.nsampler)
            ncavity_sampler.append(state.nsampler)
1063
        else:
1064
            if not kwargs.get("unweighted_merge", False):
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
                emask = state.mrs
            else:
                emask = state.mrs.copy()
                emask.a = emask.a > 0

            nsampler.append(libcommunity.init_neighbour_sampler(state.bg._Graph__graph,
                                                                _prop("e", state.bg, emask),
                                                                True, False))
            ncavity_sampler.append(libcommunity.init_neighbour_sampler(state.bg._Graph__graph,
                                                                       _prop("e", state.bg, emask),
                                                                       False, False))

        dl_enable = dl
        if dl and covariate and (state.slave or state.master):
            dl_enable = state.master
        if state.partition_stats.is_enabled() != dl_enable or edges_dl != state.edges_dl:
            if state.overlap:
                state._OverlapBlockState__init_partition_stats(empty=not dl_enable, edges_dl=edges_dl)
            else:
                state._BlockState__init_partition_stats(empty=not dl_enable, edges_dl=edges_dl)
1085

1086
1087
1088
1089
1090
    if _bm_test():
        assert main_state._BlockState__check_clabel(), "clabel already invalid!"
        S = main_state.entropy(dense=dense, multigraph=multigraph,
                               complete=False, dl=dl, edges_dl=edges_dl,
                               dl_deg_alt=False, xi_fast=True)
1091
        assert not (isinf(S) or isnan(S)), "invalid entropy before sweep: %g" % S
1092

1093
    nmoves = 1
1094
    try:
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        if not covariate:
            state = states[0]
            if not state.overlap:
                dS, nmoves = libcommunity.move_sweep(state.g._Graph__graph,
                                                     state.bg._Graph__graph,
                                                     state._BlockState__get_emat(),
                                                     nsampler[0], ncavity_sampler[0],
                                                     _prop("e", state.bg, state.mrs),
                                                     _prop("v", state.bg, state.mrp),
                                                     _prop("v", state.bg, state.mrm),
                                                     _prop("v", state.bg, state.wr),
                                                     _prop("v", state.g, state.b),
                                                     _prop("v", state.bg, bclabel),
                                                     state.sweep_vertices,
1109
                                                     target_blocks,
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
                                                     state.deg_corr, dense, multigraph,
                                                     _prop("e", state.g, state.eweight),
                                                     _prop("v", state.g, state.vweight),
                                                     state.egroups,
                                                     _prop("e", state.g, state.esrcpos),
                                                     _prop("e", state.g, state.etgtpos),
                                                     float(beta), sequential,
                                                     parallel, random_move,
                                                     c, state.is_weighted,
                                                     nmerges,
                                                     _prop("v", state.g, merge_map),
                                                     niter,
                                                     state.partition_stats,
                                                     verbose, _get_rng())
            else:
                dS, nmoves = libcommunity.move_sweep_overlap(state.g._Graph__graph,
                                                             state.bg._Graph__graph,
                                                             state._BlockState__get_emat(),
                                                             nsampler[0],
                                                             ncavity_sampler[0],
                                                             _prop("e", state.bg, state.mrs),
                                                             _prop("v", state.bg, state.mrp),
                                                             _prop("v", state.bg, state.mrm),
                                                             _prop("v", state.bg, state.wr),
                                                             _prop("v", state.g, state.b),
                                                             _prop("v", state.bg, bclabel),
                                                             state.sweep_vertices,
1137
                                                             target_blocks,
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
                                                             state.deg_corr, dense, multigraph,
                                                             multigraph,
                                                             _prop("e", state.g, state.eweight),
                                                             _prop("v", state.g, state.vweight),
                                                             state.egroups,
                                                             _prop("e", state.g, state.esrcpos),
                                                             _prop("e", state.g, state.etgtpos),
                                                             float(beta),
                                                             sequential, parallel,
                                                             random_move, float(c),
                                                             ((nmerges == 0 and node_coherent) or
                                                              (nmerges > 0 and coherent_merge)),
                                                             state.is_weighted,
                                                             nmerges,
                                                             _prop("v", state.g, merge_map),
                                                             niter,
                                                             state.overlap_stats,
                                                             state.partition_stats,
                                                             verbose, _get_rng())
1157
        else:
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
            if _bm_test():
                for l, state in enumerate(states):
                    assert state.mrs.fa.sum() == state.eweight.fa.sum(), (l, state.mrs.fa.sum(), state.eweight.fa.sum())
                    #assert state.mrs.a.sum() == state.eweight.a.sum(), (l, state.mrs.a.sum(), state.eweight.a.sum())

            if confine_layers:
                node_coherent = True

            dS, nmoves = libcommunity.cov_move_sweep(main_state.g._Graph__graph,
                                                     _prop("e", main_state.g, main_state.ec),
                                                     _prop("v", main_state.g, main_state.vc),
                                                     _prop("v", main_state.g, main_state.vmap),
                                                     [state.g._Graph__graph for state in states],
                                                     [state.bg._Graph__graph for state in states],
                                                     [state._BlockState__get_emat() for state in states],
                                                     nsampler, ncavity_sampler,
                                                     [_prop("e", state.bg, state.mrs) for state in states],
                                                     [_prop("v", state.bg, state.mrp) for state in states],
                                                     [_prop("v", state.bg, state.mrm) for state in states],
                                                     [_prop("v", state.bg, state.wr) for state in states],
                                                     _prop("v", main_state.g, main_state.b),
                                                     [_prop("v", state.g, state.b) for state in states],
                                                     main_state.bmap,
                                                     [_prop("v", state.g, state.g.vp["brmap"]) for state in states],
                                                     [state.free_blocks for state in states],
                                                     [state.master for state in states],
                                                     [state.slave for state in states],
                                                     _prop("v", None, bclabel),
1186
                                                     [main_state.sweep_vertices, target_blocks],
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
                                                     main_state.deg_corr, dense, multigraph,
                                                     [_prop("e", state.g, state.eweight) for state in states],
                                                     [_prop("v", state.g, state.vweight) for state in states],
                                                     [state.egroups for state in states],
                                                     [_prop("e", state.g, state.esrcpos) for state in states],
                                                     [_prop("e", state.g, state.etgtpos) for state in states],
                                                     float(beta), sequential,
                                                     parallel, random_move,
                                                     (node_coherent, confine_layers),
                                                     c, main_state.is_weighted,
                                                     nmerges,
                                                     _prop("v", main_state.g, merge_map),
                                                     niter, main_state.B,
                                                     [state.partition_stats for state in states] if not main_state.overlap else [],
                                                     [state.partition_stats for state in states] if main_state.overlap else [],
                                                     [state.overlap_stats for state in states],
                                                     verbose, _get_rng())
1204
    finally:
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
        for state in states:
            if random_move:
                state.egroups = None
            if nmerges > 0:
                state.nsampler = None
                state.egroups = None
        if covariate and nmoves > 0:
            main_state._CovariateBlockState__bg = None

    if _bm_test():
        assert main_state._BlockState__check_clabel(), "clabel invalidated!"
1216
        assert not (isinf(dS) or isnan(dS)), "invalid after sweep: %g" % dS
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        if not covariate or nmerges == 0:
            S2 = main_state.entropy(dense=dense, multigraph=multigraph,
                                    complete=False, dl=dl, edges_dl=edges_dl,
                                    dl_deg_alt=False, xi_fast=True)
            c_dS = S2 - S
            if not abs(dS - c_dS) < 1e-6 * state.E:
                S3 = main_state.copy().entropy(dense=dense, multigraph=multigraph, complete=False,
                                               dl=dl, edges_dl=False, dl_deg_alt=False, xi_fast=True)
                print(dS, c_dS, nmoves, state.overlap, dense, multigraph,
                      main_state.deg_corr, main_state.is_weighted, node_coherent, beta, S2, S3)
            assert abs(dS - c_dS) < 1e-6 * state.E, "invalid delta S (%g, %g)" % (dS, c_dS)
1228

1229
    return dS, nmoves
1230

1231

1232
1233
1234
1235
def pmap(prop, value_map):
    """Maps all the values of `prop` to the values given by `value_map`, which
    is indexed by the values of `prop`."""
    if isinstance(prop, PropertyMap):
1236
1237
1238
        a = prop.fa
    else:
        a = prop
1239
1240
    if isinstance(value_map, PropertyMap):
        value_map = value_map.a
1241
1242
    if a.max() >= len(value_map):
        raise ValueError("value map is not large enough! %s, %s" % (a.max(),
1243
                                                                    len(value_map)))
1244
1245
1246
1247
    if a.dtype != value_map.dtype:
        value_map = array(value_map, dtype=a.dtype)
    if a.dtype == "int64":
        libcommunity.vector_map64(a, value_map)
1248
    else:
1249
1250
1251
        libcommunity.vector_map(a, value_map)
    if isinstance(prop, PropertyMap):
        prop.fa = a
1252
1253
1254
1255
1256
1257
1258

def reverse_map(prop, value_map):
    """Modify `value_map` such that the positions indexed by the values in `prop`
    correspond to their index in `prop`."""
    if isinstance(prop, PropertyMap):
        prop = prop.a
    if isinstance(value_map, PropertyMap):
1259
1260
1261
1262
1263
1264
1265
1266
1267
        a = value_map.fa
    else:
        a = value_map
    if prop.max() >= len(a):
        raise ValueError("value map is not large enough! (%d, %d)" % (prop.max(), len(a)))
    if prop.dtype != a.dtype:
        prop = array(prop, dtype=a.dtype)
    if a.dtype == "int64":
        libcommunity.vector_rmap64(prop, a)
1268
    else:
1269
1270
1271
        libcommunity.vector_rmap(prop, a)
    if isinstance(value_map, PropertyMap):
        value_map.fa = a
1272
1273
1274
1275

def continuous_map(prop):
    """Remap the values of ``prop`` in the continuous range :math:`[0, N-1]`."""
    if isinstance(prop, PropertyMap):
1276
1277
1278
1279
1280
1281
1282
        a = prop.fa
    else:
        a = prop
    if a.max() < len(a):
        rmap = -ones(len(a), dtype=a.dtype)
        if a.dtype == "int64":
            libcommunity.vector_map64(a, rmap)
1283
        else:
1284
            libcommunity.vector_map(a, rmap)
1285
    else:
1286
1287
        if a.dtype == "int64":
            libcommunity.vector_continuous_map64(a)
1288
        else: