graph_rewiring.hh 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
22
#include <tr1/random>
23
#include <boost/functional/hash.hpp>
24
#include <boost/vector_property_map.hpp>
25
26
27

#include "graph.hh"
#include "graph_filtering.hh"
28
#include "graph_util.hh"
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

namespace graph_tool
{
using namespace std;
using namespace boost;


// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
77
78
            nt = target(te, g),        // new target
            te_s = source(te, g),      // target edge source
79
80
81
82
83
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
84
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
85
86
87
88
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
89
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
90
            return true; // e would clash with an existing (new) edge
91
        if (edge_is_new[te] && is_adjacent_in_new(te_s, t, edge_is_new, g))
92
            return true; // te would clash with an existing (new) edge
93
        if (edge_is_new[se] && is_adjacent_in_new(s, se_t, edge_is_new, g))
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
109
            if (edge_is_new[*e] && target(*e,g) == v)
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
135
            ne = add_edge(source(se, g), target(te, g), g).first;
136
137
138
139
140
141
142
143
144
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
145
                nte = add_edge(source(te, g), target(e, g), g).first;
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
172
    void operator()(Graph& g, EdgeIndexMap edge_index, rng_t& rng,
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
Tiago Peixoto's avatar
Tiago Peixoto committed
194
                throw ValueException("Self-loop detected. Can't rewire graph "
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
Tiago Peixoto's avatar
Tiago Peixoto committed
224
                throw ValueException("Parallel edge detected. Can't rewire "
225
226
227
228
229
230
231
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
232
233
234
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
235
        {
236
237
238
239
240
241
242
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
243
244
245
        }

        // for each edge simultaneously rewire its source and target
246
        for (size_t i = 0; i < int(edges.size()); ++i)
247
        {
248
249
            if (!is_edge[i])
                continue;
250
251
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
252
            tie(se, te) = rewire(e, edges, is_edge, self_loops, parallel_edges);
253
254
255
256
257
258
259
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
260
261
template <class RandomAccessIterator, class RNG,
          class RandomDist = tr1::uniform_int<size_t> >
262
263
class random_permutation_iterator : public
    std::iterator<input_iterator_tag, typename RandomAccessIterator::value_type>
264
265
{
public:
266
267
268
    random_permutation_iterator(RandomAccessIterator begin,
                                RandomAccessIterator end, RNG& rng)
        : _i(begin), _end(end), _rng(&rng)
269
    {
270
271
272
273
274
        if(_i != _end)
        {
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
        }
275
    }
276

277
278
279
280
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
281

282
283
284
    random_permutation_iterator& operator++()
    {
        ++_i;
285
        if(_i != _end)
286
        {
287
288
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
289
        }
290
291
        return *this;
    }
292

293
    bool operator==(const random_permutation_iterator& ri)
294
    {
295
        return _i == ri._i;
296
    }
297

298
    bool operator!=(const random_permutation_iterator& ri)
299
    {
300
        return _i != ri._i;
301
    }
302
303
304
305
306
307

    size_t operator-(const random_permutation_iterator& ri)
    {
        return _i - ri._i;
    }

308
private:
309
310
    RandomAccessIterator _i, _end;
    RNG* _rng;
311
312
};

313
314
315
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
316
317
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
318
319
320
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
321
322
    typedef typename EdgeIndexMap::value_type index_t;

323
    RewireStrategyBase(const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
324
        : _g(g), _edge_is_new(edge_index), _rng(rng) {}
325
326

    template<class EdgesType>
327
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
328
                                    vector<bool>& is_edge,
329
                                    bool self_loops, bool parallel_edges)
330
    {
331
        // where should we sample the edges from
332
333
334
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
335
336
337
338

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
339
340
        edge_t es, et;
        typedef random_permutation_iterator
341
            <typename vector<index_t>::iterator, rng_t> random_edge_iter;
342

343
344
345
346
347
        random_edge_iter esi(edges_source->begin(), edges_source->end(),
                             _rng),
                         esi_end(edges_source->end(), edges_source->end(),
                             _rng);
        for (; esi != esi_end && !found; ++esi)
348
        {
349
350
            if (!is_edge[*esi])
                continue;
351
            es = edges[*esi];
352
353
            static_cast<RewireStrategy*>(this)->check_source_edge(es, e);

354
355
            if(!self_loops) // reject self-loops if not allowed
            {
356
                if((source(e, _g) == target(es, _g)))
357
358
359
                    continue;
            }

360
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
361
362
                                 _rng),
                             eti_end(edges_target->end(), edges_target->end(),
363
                                 _rng);
364
            for (; eti != eti_end && !found; ++eti)
365
            {
366
367
                if (!is_edge[*eti])
                    continue;
368
                et = edges[*eti];
369
370
                static_cast<RewireStrategy*>(this)->check_target_edge(et, e);

371
372
                if (!self_loops) // reject self-loops if not allowed
                {
373
374
                    if ((source(es, _g) == target(et, _g)) ||
                        (source(et, _g) == target(e, _g)))
375
376
377
378
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
379
380
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new,
                                                        _g))
381
382
383
384
385
386
387
388
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
389
        _edge_is_new[e] = true;
390
        return make_pair(es, et);
391
392
393
394
395
    }

private:
    const Graph& _g;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
396
    rng_t& _rng;
397
398
};

399
400
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
401
template <class Graph, class EdgeIndexMap>
402
403
404
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
405
406
{
public:
407
408
409
410
411
412
413
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

414
415
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
416
    typedef typename EdgeIndexMap::value_type index_t;
417

418
419
420
    RandomRewireStrategy(const Graph& g, EdgeIndexMap edge_index,
                         rng_t& rng)
        : base_t(g, edge_index, rng)
421
    {
422
423
424
425
        typename graph_traits<Graph>::edge_iterator e_i, e_i_end;
        for (tie(e_i, e_i_end) = edges(g); e_i != e_i_end; ++e_i)
            _all_edges.push_back(edge_index[*e_i]);
        _all_edges2 = _all_edges;
426
    }
427
428
429

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
430
    {
431
        edges_source = &_all_edges;
432
        edges_target = &_all_edges2;
433
    }
434

435
436
437
    void check_source_edge(edge_t& se, const edge_t& e) {}
    void check_target_edge(edge_t& te, const edge_t& e) {}

438
439
private:
    vector<index_t> _all_edges;
440
    vector<index_t> _all_edges2;
441
};
442

443
444
445
446

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
447
448
449
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
450
451
{
public:
452
453
454
455
456
457
458
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

459
460
461
462
463
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
464
                              rng_t& rng) : base_t(g, edge_index, rng), _g(g)
465
    {
466
467
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
468
        {
469
470
471
472
473
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
474
            {
475
476
477
478
479
                // For undirected graphs, there is no difference between source
                // and target, and each edge will appear _twice_ on the lists
                // below, once for each different ordering of source and target.

                _edges_by_source
480
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
481
                               out_degree(source(*e_i, _g), _g))]
482
                    .push_back(edge_index[*e_i]);
483
484
485
486

                _edges_by_target
                    [make_pair(in_degreeS()(target(*e_i, _g), _g),
                               out_degree(target(*e_i, _g), _g))]
487
                    .push_back(edge_index[*e_i]);
488
489
490
            }
        }
    }
491
492
493

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
494
    {
495
496
497
        pair<size_t, size_t> deg_source =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));
498
499
        edges_source = &_edges_by_source[deg_source];

500
501

        pair<size_t, size_t> deg_target =
502
503
            make_pair(in_degreeS()(target(e, _g), _g),
                      out_degree(target(e, _g), _g));
504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        edges_target = &_edges_by_target[deg_target];
    }


    void check_source_edge(edge_t& se, const edge_t& e)
    {
        check_source_edge_if_undirected
            (se, e, typename is_directed::apply<Graph>::type());
    }
    void check_target_edge(edge_t& te, const edge_t& e)
    {
        check_target_edge_if_undirected
            (te, e, typename is_directed::apply<Graph>::type());
    }

    void check_source_edge_if_undirected(edge_t& se, const edge_t& e,
                                         boost::true_type) {}
    void check_target_edge_if_undirected(edge_t& te, const edge_t& e,
                                         boost::true_type) {}

    void check_source_edge_if_undirected(edge_t& se, const edge_t& e,
                                         boost::false_type)
    {
        // check if the edge direction is correct, otherwise invert it.
        pair<size_t, size_t> deg_source1 =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));

        pair<size_t, size_t> deg_source2 =
            make_pair(in_degreeS()(source(se, _g), _g),
                      out_degree(source(se, _g), _g));

        if (deg_source1 != deg_source2)
            se = edge_t(se, !se.IsInverted());
    }

    void check_target_edge_if_undirected(edge_t& te, const edge_t& e,
                                         boost::false_type)
    {
        // check if the edge direction is correct, otherwise invert it.
        pair<size_t, size_t> deg_target1 =
            make_pair(in_degreeS()(target(e, _g), _g),
                      out_degree(target(e, _g), _g));

        pair<size_t, size_t> deg_target2 =
            make_pair(in_degreeS()(target(te, _g), _g),
                      out_degree(target(te, _g), _g));

        if (deg_target1 != deg_target2)
            te = edge_t(te, !te.IsInverted());
555
    }
556

557
private:
558
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
559
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
560
561
    edges_by_end_deg_t _edges_by_source, _edges_by_target;
    vector<index_t> _temp;
562
563
564

protected:
    const Graph& _g;
565
566
567
568
569
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH