blockmodel.py 121 KB
Newer Older
1
2
3
4
5
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2015 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import division, absolute_import, print_function
import sys
if sys.version_info < (3,):
    range = xrange

26
27
from .. import _degree, _prop, Graph, GraphView, libcore, _get_rng, PropertyMap
from .. stats import label_self_loops
28
from .. spectral import adjacency
29
30
import random
from numpy import *
31
import numpy
32
33
from scipy.optimize import fsolve, fminbound
import scipy.special
34
from collections import defaultdict
35
36
import copy
import heapq
37
38
39
40

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_community as libcommunity")

41
__test__ = False
42

43
44
45
46
47
48
49
50
def set_test(test):
    global __test__
    __test__ = test

def _bm_test():
    global __test__
    return __test__

51
52
53
54
55
56
57
58
59
60
61
62
def get_block_graph(g, B, b, vcount, ecount):
    cg, br, vcount, ecount = condensation_graph(g, b,
                                                vweight=vcount,
                                                eweight=ecount,
                                                self_loops=True)[:4]
    cg.vp["count"] = vcount
    cg.ep["count"] = ecount
    cg = Graph(cg, vorder=br)

    cg.add_vertex(B - cg.num_vertices())
    return cg

63
64
65
66
67
68
69
70
class BlockState(object):
    r"""This class encapsulates the block state of a given graph.

    This must be instantiated and used by functions such as :func:`mcmc_sweep`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
71
        Graph to be modelled.
72
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
73
        Edge multiplicities (for multigraphs or block graphs).
74
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
75
        Vertex multiplicities (for block graphs).
76
77
78
79
80
81
82
83
    b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Initial block labels on the vertices. If not supplied, it will be
        randomly sampled.
    B : ``int`` (optional, default: ``None``)
        Number of blocks. If not supplied it will be either obtained from the
        parameter ``b``, or set to the maximum possible value according to the
        minimum description length.
    clabel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
84
85
        Constraint labels on the vertices. If supplied, vertices with different
        label values will not be clustered in the same group.
86
87
88
    deg_corr : ``bool`` (optional, default: ``True``)
        If ``True``, the degree-corrected version of the blockmodel ensemble will
        be assumed, otherwise the traditional variant will be used.
89
90
91
92
    max_BE : ``int`` (optional, default: ``1000``)
        If the number of blocks exceeds this number, a sparse representation of
        the block graph is used, which is slightly less efficient, but uses less
        memory,
93
94
    """

95
96
    _state_ref_count = 0

97
    def __init__(self, g, eweight=None, vweight=None, b=None,
98
99
                 B=None, clabel=None, deg_corr=True,
                 max_BE=1000, **kwargs):
100
101
        BlockState._state_ref_count += 1

102
        # initialize weights to unity, if necessary
103
104
        if eweight is None:
            eweight = g.new_edge_property("int")
105
            eweight.fa = 1
106
107
108
109
        elif eweight.value_type() != "int32_t":
            eweight = eweight.copy(value_type="int32_t")
        if vweight is None:
            vweight = g.new_vertex_property("int")
110
            vweight.fa = 1
111
112
        elif vweight.value_type() != "int32_t":
            vweight = vweight.copy(value_type="int32_t")
113
114
115
        self.eweight = g.own_property(eweight)
        self.vweight = g.own_property(vweight)

116
117
118
119
        self.is_weighted = False
        if ((g.num_edges() > 0 and self.eweight.fa.max() > 1) or
            kwargs.get("force_weighted", False)):
            self.is_weighted = True
120
121
122

        # configure the main graph and block model parameters
        self.g = g
123

124
125
        self.E = int(self.eweight.fa.sum())
        self.N = int(self.vweight.fa.sum())
126
127
128

        self.deg_corr = deg_corr

129
        # ensure we have at most as many blocks as nodes
130
        if B is not None and b is None:
131
132
            B = min(B, self.g.num_vertices())

133
        if b is None:
134
            # create a random partition into B blocks.
135
136
            if B is None:
                B = get_max_B(self.N, self.E, directed=g.is_directed())
137
138
            B = min(B, self.g.num_vertices())
            ba = random.randint(0, B, self.g.num_vertices())
139
            ba[:B] = arange(B)        # avoid empty blocks
140
141
            if B < self.g.num_vertices():
                random.shuffle(ba)
142
            b = g.new_vertex_property("int")
143
            b.fa = ba
144
145
            self.b = b
        else:
146
147
148
149
150
151
            # if a partition is available, we will incorporate it.
            if isinstance(b, numpy.ndarray):
                self.b = g.new_vertex_property("int")
                self.b.fa = b
            else:
                self.b = b = g.own_property(b.copy(value_type="int"))
152
            if B is None:
153
154
155
156
                B = int(self.b.fa.max()) + 1

        # if B > self.N:
        #     raise ValueError("B > N!")
157

158
        if self.b.fa.max() >= B:
159
            raise ValueError("Maximum value of b is larger or equal to B! (%d vs %d)" % (self.b.fa.max(), B))
160
161

        # Construct block-graph
162
        self.bg = get_block_graph(g, B, self.b, self.vweight, self.eweight)
163
164
165
166
        self.bg.set_fast_edge_removal()

        self.mrs = self.bg.ep["count"]
        self.wr = self.bg.vp["count"]
167

168
169
170
171
172
173
174
175
176
        del self.bg.ep["count"]
        del self.bg.vp["count"]

        self.mrp = self.bg.degree_property_map("out", weight=self.mrs)

        if g.is_directed():
            self.mrm = self.bg.degree_property_map("in", weight=self.mrs)
        else:
            self.mrm = self.mrp
177
178
179

        self.vertices = libcommunity.get_vector(B)
        self.vertices.a = arange(B)
180
        self.B = B
181

182
183
        if clabel is not None:
            if isinstance(clabel, PropertyMap):
184
                self.clabel = self.g.own_property(clabel.copy("int"))
185
186
187
188
            else:
                self.clabel = self.g.new_vertex_property("int")
                self.clabel.a = clabel
        else:
189
190
191
192
193
194
195
            self.clabel = self.g.new_vertex_property("int")

        self.emat = None
        if max_BE is None:
            max_BE = 1000
        self.max_BE = max_BE

196
        self.overlap = False
197
198
199
        self.ignore_degrees = kwargs.get("ignore_degrees", None)
        if self.ignore_degrees is None:
            self.ignore_degrees = g.new_vertex_property("bool", False)
200

201
202
203
204
        # used by mcmc_sweep()
        self.egroups = None
        self.nsampler = None
        self.sweep_vertices = None
205
206
        self.overlap_stats = libcommunity.overlap_stats()
        self.partition_stats = libcommunity.partition_stats()
207
        self.edges_dl = False
208

209
        # computation cache
210
211
212
213
214
        E = g.num_edges()
        N = g.num_vertices()
        libcommunity.init_safelog(int(5 * max(E, N)))
        libcommunity.init_xlogx(int(5 * max(E, N)))
        libcommunity.init_lgamma(int(3 * max(E, N)))
215

216
    def __del__(self):
Tiago Peixoto's avatar
Tiago Peixoto committed
217
218
219
220
221
222
        try:
            BlockState._state_ref_count -= 1
            if BlockState._state_ref_count == 0:
                libcommunity.clear_safelog()
                libcommunity.clear_xlogx()
                libcommunity.clear_lgamma()
223
        except (ValueError, AttributeError, TypeError):
Tiago Peixoto's avatar
Tiago Peixoto committed
224
            pass
225

226
227
228
229
230
231
    def __repr__(self):
        return "<BlockState object with %d blocks,%s for graph %s, at 0x%x>" % \
            (self.B, " degree corrected," if self.deg_corr else "", str(self.g),
             id(self))


232
233
    def __init_partition_stats(self, empty=True, edges_dl=False):
        self.edges_dl = edges_dl
234
235
236
237
        if not empty:
            self.partition_stats = libcommunity.init_partition_stats(self.g._Graph__graph,
                                                                     _prop("v", self.g, self.b),
                                                                     _prop("e", self.g, self.eweight),
238
                                                                     self.N, self.B,
239
240
                                                                     edges_dl,
                                                                     _prop("v", self.g, self.ignore_degrees))
241
242
243
244
245
        else:
            self.partition_stats = libcommunity.partition_stats()



246
    def copy(self, g=None, eweight=None, vweight=None, b=None, B=None,
247
             deg_corr=None, clabel=None, overlap=False, **kwargs):
248
249
250
251
252
253
        r"""Copies the block state. The parameters override the state properties, and
         have the same meaning as in the constructor. If ``overlap=True`` an
         instance of :class:`~graph_tool.community.OverlapBlockState` is
         returned."""

        if not overlap:
254
            state = BlockState(self.g if g is None else g,
255
256
                               eweight=self.eweight if eweight is None else eweight,
                               vweight=self.vweight if vweight is None else vweight,
257
258
259
260
                               b=self.b.copy() if b is None else b,
                               B=(self.B if b is None else None) if B is None else B,
                               clabel=self.clabel if clabel is None else clabel,
                               deg_corr=self.deg_corr if deg_corr is None else deg_corr,
261
                               max_BE=self.max_BE,
262
263
                               ignore_degrees=kwargs.pop("ignore_degrees", self.ignore_degrees),
                               **kwargs)
264
        else:
265
            state = OverlapBlockState(self.g if g is None else g,
266
267
268
269
                                      b=b if b is not None else self.b,
                                      B=(self.B if b is None else None) if B is None else B,
                                      clabel=self.clabel if clabel is None else clabel,
                                      deg_corr=self.deg_corr if deg_corr is None else deg_corr,
270
                                      max_BE=self.max_BE, **kwargs)
271
272
273
274
275
276

        if not state.__check_clabel():
            b = state.b.a + state.clabel.a * state.B
            continuous_map(b)
            state = state.copy(b=b)

277
            if _bm_test():
278
279
280
281
282
283
284
285
286
287
288
289
290
                assert state.__check_clabel()

        return state


    def __getstate__(self):
        state = dict(g=self.g,
                     eweight=self.eweight,
                     vweight=self.vweight,
                     b=self.b,
                     B=self.B,
                     clabel=self.clabel,
                     deg_corr=self.deg_corr,
291
292
                     max_BE=self.max_BE,
                     ignore_degrees=self.ignore_degrees)
293
294
295
296
297
298
        return state

    def __setstate__(self, state):
        self.__init__(**state)
        return state

299
300
    def get_block_state(self, b=None, vweight=False, deg_corr=False,
                        overlap=False, **kwargs):
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
        r"""Returns a :class:`~graph_tool.community.BlockState`` corresponding to the
        block graph. The parameters have the same meaning as the in the constructor."""


        state = BlockState(self.bg, eweight=self.mrs,
                           vweight=self.wr if vweight else None,
                           b=self.bg.vertex_index.copy("int") if b is None else b,
                           clabel=self.get_bclabel(),
                           deg_corr=deg_corr,
                           max_BE=self.max_BE)
        if overlap:
            state = state.copy(overlap=True)
        n_map = self.b.copy()
        return state, n_map

    def get_bclabel(self):
        r"""Returns a :class:`~graph_tool.PropertyMap`` corresponding to constraint
        labels for the block graph."""

        bclabel = self.bg.new_vertex_property("int")
        reverse_map(self.b, bclabel)
        pmap(bclabel, self.clabel)
        return bclabel

    def __check_clabel(self):
        b = self.b.a + self.clabel.a * self.B
        continuous_map(b)
        b2 = self.b.copy()
        continuous_map(b2.a)
        return (b == b2.a).all()

332
333
334
335
    def __get_emat(self):
        if self.emat is None:
            self.__regen_emat()
        return self.emat
336
337

    def __regen_emat(self):
338
339
340
341
        if self.B <= self.max_BE:
            self.emat = libcommunity.create_emat(self.bg._Graph__graph)
        else:
            self.emat = libcommunity.create_ehash(self.bg._Graph__graph)
342

343
    def __build_egroups(self, empty=False):
344
345
        self.esrcpos = self.g.new_edge_property("int")
        self.etgtpos = self.g.new_edge_property("int")
346

347
        self.egroups = libcommunity.build_egroups(self.g._Graph__graph,
348
349
350
351
352
                                                  self.bg._Graph__graph,
                                                  _prop("v", self.g, self.b),
                                                  _prop("e", self.g, self.eweight),
                                                  _prop("e", self.g, self.esrcpos),
                                                  _prop("e", self.g, self.etgtpos),
353
                                                  self.is_weighted, empty)
354

355
    def __build_nsampler(self, empty=False):
356
        self.nsampler = libcommunity.init_neighbour_sampler(self.g._Graph__graph,
357
                                                            _prop("e", self.g, self.eweight),
358
                                                            True, empty)
359
360
361
362
363
364

    def __cleanup_bg(self):
        emask = self.bg.new_edge_property("bool")
        emask.a = self.mrs.a[:len(emask.a)] > 0
        self.bg.set_edge_filter(emask)
        self.bg.purge_edges()
365
        self.emat = None
366
367
368
369
370
371
372
373
374
375

    def get_blocks(self):
        r"""Returns the property map which contains the block labels for each vertex."""
        return self.b

    def get_bg(self):
        r"""Returns the block graph."""
        return self.bg

    def get_ers(self):
376
377
        r"""Returns the edge property map of the block graph which contains the :math:`e_{rs}` matrix entries.
        For undirected graphs, the diagonal values (self-loops) contain :math:`e_{rr}/2`."""
378
379
380
381
382
383
384
385
        return self.mrs

    def get_er(self):
        r"""Returns the vertex property map of the block graph which contains the number
        :math:`e_r` of half-edges incident on block :math:`r`. If the graph is
        directed, a pair of property maps is returned, with the number of
        out-edges :math:`e^+_r` and in-edges :math:`e^-_r`, respectively."""
        if self.bg.is_directed():
386
            return self.mrp, self.mrm
387
388
389
390
391
392
393
        else:
            return self.mrp

    def get_nr(self):
        r"""Returns the vertex property map of the block graph which contains the block sizes :math:`n_r`."""
        return self.wr

394
395
396
    def entropy(self, complete=True, dl=False, partition_dl=True,
                degree_dl=True, edges_dl=True, dense=False, multigraph=True,
                norm=False, dl_ent=False, **kwargs):
397
        r"""Calculate the entropy associated with the current block partition.
398
399
400
401
402
403
404
405

        Parameters
        ----------
        complete : ``bool`` (optional, default: ``False``)
            If ``True``, the complete entropy will be returned, including constant
            terms not relevant to the block partition.
        dl : ``bool`` (optional, default: ``False``)
            If ``True``, the full description length will be returned.
406
407
408
409
410
411
412
413
        partition_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the partition description length
            will be considered.
        edges_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the edge matrix description length
            will be considered.
        degree_dl : ``bool`` (optional, default: ``True``)
            If ``True``, and ``dl == True`` the degree sequence description
414
            length will be considered.
415
416
417
        dense : ``bool`` (optional, default: ``False``)
            If ``True``, the "dense" variant of the entropy will be computed.
        multigraph : ``bool`` (optional, default: ``False``)
418
419
420
421
422
423
424
            If ``True``, the multigraph entropy will be used.
        norm : ``bool`` (optional, default: ``True``)
            If ``True``, the entropy will be "normalized" by dividing by the
            number of edges.
        dl_ent : ``bool`` (optional, default: ``False``)
            If ``True``, the description length of the degree sequence will be
            approximated by its entropy.
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

        Notes
        -----
        For the traditional blockmodel (``deg_corr == False``), the entropy is
        given by

        .. math::

          \mathcal{S}_t &\cong E - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
          \mathcal{S}^d_t &\cong E - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

        for undirected and directed graphs, respectively, where :math:`e_{rs}`
        is the number of edges from block :math:`r` to :math:`s` (or the number
        of half-edges for the undirected case when :math:`r=s`), and :math:`n_r`
        is the number of vertices in block :math:`r` .

        For the degree-corrected variant with "hard" degree constraints the
        equivalent expressions are

        .. math::

            \mathcal{S}_c &\cong -E -\sum_kN_k\ln k! - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
            \mathcal{S}^d_c &\cong -E -\sum_{k^+}N_{k^+}\ln k^+!  -\sum_{k^-}N_{k^-}\ln k^-! - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

        where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
        block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
451
        \sum_se_{sr}` are the numbers of out- and in-edges adjacent to block
452
453
        :math:`r`, respectively.

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        If ``dense == False`` and ``multigraph == True``, the entropy used will
        be of the "Poisson" model, with the additional term:

        .. math::

            {\mathcal{S}_{cm}^{(d)}} = \mathcal{S}_c^{(d)} + \sum_{i>j} \ln A_{ij}! + \sum_i \ln A_{ii}!!


        If ``dl == True``, the description length :math:`\mathcal{L}_t` of the
        model will be returned as well, as described in
        :func:`model_entropy`. Note that for the degree-corrected version the
        description length is

        .. math::

            \mathcal{L}_c = \mathcal{L}_t + \sum_r\min\left(\mathcal{L}^{(1)}_r, \mathcal{L}^{(2)}_r\right),

        with

        .. math::

              \mathcal{L}^{(1)}_r &= \ln{\left(\!\!{n_r \choose e_r}\!\!\right)}, \\
              \mathcal{L}^{(2)}_r &= \ln\Xi_r + \ln n_r! - \sum_k \ln n^r_k!,

        and :math:`\ln\Xi_r \simeq 2\sqrt{\zeta(2)e_r}`, where :math:`\zeta(x)`
        is the `Riemann zeta function
        <https://en.wikipedia.org/wiki/Riemann_zeta_function>`_, and
        :math:`n^r_k` is the number of nodes in block :math:`r` with degree
        :math:`k`. For directed graphs we have instead :math:`k \to (k^-, k^+)`,
        and :math:`\ln\Xi_r \to \ln\Xi^+_r + \ln\Xi^-_r` with :math:`\ln\Xi_r^+
        \simeq 2\sqrt{\zeta(2)e^+_r}` and :math:`\ln\Xi_r^- \simeq
        2\sqrt{\zeta(2)e^-_r}`.

        If ``dl_ent=True`` is passed, this will be approximated instead by
488
489
490

        .. math::

491
            \mathcal{L}_c \simeq \mathcal{L}_t - \sum_rn_r\sum_kp^r_k\ln p^r_k,
492

493
        where :math:`p^r_k = n^r_k / n_r`.
494

495
496
        If the "dense" entropies are requested (``dense=True``), they will be
        computed as
497
498
499
500
501
502
503
504
505
506
507
508
509

        .. math::

            \mathcal{S}_t  &= \sum_{r>s} \ln{\textstyle {n_rn_s \choose e_{rs}}} + \sum_r \ln{\textstyle {{n_r\choose 2}\choose e_{rr}/2}}\\
            \mathcal{S}^d_t  &= \sum_{rs} \ln{\textstyle {n_rn_s \choose e_{rs}}},

        for simple graphs, and

        .. math::

            \mathcal{S}_m  &= \sum_{r>s} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)} + \sum_r \ln{\textstyle \left(\!\!{\left(\!{n_r\choose 2}\!\right)\choose e_{rr}/2}\!\!\right)}\\
            \mathcal{S}^d_m  &= \sum_{rs} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)},

510
511
512
        for multigraphs (i.e. ``multigraph == True``). A dense entropy for the
        degree-corrected model is not available, and if requested will return a
        :exc:`NotImplementedError`.
513

514
515
        If ``complete == False`` constants in the above equations which do not
        depend on the partition of the nodes will be omitted.
516

517
518
        Note that in all cases if ``norm==True`` the value returned corresponds
        to the entropy `per edge`, i.e. :math:`(\mathcal{S}_{t/c}\; [\,+\,\mathcal{L}_{t/c}])/ E`.
519
520
        """

521
522
523
        xi_fast = kwargs.get("xi_fast", False)
        dl_deg_alt = kwargs.get("dl_deg_alt", True)

524
525
526
        E = self.E
        N = self.N

527
528
        if dense:
            if self.deg_corr:
529
                raise NotImplementedError('A degree-corrected "dense" entropy is not yet implemented')
530

531
            S = libcommunity.entropy_dense(self.bg._Graph__graph,
532
533
534
                                            _prop("e", self.bg, self.mrs),
                                            _prop("v", self.bg, self.wr),
                                            multigraph)
535
536
        else:
            S = libcommunity.entropy(self.bg._Graph__graph,
537
538
539
540
541
                                      _prop("e", self.bg, self.mrs),
                                      _prop("v", self.bg, self.mrp),
                                      _prop("v", self.bg, self.mrm),
                                      _prop("v", self.bg, self.wr),
                                      self.deg_corr)
542

543
            if _bm_test():
544
545
546
                assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                random=random, dl=dl,
                                                                                                partition_dl=partition_dl,
547
                                                                                                edges_dl=edges_dl,
548
549
                                                                                                dense=dense, multigraph=multigraph,
                                                                                                norm=norm)))
550
551
552
553
554
            if self.deg_corr:
                S -= E
            else:
                S += E

555
556
            if complete:
                if self.deg_corr:
557
558
559
                    S += libcommunity.deg_entropy_term(self.g._Graph__graph,
                                                       libcore.any(),
                                                       self.overlap_stats,
560
561
562
                                                       self.N,
                                                       _prop("e", self.g, self.eweight),
                                                       _prop("v", self.g, self.ignore_degrees))
563

564
565
566
567
                if multigraph:
                    S += libcommunity.entropy_parallel(self.g._Graph__graph,
                                                       _prop("e", self.g, self.eweight))

568
                if _bm_test():
569
570
571
                    assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                    random=random, dl=dl,
                                                                                                    partition_dl=partition_dl,
572
                                                                                                    edges_dl=edges_dl,
573
574
                                                                                                    dense=dense, multigraph=multigraph,
                                                                                                    norm=norm)))
575
        if dl:
576
577
578
579
580
581
582
583
            if partition_dl:
                if self.partition_stats.is_enabled():
                    S += self.partition_stats.get_partition_dl()
                else:
                    self.__init_partition_stats(empty=False)
                    S += self.partition_stats.get_partition_dl()
                    self.__init_partition_stats(empty=True)

584
                if _bm_test():
585
586
587
                    assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                                    random=random, dl=dl,
                                                                                                    partition_dl=partition_dl,
588
                                                                                                    edges_dl=edges_dl,
589
590
                                                                                                    dense=dense, multigraph=multigraph,
                                                                                                    norm=norm)))
591
592
593
            if edges_dl:
                actual_B = (self.wr.a > 0).sum()
                S += model_entropy(actual_B, N, E, directed=self.g.is_directed(), nr=False)
594

595
            if self.deg_corr and degree_dl:
596
597
598
599
600
601
                if self.partition_stats.is_enabled():
                    S_seq = self.partition_stats.get_deg_dl(dl_ent, dl_deg_alt, xi_fast)
                else:
                    self.__init_partition_stats(empty=False)
                    S_seq = self.partition_stats.get_deg_dl(dl_ent, dl_deg_alt, xi_fast)
                    self.__init_partition_stats(empty=True)
602

603
                S += S_seq
604

605
                if _bm_test():
606
607
608
                    assert not isnan(S_seq) and not isinf(S_seq), "invalid entropy %g (%s) " % (S_seq, str(dict(complete=complete,
                                                                                                                random=random, dl=dl,
                                                                                                                partition_dl=partition_dl,
609
                                                                                                                edges_dl=edges_dl,
610
611
612
                                                                                                                dense=dense, multigraph=multigraph,
                                                                                                                norm=norm)))

613
        if _bm_test():
614
615
616
            assert not isnan(S) and not isinf(S), "invalid entropy %g (%s) " % (S, str(dict(complete=complete,
                                                                                            random=random, dl=dl,
                                                                                            partition_dl=partition_dl,
617
                                                                                            edges_dl=edges_dl,
618
619
620
621
622
623
624
                                                                                            dense=dense, multigraph=multigraph,
                                                                                            norm=norm)))

        if norm:
            return S / E
        else:
            return S
625

626
627
628
    def get_matrix(self):
        r"""Returns the block matrix (as a sparse :class:`~scipy.sparse.csr_matrix`),
        which contains the number of edges between each block pair.
629

630
631
632
633
634
635
        .. warning::

           This corresponds to the adjacency matrix of the block graph, which by
           convention includes twice the amount of edges in the diagonal entries
           if the graph is undirected.

636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        Examples
        --------

        .. testsetup:: get_matrix

           gt.seed_rng(42)
           np.random.seed(42)
           from pylab import *

        .. doctest:: get_matrix

           >>> g = gt.collection.data["polbooks"]
           >>> state = gt.BlockState(g, B=5, deg_corr=True)
           >>> for i in range(1000):
           ...     ds, nmoves = gt.mcmc_sweep(state)
651
           >>> m = state.get_matrix()
652
653
           >>> figure()
           <...>
654
           >>> matshow(m.todense())
655
656
657
658
659
660
661
662
663
664
665
666
667
           <...>
           >>> savefig("bloc_mat.pdf")

        .. testcleanup:: get_matrix

           savefig("bloc_mat.png")

        .. figure:: bloc_mat.*
           :align: center

           A  5x5 block matrix.

       """
668

669
        return adjacency(self.bg, weight=self.mrs)
670
671


672
def model_entropy(B, N, E, directed=False, nr=None):
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    r"""Computes the amount of information necessary for the parameters of the traditional blockmodel ensemble, for ``B`` blocks, ``N`` vertices, ``E`` edges, and either a directed or undirected graph.

    A traditional blockmodel is defined as a set of :math:`N` vertices which can
    belong to one of :math:`B` blocks, and the matrix :math:`e_{rs}` describes
    the number of edges from block :math:`r` to :math:`s` (or twice that number
    if :math:`r=s` and the graph is undirected).

    For an undirected graph, the number of distinct :math:`e_{rs}` matrices is given by,

    .. math::

       \Omega_m = \left(\!\!{\left(\!{B \choose 2}\!\right) \choose E}\!\!\right)

    and for a directed graph,

    .. math::
       \Omega_m = \left(\!\!{B^2 \choose E}\!\!\right)


    where :math:`\left(\!{n \choose k}\!\right) = {n+k-1\choose k}` is the
    number of :math:`k` combinations with repetitions from a set of size :math:`n`.

    The total information necessary to describe the model is then,

    .. math::

699
700
       \mathcal{L}_t = \ln\Omega_m + \ln\left(\!\!{B \choose N}\!\!\right) + \ln N! - \sum_r \ln n_r!,

701

702
703
    where the remaining term is the information necessary to describe the
    block partition, where :math:`n_r` is the number of nodes in block :math:`r`.
704

705
706
    If ``nr`` is ``None``, it is assumed :math:`n_r=N/B`.

707
708
709
    References
    ----------

Tiago Peixoto's avatar
Tiago Peixoto committed
710
711
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
Tiago Peixoto's avatar
Tiago Peixoto committed
712
713
714
    .. [peixoto-hierarchical-2014] Tiago P. Peixoto, "Hierarchical block structures and high-resolution
       model selection in large networks ", Phys. Rev. X 4, 011047 (2014), :doi:`10.1103/PhysRevX.4.011047`,
       :arxiv:`1310.4377`.
715
716
717

    """

718
719
720
721
    if directed:
        x = (B * B);
    else:
        x = (B * (B + 1)) / 2;
722
723
724
725
726
    if nr is False:
        L = lbinom(x + E - 1, E)
    else:
        L = lbinom(x + E - 1, E) + partition_entropy(B, N, nr)
    return L
727

728
def lbinom(n, k):
729
    return scipy.special.gammaln(float(n + 1)) - scipy.special.gammaln(float(n - k + 1)) - scipy.special.gammaln(float(k + 1))
730

731
732
733
734
735
736
def lbinom_careful(n, k):
    return libcommunity.lbinom_careful(n, k)

def lbinom_fast(n, k):
    return libcommunity.lbinom_fast(n, k)

737
738
739
740
def partition_entropy(B, N, nr=None):
    if nr is None:
        S = N * log(B) + log1p(-(1 - 1./B) ** N)
    else:
741
        S = lbinom(B + N - 1, N) + scipy.special.gammaln(N + 1) - scipy.special.gammaln(nr + 1).sum()
742
    return S
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

def get_max_B(N, E, directed=False):
    r"""Return the maximum detectable number of blocks, obtained by minimizing:

    .. math::

        \mathcal{L}_t(B, N, E) - E\ln B

    where :math:`\mathcal{L}_t(B, N, E)` is the information necessary to
    describe a traditional blockmodel with `B` blocks, `N` nodes and `E`
    edges (see :func:`model_entropy`).

    Examples
    --------

    >>> gt.get_max_B(N=1e6, E=5e6)
    1572

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
763
764
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
765
766
767
768


    """

769
770
771
    def Sdl(B, S, N, E, directed=False):
        return S + model_entropy(B, N, E, directed) / E

772
773
774
775
    B = fminbound(lambda B: Sdl(B, -log(B), N, E, directed), 1, E,
                  xtol=1e-6, maxfun=1500, disp=0)
    if isnan(B):
        B = 1
776
    return min(N, max(int(ceil(B)), 2))
777

778
def get_akc(B, I, N=numpy.inf, directed=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
779
    r"""Return the minimum value of the average degree of the network, so that some block structure with :math:`B` blocks can be detected, according to the minimum description length criterion.
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

    This is obtained by solving

    .. math::

       \Sigma_b = \mathcal{L}_t(B, N, E) - E\mathcal{I}_{t/c} = 0,

    where :math:`\mathcal{L}_{t}` is the necessary information to describe the
    blockmodel parameters (see :func:`model_entropy`), and
    :math:`\mathcal{I}_{t/c}` characterizes the planted block structure, and is
    given by

    .. math::

        \mathcal{I}_t &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{w_rw_s}\right),\\
        \mathcal{I}_c &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{m_rm_s}\right),

    where :math:`m_{rs} = e_{rs}/2E` (or :math:`m_{rs} = e_{rs}/E` for directed
    graphs) and :math:`w_r=n_r/N`. We note that :math:`\mathcal{I}_{t/c}\in[0,
    \ln B]`. In the case where :math:`E \gg B^2`, this simplifies to

    .. math::

       \left<k\right>_c &= \frac{2\ln B}{\mathcal{I}_{t/c}},\\
       \left<k^{-/+}\right>_c &= \frac{\ln B}{\mathcal{I}_{t/c}},

    for undirected and directed graphs, respectively. This limit is assumed if
    ``N == inf``.

    Examples
    --------

    >>> gt.get_akc(10, log(10) / 100, N=100)
813
    2.414413200430159
814
815
816

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
817
818
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
819
820

    """
821
    if N != numpy.inf:
822
        if directed:
823
            get_dl = lambda ak: model_entropy(B, N, N * ak, directed) / N * ak - N * ak * I
824
        else:
825
            get_dl = lambda ak: model_entropy(B, N, N * ak / 2., directed) * 2 / (N * ak)  - N * ak * I / 2.
826
827
828
829
830
831
832
833
        ak = fsolve(lambda ak: get_dl(ak), 10)
        ak = float(ak)
    else:
        ak = 2 * log(B) / S
        if directed:
            ak /= 2
    return ak

834
835
def mcmc_sweep(state, beta=1., c=1., niter=1, dl=False, dense=False,
               multigraph=False, node_coherent=False, confine_layers=False,
836
               sequential=True, parallel=False, vertices=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
837
               target_blocks=None, verbose=False, **kwargs):
838
    r"""Performs a Markov chain Monte Carlo sweep on the network, to sample the block partition according to a probability :math:`\propto e^{-\beta \mathcal{S}_{t/c}}`, where :math:`\mathcal{S}_{t/c}` is the blockmodel entropy.
839
840
841

    Parameters
    ----------
842
    state : :class:`~graph_tool.community.BlockState`, :class:`~graph_tool.community.OverlapBlockState` or :class:`~graph_tool.community.CovariateBlockState`
843
        The block state.
844
    beta : ``float`` (optional, default: `1.0`)
845
        The inverse temperature parameter :math:`\beta`.
846
847
848
849
850
    c : ``float`` (optional, default: ``1.0``)
        This parameter specifies how often fully random moves are attempted,
        instead of more likely moves based on the inferred block partition.
        For ``c == 0``, no fully random moves are attempted, and for ``c == inf``
        they are always attempted.
851
852
    niter : ``int`` (optional, default: ``1``)
        Number of sweeps to perform.
853
854
855
    dl : ``bool`` (optional, default: ``False``)
        If ``True``, the change in the whole description length will be
        considered after each vertex move, not only the entropy.
856
857
858
859
860
    dense : ``bool`` (optional, default: ``False``)
        If ``True``, the "dense" variant of the entropy will be computed.
    multigraph : ``bool`` (optional, default: ``False``)
        If ``True``, the multigraph entropy will be used. Only has an effect
        if ``dense == True``.
861
862
863
864
    node_coherent : ``bool`` (optional, default: ``False``)
        If ``True``, and if the ``state`` is an instance of
        :class:`~graph_tool.community.OverlapBlockState`, then all half-edges
        incident on the same node are moved simultaneously.
865
866
867
868
869
    confine_layers : ``bool`` (optional, default: ``False``)
        If ``True``, and if the ``state`` is an instance of
        :class:`~graph_tool.community.CovariateBlockState`, with an
        *overlapping* partition, the half edges will only be moved in such a way
         that inside each layer the group membership remains non-overlapping.
870
871
872
873
874
    sequential : ``bool`` (optional, default: ``True``)
        If ``True``, the move attempts on the vertices are done in sequential
        random order. Otherwise a total of `N` moves attempts are made, where
        `N` is the number of vertices, where each vertex can be selected with
        equal probability.
875
876
877
878
879
880
881
882
883
884
    parallel : ``bool`` (optional, default: ``False``)
        If ``True``, the updates are performed in parallel (multiple
        threads).

        .. warning::

            If this is used, the Markov Chain is not guaranteed to be sampled with
            the correct probabilities. This is better used in conjunction with
            ``beta=float('inf')``, where this is not an issue.

Tiago Peixoto's avatar
Tiago Peixoto committed
885
    vertices : ``list of ints`` (optional, default: ``None``)
886
887
        A list of vertices which will be attempted to be moved. If ``None``, all
        vertices will be attempted.
888
889
890
    target_blocks : ``list of ints`` (optional, default: ``None``)
        A list of groups to which the corresponding vertices will to be forcibly
        moved. If ``None``, the standard MCMC rules will be applied.
891
892
893
894
895
896
    verbose : ``bool`` (optional, default: ``False``)
        If ``True``, verbose information is displayed.

    Returns
    -------

897
    dS : ``float``
898
       The entropy difference (in nats) after the sweeps.
899
900
901
902
903
904
905
    nmoves : ``int``
       The number of accepted block membership moves.


    Notes
    -----

906
    This algorithm performs a Markov chain Monte Carlo sweep on the network,
907
908
    where the block memberships are randomly moved, and either accepted or
    rejected, so that after sufficiently many sweeps the partitions are sampled
909
    with probability proportional to :math:`e^{-\beta\mathcal{S}_{t/c}}`, where
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    :math:`\mathcal{S}_{t/c}` is the blockmodel entropy, given by

    .. math::

      \mathcal{S}_t &\cong - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
      \mathcal{S}^d_t &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

    for undirected and directed traditional blockmodels (``deg_corr == False``),
    respectively, where :math:`e_{rs}` is the number of edges from block
    :math:`r` to :math:`s` (or the number of half-edges for the undirected case
    when :math:`r=s`), and :math:`n_r` is the number of vertices in block
    :math:`r`, and constant terms which are independent of the block partition
    were dropped (see :meth:`BlockState.entropy` for the complete entropy). For
    the degree-corrected variant with "hard" degree constraints the equivalent
    expressions are

    .. math::

       \mathcal{S}_c &\cong  - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
       \mathcal{S}^d_c &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

    where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
    block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
    \sum_se_{sr}` are the number of out- and in-edges adjacent to block
    :math:`r`, respectively.

    The Monte Carlo algorithm employed attempts to improve the mixing time of
937
938
    the Markov chain by proposing membership moves :math:`r\to s` with
    probability :math:`p(r\to s|t) \propto e_{ts} + c`, where :math:`t` is the
939
    block label of a random neighbour of the vertex being moved. See
940
    [peixoto-efficient-2014]_ for more details.
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

    This algorithm has a complexity of :math:`O(E)`, where :math:`E` is the
    number of edges in the network.

    Examples
    --------
    .. testsetup:: mcmc

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: mcmc

       >>> g = gt.collection.data["polbooks"]
       >>> state = gt.BlockState(g, B=3, deg_corr=True)
       >>> pv = None
       >>> for i in range(1000):        # remove part of the transient
       ...     ds, nmoves = gt.mcmc_sweep(state)
       >>> for i in range(1000):
       ...     ds, nmoves = gt.mcmc_sweep(state)
       ...     pv = gt.collect_vertex_marginals(state, pv)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.pdf")
       <...>

    .. testcleanup:: mcmc

       gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.png")

    .. figure:: polbooks_blocks_soft.*
       :align: center

       "Soft" block partition of a political books network with :math:`B=3`.

     References
    ----------

    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey,
       Samuel Leinhardt, "Stochastic blockmodels: First steps",
979
980
       Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A.,
       :doi:`10.1016/0378-8733(83)90021-7`
981
982
    .. [faust-blockmodels-1992] Katherine Faust, and Stanley
       Wasserman. "Blockmodels: Interpretation and Evaluation." Social Networks
983
       14, no. 1-2 (1992): 5-61. :doi:`10.1016/0378-8733(92)90013-W`
984
985
986
987
    .. [karrer-stochastic-2011] Brian Karrer, and M. E. J. Newman. "Stochastic
       Blockmodels and Community Structure in Networks." Physical Review E 83,
       no. 1 (2011): 016107. :doi:`10.1103/PhysRevE.83.016107`.
    .. [peixoto-entropy-2012] Tiago P. Peixoto "Entropy of Stochastic Blockmodel
988
989
990
991
992
       Ensembles." Physical Review E 85, no. 5 (2012): 056122.
       :doi:`10.1103/PhysRevE.85.056122`, :arxiv:`1112.6028`.
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module
       inference in large networks", Phys. Rev. Lett. 110, 148701 (2013),
       :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
993
    .. [peixoto-efficient-2014] Tiago P. Peixoto, "Efficient Monte Carlo and greedy
994
995
996
       heuristic for the inference of stochastic block models", Phys. Rev. E 89,
       012804 (2014), :doi:`10.1103/PhysRevE.89.012804`, :arxiv:`1310.4378`.
    .. [peixoto-model-2015] Tiago P. Peixoto, "Model selection and hypothesis
997
       testing for large-scale network models with overlapping groups",
998
       Phys. Rev. X 5, 011033 (2015), :doi:`10.1103/PhysRevX.5.011033`,
999
       :arxiv:`1409.3059`.
1000
    """
For faster browsing, not all history is shown. View entire blame