__init__.py 18.7 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#! /usr/bin/env python
# graph_tool.py -- a general graph manipulation python module
#
# Copyright (C) 2007 Tiago de Paula Peixoto <tiago@forked.de>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

19
"""
20
``graph_tool.draw`` - Graph drawing
21
22
23
-----------------------------------
"""

24
import sys, os, os.path, time, warnings
25
26
27
from .. core import _degree, _prop, PropertyMap, _check_prop_vector,\
     _check_prop_scalar, _check_prop_writable, group_vector_property,\
     ungroup_vector_property
Tiago Peixoto's avatar
Tiago Peixoto committed
28
from .. decorators import _limit_args
29
import numpy.random
30
31
32
33
from numpy import *

from .. dl_import import dl_import
dl_import("import libgraph_tool_layout")
34
35
36
37
38
39

try:
    import gv
except ImportError:
    warnings.warn("error importing gv module... graph_draw() will not work.",
                  ImportWarning)
40
41
42
43
44
45
try:
    import matplotlib.cm
    import matplotlib.colors
except ImportError:
    warnings.warn("error importing matplotlib module... " + \
                  "graph_draw() will not work.", ImportWarning)
Tiago Peixoto's avatar
Tiago Peixoto committed
46

47
48
__all__ = ["graph_draw", "arf_layout", "random_layout"]

49
50
51
52
def graph_draw(g, pos=None, size=(15, 15), pin=False, layout= "neato",
               maxiter=None, ratio= "fill", overlap="prism", sep=None,
               splines=False, vsize=0.1, penwidth=1.0, elen=None, gprops={},
               vprops={}, eprops={}, vcolor=None, ecolor=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
53
               vcmap=matplotlib.cm.jet, vnorm=True, ecmap=matplotlib.cm.jet,
54
               enorm=True, output= "", output_format= "auto", returngv=False,
55
               fork=False, seed=0):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    r"""Draw a graph using graphviz.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    pos : tuple of PropertyMaps (optional, default: None)
        Vertex property maps containing the x and y coordinates of the vertices.
    size : tuple of scalars (optional, default: (15,15))
        Size (in centimeters) of the canvas.
    pin : bool (default: False)
        If True, the vertices are not moved from their initial position.
    layout : string (default: "neato")
        Layout engine to be used. Possible values are "neato", "fdp", "dot",
70
        "circo", "twopi" and "arf".
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    maxiter : int (default: None)
        If specified, limits the maximum number of iterations.
    ratio : string or float (default: "fill")
        Sets the aspect ratio (drawing height/drawing width) for the
        drawing. Note that this is adjusted before the 'size' attribute
        constraints are enforced.

        If ratio is numeric, it is taken as the desired aspect ratio. Then, if
        the actual aspect ratio is less than the desired ratio, the drawing
        height is scaled up to achieve the desired ratio; if the actual ratio is
        greater than that desired ratio, the drawing width is scaled up.

        If ratio = "fill" and the size attribute is set, node positions are
        scaled, separately in both x and y, so that the final drawing exactly
        fills the specified size.

        If ratio = "compress" and the size attribute is set, dot attempts to
        compress the initial layout to fit in the given size. This achieves a
        tighter packing of nodes but reduces the balance and symmetry.
        This feature only works in dot.

        If ratio = "expand", the size attribute is set, and both the width and
        the height of the graph are less than the value in size, node positions
        are scaled uniformly until at least one dimension fits size exactly.
        Note that this is distinct from using size as the desired size, as here
        the drawing is expanded before edges are generated and all node and text
        sizes remain unchanged.

        If ratio = "auto", the page attribute is set and the graph cannot be
        drawn on a single page, then size is set to an ``ideal'' value. In
        particular, the size in a given dimension will be the smallest integral
        multiple of the page size in that dimension which is at least half the
        current size. The two dimensions are then scaled independently to the
        new size. This feature only works in dot.
    overlap : bool or string (default: "prism")
        Determines if and how node overlaps should be removed. Nodes are first
        enlarged using the sep attribute. If True, overlaps are retained. If
        the value is "scale", overlaps are removed by uniformly scaling in x and
        y. If the value is False, node overlaps are removed by a Voronoi-based
        technique. If the value is "scalexy", x and y are separately scaled to
        remove overlaps.

        If sfdp is available, one can set overlap to "prism" to use a proximity
        graph-based algorithm for overlap removal. This is the preferred
        technique, though "scale" and False can work well with small graphs.
        This technique starts with a small scaling up, controlled by the
        overlap_scaling attribute, which can remove a significant portion of the
        overlap. The prism option also accepts an optional non-negative integer
        suffix. This can be used to control the number of attempts made at
        overlap removal. By default, overlap="prism" is equivalent to
        overlap="prism1000". Setting overlap="prism0" causes only the scaling
        phase to be run.

        If the value is "compress", the layout will be scaled down as much as
        possible without introducing any overlaps, obviously assuming there are
        none to begin with.
    sep : float (default: None)
        Specifies margin to leave around nodes when removing node overlap. This
        guarantees a minimal non-zero distance between nodes.
    splines : bool (default: False)
        If True, the edges are drawn as splines and routed around the vertices.
132
133
134
135
    vsize : float, PropertyMap, or tuple (default: 0.1)
        Default vertex size (width and height). If a tuple is specified, the
        first value should be a property map, and the second is a scale factor.
    penwidth : float, PropertyMap or tuple (default: 1.0)
136
137
        Specifies the width of the pen, in points, used to draw lines and
        curves, including the boundaries of edges and clusters. It has no effect
138
139
140
        on text. Default vertex size (width and height). If a tuple is
        specified, the first value should be a property map, and the second is a
        scale factor.
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
    elen : float or PropertyMap (default: None)
        Preferred edge length, in inches.
    gprops : dict (default: {})
        Additional graph properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string.
    vprops : dict (default: {})
        Additional vertex properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or vertex property
        maps, with values convertible to strings.
    eprops : dict (default: {})
        Additional edge properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or edge property
        maps, with values convertible to strings.
    vcolor : string or PropertyMap (default: None)
        Drawing color for vertices. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
        the 'vcmap' argument.
    ecolor : string or PropertyMap (default: None)
        Drawing color for edges. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
        the 'ecmap' argument.
    vcmap : matplotlib.colors.Colormap (default: matplotlib.cm.jet)
        Vertex color map.
    vnorm : bool (default: True)
        Normalize vertex color values to the [0,1] range.
    ecmap : matplotlib.colors.Colormap (default: matplotlib.cm.jet)
        Edge color map.
    enorm : bool (default: True)
        Normalize edge color values to the [0,1] range.
    output : string (default: "")
        Output file name.
    output_format : string (default: "auto")
        Output file format. Possible values are "auto", "xlib", "ps", "svg",
        "svgz", "fig", "mif", "hpgl", "pcl", "png", "gif", "dia", "imap",
        "cmapx". If the value is "auto", the format is guessed from the 'output'
176
177
        parameter, or 'xlib' if it is empty. If the value is None, no output is
        produced.
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    returngv : bool (default: False)
        Return the graph object used internally with the gv module.
    fork : bool (default: False)
        If true, the program is forked before drawing. This is used as a
        work-around for a bug in graphviz, where the exit() function is called,
        which would cause the calling program to end. This is always assumed
        'True', if output_format = 'xlib'.
    seed : int (default: 0)
        Seed for the random number generator. If the value 0, a different random
        value is used each time.

    Returns
    -------
    pos_x : PropertyMap
        Vertex property map with the x-coordinates of the vertices.
    pos_y : PropertyMap
        Vertex property map with the y-coordinates of the vertices.
    gv : gv.digraph or gv.graph (optional, only if returngv == True)
        Internally used graphviz graph.


    Notes
    -----
    This function is a wrapper for the graphviz_ python
    routines. Extensive additional documentation for the graph, vertex and edge
    properties is available at: http://www.graphviz.org/doc/info/attrs.html.


    Examples
    --------
208
    >>> from numpy import *
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.random_graph(1000, lambda: min(zipf(2.4), 40),
    ...                     lambda i,j: exp(abs(i-j)), directed=False)
    >>> # extract largest component
    >>> comp = gt.label_components(g)
    >>> h = gt.vertex_hist(g, comp)
    >>> max_comp = h[1][list(h[0]).index(max(h[0]))]
    >>> g.remove_vertex_if(lambda v: comp[v] != max_comp)
    >>>
    >>> deg = g.degree_property_map("out")
    >>> deg.get_array()[:] = 2*(sqrt(deg.get_array()[:])*0.5 + 0.4)
    >>> ebet = gt.betweenness(g)[1]
    >>> ebet.get_array()[:] *= 4000
    >>> ebet.get_array()[:] += 10
    >>> gt.graph_draw(g, vsize=deg, vcolor=deg, elen=10, ecolor=ebet,
    ...               penwidth=ebet, overlap="prism", output="graph-draw.png")
226
    <...>
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    .. figure:: graph-draw.png
        :align: center

        Kamada-Kawai force-directed layout of a graph with a power-law degree
        distribution, and dissortative degree correlation. The vertex size and
        color indicate the degree, and the edge color and width the edge
        betweeness centrality.

    References
    ----------
    .. _graphviz: http://www.graphviz.org


    """
Tiago Peixoto's avatar
Tiago Peixoto committed
242

243
    if output != "" and output != None:
244
        output = os.path.expanduser(output)
245
        # check opening file for writing, since graphviz will bork if it is not
246
247
248
249
250
        # possible to open file
        if os.path.dirname(output) != "" and \
               not os.access(os.path.dirname(output), os.W_OK):
            raise IOError("cannot write to " + os.path.dirname(output))

Tiago Peixoto's avatar
Tiago Peixoto committed
251
252
253
254
255
    if g.is_directed():
        gvg = gv.digraph("G")
    else:
        gvg = gv.graph("G")

256
257
258
259
260
    if layout == "arf":
        layout = "neato"
        pos = arf_layout(g, pos=pos)
        pin = True

261
262
    if pos != None:
        # copy user-supplied property
263
264
265
266
        if isinstance(pos, PropertyMap):
            pos = ungroup_vector_property(g, pos, [0,1])
        else:
            pos = (g.copy_property(pos[0]), g.copy_property(pos[1]))
267

268
269
270
271
272
273
274
275
276
277
278
279
    if type(vsize) == tuple:
        s = g.new_vertex_property("double")
        g.copy_property(vsize[0], s)
        s.a *= vsize[1]
        vsize = s

    if type(penwidth) == tuple:
        s = g.new_vertex_property("double")
        g.copy_property(penwidth[0], s)
        s.a *= penwidth[1]
        penwidth = s

Tiago Peixoto's avatar
Tiago Peixoto committed
280
281
    # main graph properties
    gv.setv(gvg,"outputorder", "edgesfirst")
282
    gv.setv(gvg,"mode", "major")
283
    if overlap == False:
284
        overlap = "false"
285
286
287
    else:
        overlap = "true"
    if isinstance(overlap,str):
Tiago Peixoto's avatar
Tiago Peixoto committed
288
        gv.setv(gvg,"overlap", overlap)
289
290
    if sep != None:
        gv.setv(gvg,"sep", str(sep))
Tiago Peixoto's avatar
Tiago Peixoto committed
291
292
293
    if splines:
        gv.setv(gvg,"splines", "true")
    gv.setv(gvg,"ratio", str(ratio))
294
    gv.setv(gvg,"size", "%f,%f" % (size[0]/2.54,size[1]/2.54)) # centimeters
Tiago Peixoto's avatar
Tiago Peixoto committed
295
296
    if maxiter != None:
        gv.setv(gvg,"maxiter", str(maxiter))
297
298
299
300
301
302
303

    if seed == 0:
        seed = numpy.random.randint(sys.maxint)
    if type(seed) == int:
        gv.setv(gvg, "start", "%d" % seed)
    else:
        gv.setv(gvg, "start", seed)
Tiago Peixoto's avatar
Tiago Peixoto committed
304
305

    # apply all user supplied properties
306
    for k,val in gprops.iteritems():
Tiago Peixoto's avatar
Tiago Peixoto committed
307
308
309
310
311
312
313
314
315
316
317
318
        if isinstance(val, PropertyMap):
            gv.setv(gvg, k, str(val[g]))
        else:
            gv.setv(gvg, k, str(val))

    # normalize color properties
    if vcolor != None and not isinstance(vcolor, str):
        minmax = [float("inf"), -float("inf")]
        for v in g.vertices():
            c = vcolor[v]
            minmax[0] = min(c,minmax[0])
            minmax[1] = max(c,minmax[1])
319
320
        if minmax[0] == minmax[1]:
            minmax[1] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
321
322
        if vnorm:
            vnorm = matplotlib.colors.normalize(vmin=minmax[0], vmax=minmax[1])
323
324
        else:
            vnorm = lambda x: x
Tiago Peixoto's avatar
Tiago Peixoto committed
325
326
327
328

    if ecolor != None and not isinstance(ecolor, str):
        minmax = [float("inf"), -float("inf")]
        for e in g.edges():
329
            c = ecolor[e]
Tiago Peixoto's avatar
Tiago Peixoto committed
330
331
            minmax[0] = min(c,minmax[0])
            minmax[1] = max(c,minmax[1])
332
333
        if minmax[0] == minmax[1]:
            minmax[1] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
334
335
        if enorm:
            enorm = matplotlib.colors.normalize(vmin=minmax[0], vmax=minmax[1])
336
337
        else:
            enorm = lambda x: x
Tiago Peixoto's avatar
Tiago Peixoto committed
338
339
340
341
342
343
344

    nodes = []
    edges = []

    # add nodes
    for v in g.vertices():
        n = gv.node(gvg,str(g.vertex_index[v]))
345
346
347

        if type(vsize) == PropertyMap:
            vw = vh = vsize[v]
348
        else:
349
            vw = vh = vsize
350
351
352

        gv.setv(n, "width", "%g" % vw)
        gv.setv(n, "height", "%g" % vh)
Tiago Peixoto's avatar
Tiago Peixoto committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
        gv.setv(n, "style", "filled")
        gv.setv(n, "color", "black")
        # apply color
        if vcolor != None:
            if isinstance(vcolor,str):
                gv.setv(n, "fillcolor", vcolor)
            else:
                color = tuple([int(c*255.0) for c in vcmap(vnorm(vcolor[v]))])
                gv.setv(n, "fillcolor", "#%.2x%.2x%.2x%.2x" % color)
        else:
            gv.setv(n, "fillcolor", "red")
        gv.setv(n, "label", "")

        # user supplied position
        if pos != None:
            gv.setv(n, "pos", "%f,%f" % (pos[0][v],pos[1][v]))
            gv.setv(n, "pin", str(pin))

        # apply all user supplied properties
372
        for k,val in vprops.iteritems():
Tiago Peixoto's avatar
Tiago Peixoto committed
373
374
375
376
377
378
379
380
381
            if isinstance(val, PropertyMap):
                gv.setv(n, k, str(val[v]))
            else:
                gv.setv(n, k, str(val))
        nodes.append(n)
    for e in g.edges():
        ge = gv.edge(nodes[g.vertex_index[e.source()]],
                     nodes[g.vertex_index[e.target()]])
        gv.setv(ge, "arrowsize", "0.3")
382
383
        if g.is_directed():
            gv.setv(ge, "arrowhead", "vee")
Tiago Peixoto's avatar
Tiago Peixoto committed
384
385
386
387
388
389
390
391
        # apply color
        if ecolor != None:
            if isinstance(ecolor,str):
                gv.setv(ge, "color", ecolor)
            else:
                color = tuple([int(c*255.0) for c in ecmap(enorm(ecolor[e]))])
                gv.setv(ge, "color", "#%.2x%.2x%.2x%.2x" % color)

392
393
394
395
        # apply edge length
        if elen != None:
            if isinstance(elen, PropertyMap):
                gv.setv(ge, "len", str(elen[e]))
Tiago Peixoto's avatar
Tiago Peixoto committed
396
            else:
397
                gv.setv(ge, "len", str(elen))
Tiago Peixoto's avatar
Tiago Peixoto committed
398
399

        # apply width
400
401
402
        if penwidth != None:
            if isinstance(penwidth, PropertyMap):
                gv.setv(ge, "penwidth", str(penwidth[e]))
Tiago Peixoto's avatar
Tiago Peixoto committed
403
            else:
404
                gv.setv(ge, "penwidth", str(penwidth))
Tiago Peixoto's avatar
Tiago Peixoto committed
405
406

        # apply all user supplied properties
407
        for k,v in eprops.iteritems():
Tiago Peixoto's avatar
Tiago Peixoto committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
            if isinstance(v, PropertyMap):
                gv.setv(ge, k, str(v[e]))
            else:
                gv.setv(ge, k, str(v))
        edges.append(ge)

    gv.layout(gvg, layout)
    gv.render(gvg, "dot", "/dev/null") # retrieve postitions

    if pos == None:
        pos = (g.new_vertex_property("double"), g.new_vertex_property("double"))
    for n in xrange(0, len(nodes)):
        p = gv.getv(nodes[n], "pos")
        p = p.split(",")
        pos[0][g.vertex(n)] = float(p[0])
        pos[1][g.vertex(n)] = float(p[1])
424
425
426
427

    if output_format == "auto":
        if output == "":
            output_format = "xlib"
428
        elif output != None:
429
            output_format = output.split(".")[-1]
Tiago Peixoto's avatar
Tiago Peixoto committed
430
431
432

    # if using xlib we need to fork the process, otherwise good ol' graphviz
    # will call exit() when the window is closed
433
    if output_format == "xlib" or fork:
Tiago Peixoto's avatar
Tiago Peixoto committed
434
435
436
        pid = os.fork()
        if pid == 0:
            gv.render(gvg, output_format, output)
437
438
            os._exit(0) # since we forked, it's good to be sure
        if output_format != "xlib":
439
            os.wait()
440
    elif output != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
441
        gv.render(gvg, output_format, output)
442

443
444
445
446
    # I don't get this, but it seems necessary
    pos[0].get_array()[:] /= 100
    pos[1].get_array()[:] /= 100

447
448
    pos = group_vector_property(g, pos)

449
450
451
452
    if returngv:
        return pos, gv
    else:
        gv.rm(gvg)
453
        del gvg
454
        return pos
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

def random_layout(g, shape=None, pos=None, dim=2):
    if pos == None:
        pos = [g.new_vertex_property("double") for i in xrange(dim)]

    if isinstance(pos, PropertyMap) and "vector" in pos.value_type():
        pos = ungroup_vector_property(pos)

    if shape == None:
        shape = (sqrt(g.num_vertices()), sqrt(g.num_vertices()))

    for i in xrange(dim):
        _check_prop_scalar(pos[i], name="pos[%d]" % i)
        _check_prop_writable(pos[i], name="pos[%d]" % i)
        a = pos[i].get_array()
        a[:] = numpy.random.random(len(a))*shape[i]

    pos = group_vector_property(g, pos)
    return pos

def arf_layout(g, weight=None, d=0.1, a=10, dt=0.001, epsilon=1e-6,
               max_iter=1000, pos=None, dim=2):
    if pos == None:
        pos = random_layout(g, dim=dim)
    _check_prop_vector(pos, name="pos", floating=True)

    g.stash_filter(directed=True)
    g.set_directed(False)
    libgraph_tool_layout.arf_layout(g._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    g.pop_filter()
    return pos