__init__.py 45.1 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.generation`` - Random graph generation
23
---------------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35

Summary
+++++++

.. autosummary::
   :nosignatures:

   random_graph
   random_rewire
   predecessor_tree
   line_graph
   graph_union
36
   triangulation
37
38
   lattice
   geometric_graph
39
   price_network
40
41
42

Contents
++++++++
43
44
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
45
46
from .. dl_import import dl_import
dl_import("import libgraph_tool_generation")
47

48
from .. import Graph, GraphView, _check_prop_scalar, _prop, _limit_args, _gt_type
Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. stats import label_parallel_edges, label_self_loops
50
51
import inspect
import types
52
import sys, numpy, numpy.random
53

Tiago Peixoto's avatar
Tiago Peixoto committed
54
__all__ = ["random_graph", "random_rewire", "predecessor_tree", "line_graph",
55
56
           "graph_union", "triangulation", "lattice", "geometric_graph",
           "price_network"]
57

Tiago Peixoto's avatar
Tiago Peixoto committed
58

59
def random_graph(N, deg_sampler, deg_corr=None, directed=True,
60
                 parallel_edges=False, self_loops=False, blockmodel=None,
61
                 block_type="int", degree_block=False,
62
                 random=True, mix_time=10, verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
63
64
65
66
67
68
69
70
71
72
73
74
75
    r"""
    Generate a random graph, with a given degree distribution and correlation.

    Parameters
    ----------
    N : int
        Number of vertices in the graph.
    deg_sampler : function
        A degree sampler function which is called without arguments, and returns
        a tuple of ints representing the in and out-degree of a given vertex (or
        a single int for undirected graphs, representing the out-degree). This
        function is called once per vertex, but may be called more times, if the
        degree sequence cannot be used to build a graph.
76

77
78
79
80
81
82
        Optionally, you can also pass a function which receives one or two
        arguments: If ``blockmodel == None``, the single argument passed will
        be the index of the vertex which will receive the degree.
        If ``blockmodel != None``, the first value passed will be the vertex
        index, and the second will be the block value of the vertex.
        
83
    deg_corr : function (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
84
        A function which gives the degree correlation of the graph. It should be
Tiago Peixoto's avatar
Tiago Peixoto committed
85
86
87
88
89
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph.
90
91
92
93

        If ``blockmodel != None``, the value passed to the function will be the
        block value of the respective vertices, not the in/out-degree pairs.
    directed : bool (optional, default: ``True``)
Tiago Peixoto's avatar
Tiago Peixoto committed
94
        Whether the generated graph should be directed.
95
96
97
98
99
100
101
102
103
104
105
106
107
    parallel_edges : bool (optional, default: ``False``)
        If ``True``, parallel edges are allowed.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are allowed.
    blockmodel : list or :class:`~numpy.ndarray` or function (optional, default: ``None``)
        If supplied, the graph will be sampled from a blockmodel ensemble. If
        the value is a list or a :class:`~numpy.ndarray`, it must have
        ``len(block_model) == N``, and the values will define to which block
        each vertex belongs.

        If this value is a function, it will be used to sample the block
        types. It must be callable either with no arguments or with a single
        argument which will be the vertex index. In either case it must return
108
109
110
111
112
113
114
115
        a type compatible with the ``block_type`` parameter.
    block_type : string (optional, default: ``"int"``)
        Value type of block labels. Valid only if ``blockmodel != None``.
    degree_block : bool (optional, default: ``False``)
        If ``True``, the degree of each vertex will be appended to block labels
        when constructing the blockmodel, such that the resulting block type
        will be a pair :math:`(r, k)`, where :math:`r` is the original block
        label.
116
117
118
119
    random : bool (optional, default: ``True``)
        If ``True``, the returned graph is randomized. Otherwise a deterministic
        placement of the edges will be used.
    mix_time : int (optional, default: ``10``)
120
121
122
        Number of edge sweeps to perform in order to mix the graph. This value
        is ignored if ``parallel_edges == self_loops == True`` and
        ``strat != "probabilistic"``.
123
124
    verbose : bool (optional, default: ``False``)
        If ``True``, verbose information is displayed.
Tiago Peixoto's avatar
Tiago Peixoto committed
125
126
127

    Returns
    -------
128
    random_graph : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
129
        The generated graph.
130
131
132
    blocks : :class:`~graph_tool.PropertyMap`
        A vertex property map with the block values. This is only returned if
        ``blockmodel != None``.
Tiago Peixoto's avatar
Tiago Peixoto committed
133
134
135
136
137
138
139

    See Also
    --------
    random_rewire: in place graph shuffling

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
140
141
142
    The algorithm makes sure the degree sequence is graphical (i.e. realizable)
    and keeps re-sampling the degrees if is not. With a valid degree sequence,
    the edges are placed deterministically, and later the graph is shuffled with
143
144
    the :func:`~graph_tool.generation.random_rewire` function, with the
    ``mix_time`` parameter passed as ``n_iter``.
Tiago Peixoto's avatar
Tiago Peixoto committed
145

146
    The complexity is :math:`O(V + E)` if parallel edges are allowed, and
147
    :math:`O(V + E \times\text{mix-time})` if parallel edges are not allowed.
148
149
150
151
152
153
154
155
156
157
158
159
160


    .. note ::

        If ``parallel_edges == False`` this algorithm only guarantees that the
        returned graph will be a random sample from the desired ensemble if
        ``mix_time`` is sufficiently large. The algorithm implements an
        efficient Markov chain based on edge swaps, with a mixing time which
        depends on the degree distribution and correlations desired. If degree
        correlations are provided, the mixing time tends to be larger.

        If ``strat == "probabilistic"``, the Markov chain still needs to be
        mixed, even if parallel edges and self-loops are allowed. In this case
161
162
163
        the Markov chain is implemented using the Metropolis-Hastings
        [metropolis-equations-1953]_ [hastings-monte-carlo-1970]_
        acceptance/rejection algorithm.
Tiago Peixoto's avatar
Tiago Peixoto committed
164
165
166
167
168

    Examples
    --------
    >>> from numpy.random import randint, random, seed, poisson
    >>> from pylab import *
169
    >>> seed(43)
Tiago Peixoto's avatar
Tiago Peixoto committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

    This is a degree sampler which uses rejection sampling to sample from the
    distribution :math:`P(k)\propto 1/k`, up to a maximum.

    >>> def sample_k(max):
    ...     accept = False
    ...     while not accept:
    ...         k = randint(1,max+1)
    ...         accept = random() < 1.0/k
    ...     return k
    ...

    The following generates a random undirected graph with degree distribution
    :math:`P(k)\propto 1/k` (with k_max=40) and an *assortative* degree
    correlation of the form:

    .. math::

        P(i,k) \propto \frac{1}{1+|i-k|}

    >>> g = gt.random_graph(1000, lambda: sample_k(40),
191
192
    ...                     lambda i, k: 1.0 / (1 + abs(i - k)), directed=False,
    ...                     mix_time=100)
Tiago Peixoto's avatar
Tiago Peixoto committed
193
    >>> gt.scalar_assortativity(g, "out")
Tiago Peixoto's avatar
Tiago Peixoto committed
194
    (0.6435658697163692, 0.010420519538259333)
Tiago Peixoto's avatar
Tiago Peixoto committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

    The following samples an in,out-degree pair from the joint distribution:

    .. math::

        p(j,k) = \frac{1}{2}\frac{e^{-m_1}m_1^j}{j!}\frac{e^{-m_1}m_1^k}{k!} +
                 \frac{1}{2}\frac{e^{-m_2}m_2^j}{j!}\frac{e^{-m_2}m_2^k}{k!}

    with :math:`m_1 = 4` and :math:`m_2 = 20`.

    >>> def deg_sample():
    ...    if random() > 0.5:
    ...        return poisson(4), poisson(4)
    ...    else:
    ...        return poisson(20), poisson(20)
    ...

    The following generates a random directed graph with this distribution, and
    plots the combined degree correlation.

    >>> g = gt.random_graph(20000, deg_sample)
    >>>
    >>> hist = gt.combined_corr_hist(g, "in", "out")
218
219
    >>>
    >>> clf()
Tiago Peixoto's avatar
Tiago Peixoto committed
220
221
222
223
    >>> imshow(hist[0], interpolation="nearest")
    <...>
    >>> colorbar()
    <...>
224
    >>> xlabel("in-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
225
    <...>
226
    >>> ylabel("out-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
227
    <...>
228
    >>> savefig("combined-deg-hist.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
229

230
    .. figure:: combined-deg-hist.*
Tiago Peixoto's avatar
Tiago Peixoto committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        :align: center

        Combined degree histogram.

    A correlated directed graph can be build as follows. Consider the following
    degree correlation:

    .. math::

         P(j',k'|j,k)=\frac{e^{-k}k^{j'}}{j'!}
         \frac{e^{-(20-j)}(20-j)^{k'}}{k'!}

    i.e., the in->out correlation is "disassortative", the out->in correlation
    is "assortative", and everything else is uncorrelated.
    We will use a flat degree distribution in the range [1,20).

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
249
250
251
    ...                     lambda a,b: (p.pmf(a[0], b[1]) *
    ...                                  p.pmf(a[1], 20 - b[0])),
    ...                     mix_time=100)
Tiago Peixoto's avatar
Tiago Peixoto committed
252
253
254

    Lets plot the average degree correlations to check.

255
    >>> clf()
256
257
    >>> axes([0.1,0.15,0.63,0.8])
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
258
    >>> corr = gt.avg_neighbour_corr(g, "in", "in")
259
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
260
    ...         label=r"$\left<\text{in}\right>$ vs in")
261
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
262
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
263
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
264
    ...         label=r"$\left<\text{out}\right>$ vs in")
265
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
266
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
267
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
268
    ...          label=r"$\left<\text{in}\right>$ vs out")
269
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
270
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
271
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
272
    ...          label=r"$\left<\text{out}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
273
    <...>
274
275
276
    >>> legend(bbox_to_anchor=(1.01, 0.5), loc="center left", borderaxespad=0.)
    <...>
    >>> xlabel("Source degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
277
    <...>
278
    >>> ylabel("Average target degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
279
    <...>
280
    >>> savefig("deg-corr-dir.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
281

282
    .. figure:: deg-corr-dir.*
Tiago Peixoto's avatar
Tiago Peixoto committed
283
284
285
        :align: center

        Average nearest neighbour correlations.
286
287
288
289
290


    **Blockmodels**


291
292
293
    The following example shows how a stochastic blockmodel
    [holland-stochastic-1983]_ [karrer-stochastic-2011]_ can be generated. We
    will consider a system of 10 blocks, which form communities. The connection
294
295
296
297
298
299
300
301
302
303
304
305
306
    probability will be given by

    >>> def corr(a, b):
    ...    if a == b:
    ...        return 0.999
    ...    else:
    ...        return 0.001

    The blockmodel can be generated as follows.

    >>> g, bm = gt.random_graph(1000, lambda: poisson(10), directed=False,
    ...                         blockmodel=lambda: randint(10), deg_corr=corr,
    ...                         mix_time=500)
307
    >>> gt.graph_draw(g, vertex_fill_color=bm, output="blockmodel.pdf")
308
309
    <...>

310
    .. figure:: blockmodel.*
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        :align: center

        Simple blockmodel with 10 blocks.


    References
    ----------
    .. [metropolis-equations-1953]  Metropolis, N.; Rosenbluth, A.W.;
       Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State
       Calculations by Fast Computing Machines". Journal of Chemical Physics 21
       (6): 1087–1092 (1953). :doi:`10.1063/1.1699114`
    .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods
       Using Markov Chains and Their Applications". Biometrika 57 (1): 97–109 (1970).
       :doi:`10.1093/biomet/57.1.97`
325
326
327
328
329
330
    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey, and
       Samuel Leinhardt, "Stochastic blockmodels: First steps," Social Networks
       5, no. 2: 109-13 (1983) :doi:`10.1016/0378-8733(83)90021-7`
    .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic
       blockmodels and community structure in networks," Physical Review E 83,
       no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926`
Tiago Peixoto's avatar
Tiago Peixoto committed
331
    """
332

333
    seed = numpy.random.randint(0, sys.maxint)
334
335
336
337
338
    g = Graph()
    if deg_corr == None:
        uncorrelated = True
    else:
        uncorrelated = False
339
340
341

    if (type(blockmodel) is types.FunctionType or
        type(blockmodel) is types.LambdaType):
342
343
        btype = block_type
        bm = []
344
345
        if len(inspect.getargspec(blockmodel)[0]) == 0:
            for i in xrange(N):
346
                bm.append(blockmodel())
347
348
        else:
            for i in xrange(N):
349
350
                bm.append(blockmodel(i))
        blockmodel = bm
Tiago Peixoto's avatar
Tiago Peixoto committed
351
    elif blockmodel is not None:
352
        btype = _gt_type(blockmodel[0])
353
354
355

    if len(inspect.getargspec(deg_sampler)[0]) > 0:
        if blockmodel is not None:
356
            sampler = lambda i: deg_sampler(i, blockmodel[i])
357
        else:
Tiago Peixoto's avatar
Tiago Peixoto committed
358
            sampler = deg_sampler
359
360
361
362
    else:
        sampler = lambda i: deg_sampler()

    libgraph_tool_generation.gen_graph(g._Graph__graph, N, sampler,
363
364
365
                                       uncorrelated, not parallel_edges,
                                       not self_loops, not directed,
                                       seed, verbose, True)
366
367
    g.set_directed(directed)

368
369
370
371
372
373
374
375
376
377
378
379
    if degree_block:
        if btype in ["object", "string"] or "vector" in btype:
            btype = "object"
        elif btype in ["int", "int32_t", "bool"]:
            btype = "vector<int32_t>"
        elif btype in ["long", "int64_t"]:
            btype = "vector<int64_t>"
        elif btype in ["double"]:
            btype = "vector<double>"
        elif btype in ["long double"]:
            btype = "vector<long double>"

380
381
382
383
    if blockmodel is not None:
        bm = g.new_vertex_property(btype)
        if btype in ["object", "string"] or "vector" in btype:
            for v in g.vertices():
384
385
386
387
388
389
390
391
                if not degree_block:
                    bm[v] = blockmodel[int(v)]
                else:
                    if g.is_directed():
                        bm[v] = (blockmodel[int(v)], v.in_degree(),
                                 v.out_degree())
                    else:
                        bm[v] = (blockmodel[int(v)], v.out_degree())
392
393
394
395
396
397
398
399
400
        else:
            try:
                bm.a = blockmodel
            except ValueError:
                bm = g.new_vertex_property("object")
                for v in g.vertices():
                    bm[v] = blockmodel[int(v)]
    else:
        bm = None
401

402
    if parallel_edges and self_loops and deg_corr is None:
403
        mix_time = 1
Tiago Peixoto's avatar
Tiago Peixoto committed
404
    if random:
405
406
        if deg_corr is not None:
            random_rewire(g, strat="probabilistic", n_iter=mix_time,
Tiago Peixoto's avatar
Tiago Peixoto committed
407
                          parallel_edges=parallel_edges, deg_corr=deg_corr,
408
409
                          self_loops=self_loops, blockmodel=bm,
                          verbose=verbose)
410
411
412
413
        else:
            random_rewire(g, parallel_edges=parallel_edges, n_iter=mix_time,
                          self_loops=self_loops, verbose=verbose)

414
415
416
417
    if bm is None:
        return g
    else:
        return g, bm
418

Tiago Peixoto's avatar
Tiago Peixoto committed
419

420
421
@_limit_args({"strat": ["erdos", "correlated", "uncorrelated",
                        "probabilistic"]})
422
423
def random_rewire(g, strat="uncorrelated", n_iter=1, edge_sweep=True,
                  parallel_edges=False, self_loops=False, deg_corr=None,
424
                  blockmodel=None, ret_fail=False, verbose=False):
425
    r"""
426
427
428
429
430
431
432
433
    Shuffle the graph in-place.

    If ``strat != "erdos"``, the degrees (either in or out) of each vertex are
    always the same, but otherwise the edges are randomly placed. If
    ``strat == "correlated"``, the degree correlations are also maintained: The
    new source and target of each edge both have the same in and out-degree. If
    ``strat == "probabilistic"``, then edges are rewired according to the degree
    correlation given by the parameter ``deg_corr``.
434
435
436

    Parameters
    ----------
437
    g : :class:`~graph_tool.Graph`
438
        Graph to be shuffled. The graph will be modified.
439
440
441
442
    strat : string (optional, default: ``"uncorrelated"``)
        If ``strat == "erdos"``, the resulting graph will be entirely random. If
        ``strat == "uncorrelated"`` only the degrees of the vertices will be
        maintained, nothing else. If ``strat == "correlated"``, additionally the
443
        new source and target of each edge both have the same in and out-degree.
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
        If ``strat == "probabilistic"``, than edges are rewired according to the
        degree correlation given by the parameter ``deg_corr``.
    n_iter : int (optional, default: ``1``)
        Number of iterations. If ``edge_sweep == True``, each iteration
        corresponds to an entire "sweep" over all edges. Otherwise this
        corresponds to the total number of edges which are randomly chosen for a
        swap attempt (which may repeat).
    edge_sweep : bool (optional, default: ``True``)
        If ``True``, each iteration will perform an entire "sweep" over the
        edges, where each edge is visited once in random order, and a edge swap
        is attempted.
    parallel : bool (optional, default: ``False``)
        If ``True``, parallel edges are allowed.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are allowed.
    deg_corr : function (optional, default: ``None``)
460
461
462
463
464
465
        A function which gives the degree correlation of the graph. It should be
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph. This parameter is ignored,
466
        unless ``strat == "probabilistic"``.
467
468
469
470
471
472
473

        If ``blockmodel != None``, the value passed to the function will be the
        block value of the respective vertices, not the in/out-degree pairs.
    blockmodel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If supplied, the graph will be rewired to conform to a blockmodel
        ensemble. The value must be a vertex property map which defines the
        block of each vertex.
474
475
476
477
478
479
480
481
482
483
484
    ret_fail : bool (optional, default: ``False``)
        If ``True``, the number of failed edge moves (due to parallel edges or
        self-loops) is returned.
    verbose : bool (optional, default: ``False``)
        If ``True``, verbose information is displayed.


    Returns
    -------
    fail_count : int
        Number of failed edge moves (due to parallel edges or self-loops).
485
486
487
488
489
490
491

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
492
    This algorithm iterates through all the edges in the network and tries to
493
    swap its target or source with the target or source of another edge.
Tiago Peixoto's avatar
Tiago Peixoto committed
494
495

    .. note::
496

497
498
499
500
501
502
503
504
505
506
        If ``parallel_edges = False``, parallel edges are not placed during
        rewiring. In this case, the returned graph will be a uncorrelated sample
        from the desired ensemble only if ``n_iter`` is sufficiently large. The
        algorithm implements an efficient Markov chain based on edge swaps, with
        a mixing time which depends on the degree distribution and correlations
        desired. If degree probabilistic correlations are provided, the mixing
        time tends to be larger.

        If ``strat == "probabilistic"``, the Markov chain still needs to be
        mixed, even if parallel edges and self-loops are allowed. In this case
507
508
509
        the Markov chain is implemented using the Metropolis-Hastings
        [metropolis-equations-1953]_ [hastings-monte-carlo-1970]_
        acceptance/rejection algorithm.
510

Tiago Peixoto's avatar
Tiago Peixoto committed
511

512
    Each edge is tentatively swapped once per iteration, so the overall
513
514
    complexity is :math:`O(V + E \times \text{n-iter})`. If ``edge_sweep ==
    False``, the complexity becomes :math:`O(V + E + \text{n-iter})`.
515

516
517
518
519
520
    Examples
    --------

    Some small graphs for visualization.

521
    >>> from numpy.random import random, seed
522
    >>> from pylab import *
523
    >>> seed(43)
524
    >>> g, pos = gt.triangulation(random((1000,2)))
525
526
    >>> pos = gt.arf_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="rewire_orig.pdf", output_size=(200, 200))
527
    <...>
528
    >>> gt.random_rewire(g, "correlated")
529
530
    >>> pos = gt.arf_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="rewire_corr.pdf", output_size=(200, 200))
531
    <...>
532
    >>> gt.random_rewire(g)
533
534
    >>> pos = gt.arf_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="rewire_uncorr.pdf", output_size=(200, 200))
535
    <...>
536
    >>> gt.random_rewire(g, "erdos")
537
538
    >>> pos = gt.arf_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="rewire_erdos.pdf", output_size=(200, 200))
539
    <...>
540

541
    Some `ridiculograms <http://www.youtube.com/watch?v=YS-asmU3p_4>`_ :
542

543
544
545
546
    .. image:: rewire_orig.*
    .. image:: rewire_corr.*
    .. image:: rewire_uncorr.*
    .. image:: rewire_erdos.*
547

548
549
    **From left to right**: Original graph; Shuffled graph, with degree correlations;
    Shuffled graph, without degree correlations; Shuffled graph, with random degrees.
550

551
    We can try with larger graphs to get better statistics, as follows.
552

553
554
    >>> figure()
    <...>
555
    >>> g = gt.random_graph(30000, lambda: sample_k(20),
556
557
    ...                     lambda i, j: exp(abs(i-j)), directed=False,
    ...                     mix_time=100)
558
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
559
560
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Original")
    <...>
561
562
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
563
564
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="*", label="Correlated")
    <...>
565
566
    >>> gt.random_rewire(g)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
567
568
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Uncorrelated")
    <...>
569
570
    >>> gt.random_rewire(g, "erdos")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
571
572
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label=r"Erd\H{o}s")
    <...>
573
574
575
576
577
578
    >>> xlabel("$k$")
    <...>
    >>> ylabel(r"$\left<k_{nn}\right>$")
    <...>
    >>> legend(loc="best")
    <...>
579
    >>> savefig("shuffled-stats.pdf")
580

581
    .. figure:: shuffled-stats.*
582
583
584
585
586
587
588
589
590
591
592
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        graphs. The shuffled graph with correlations displays exactly the same
        correlation as the original graph.

    Now let's do it for a directed graph. See
    :func:`~graph_tool.generation.random_graph` for more details.

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
593
594
    ...                     lambda a, b: (p.pmf(a[0], b[1]) * p.pmf(a[1], 20 - b[0])),
    ...                     mix_time=100)
595
    >>> figure()
596
597
598
    <...>
    >>> axes([0.1,0.15,0.6,0.8])
    <...>
599
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
600
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
601
    ...          label=r"$\left<\text{o}\right>$ vs i")
602
    <...>
603
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
604
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
605
    ...          label=r"$\left<\text{i}\right>$ vs o")
606
    <...>
607
608
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
609
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
610
    ...          label=r"$\left<\text{o}\right>$ vs i, corr.")
611
    <...>
612
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
613
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
614
    ...          label=r"$\left<\text{i}\right>$ vs o, corr.")
615
    <...>
616
617
    >>> gt.random_rewire(g, "uncorrelated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
618
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
619
    ...          label=r"$\left<\text{o}\right>$ vs i, uncorr.")
620
    <...>
621
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
622
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
623
    ...          label=r"$\left<\text{i}\right>$ vs o, uncorr.")
624
    <...>
625
626
627
    >>> legend(bbox_to_anchor=(1.01, 0.5), loc="center left", borderaxespad=0.)
    <...>
    >>> xlabel("Source degree")
628
    <...>
629
    >>> ylabel("Average target degree")
630
    <...>
631
    >>> savefig("shuffled-deg-corr-dir.pdf")
632

633
    .. figure:: shuffled-deg-corr-dir.*
634
635
636
637
638
639
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        directed graphs. The shuffled graph with correlations displays exactly
        the same correlation as the original graph.

640
641
642
643
644
645
646
647
648
    References
    ----------
    .. [metropolis-equations-1953]  Metropolis, N.; Rosenbluth, A.W.;
       Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State
       Calculations by Fast Computing Machines". Journal of Chemical Physics 21
       (6): 1087–1092 (1953). :doi:`10.1063/1.1699114`
    .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods
       Using Markov Chains and Their Applications". Biometrika 57 (1): 97–109 (1970).
       :doi:`10.1093/biomet/57.1.97`
649
650
651
652
653
654
    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey, and
       Samuel Leinhardt, "Stochastic blockmodels: First steps," Social Networks
       5, no. 2: 109-13 (1983) :doi:`10.1016/0378-8733(83)90021-7`
    .. [karrer-stochastic-2011] Brian Karrer and M. E. J. Newman, "Stochastic
       blockmodels and community structure in networks," Physical Review E 83,
       no. 1: 016107 (2011) :doi:`10.1103/PhysRevE.83.016107` :arxiv:`1008.3926`
655
656

    """
657
    seed = numpy.random.randint(0, sys.maxint)
658

Tiago Peixoto's avatar
Tiago Peixoto committed
659
660
661
662
663
664
665
666
667
668
669
670
671
    if not parallel_edges:
        p = label_parallel_edges(g)
        if p.a.max() != 0:
            raise ValueError("Parallel edge detected. Can't rewire " +
                             "graph without parallel edges if it " +
                             "already contains parallel edges!")
    if not self_loops:
        l = label_self_loops(g)
        if l.a.max() != 0:
            raise ValueError("Self-loop detected. Can't rewire graph " +
                             "without self-loops if it already contains" +
                             " self-loops!")

672
    if (deg_corr is not None and not g.is_directed()) and blockmodel is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
673
        corr = lambda i, j: deg_corr(i[1], j[1])
674
675
676
    else:
        corr = deg_corr

677
678
    if strat != "probabilistic":
        g = GraphView(g, reversed=False)
679
680
    elif blockmodel is not None:
        strat = "blockmodel"
681
682
683
    pcount = libgraph_tool_generation.random_rewire(g._Graph__graph, strat,
                                                    n_iter, not edge_sweep,
                                                    self_loops, parallel_edges,
684
685
                                                    corr, _prop("v", g, blockmodel),
                                                    seed, verbose)
686
687
    if ret_fail:
        return pcount
Tiago Peixoto's avatar
Tiago Peixoto committed
688

Tiago Peixoto's avatar
Tiago Peixoto committed
689

Tiago Peixoto's avatar
Tiago Peixoto committed
690
def predecessor_tree(g, pred_map):
Tiago Peixoto's avatar
Tiago Peixoto committed
691
    """Return a graph from a list of predecessors given by the ``pred_map`` vertex property."""
Tiago Peixoto's avatar
Tiago Peixoto committed
692
693
694
695
696
697
698

    _check_prop_scalar(pred_map, "pred_map")
    pg = Graph()
    libgraph_tool_generation.predecessor_graph(g._Graph__graph,
                                               pg._Graph__graph,
                                               _prop("v", g, pred_map))
    return pg
699

Tiago Peixoto's avatar
Tiago Peixoto committed
700

701
def line_graph(g):
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
    """Return the line graph of the given graph `g`.

    Notes
    -----
    Given an undirected graph G, its line graph L(G) is a graph such that

        * each vertex of L(G) represents an edge of G; and
        * two vertices of L(G) are adjacent if and only if their corresponding
          edges share a common endpoint ("are adjacent") in G.

    For a directed graph, the second criterion becomes:

       * Two vertices representing directed edges from u to v and from w to x in
         G are connected by an edge from uv to wx in the line digraph when v =
         w.

    References
    ----------
    .. [line-wiki] http://en.wikipedia.org/wiki/Line_graph
    """
722
723
724
725
726
727
728
729
    lg = Graph(directed=g.is_directed())

    vertex_map = lg.new_vertex_property("int64_t")

    libgraph_tool_generation.line_graph(g._Graph__graph,
                                        lg._Graph__graph,
                                        _prop("v", lg, vertex_map))
    return lg, vertex_map
Tiago Peixoto's avatar
Tiago Peixoto committed
730

Tiago Peixoto's avatar
Tiago Peixoto committed
731
732

def graph_union(g1, g2, props=None, include=False):
733
734
735
736
737
738
739
740
741
    """Return the union of graphs g1 and g2, composed of all edges and vertices
    of g1 and g2, without overlap.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
       First graph in the union.
    g2 : :class:`~graph_tool.Graph`
       Second graph in the union.
742
    props : list of tuples of :class:`~graph_tool.PropertyMap` (optional, default: ``[]``)
743
744
745
746
       Each element in this list must be a tuple of two PropertyMap objects. The
       first element must be a property of `g1`, and the second of `g2`. The
       values of the property maps are propagated into the union graph, and
       returned.
747
    include : bool (optional, default: ``False``)
748
749
750
751
752
753
754
755
756
757
       If true, graph `g2` is inserted into `g1` which is modified. If false, a
       new graph is created, and both graphs remain unmodified.

    Returns
    -------
    ug : :class:`~graph_tool.Graph`
        The union graph
    props : list of :class:`~graph_tool.PropertyMap` objects
        List of propagated properties.  This is only returned if `props` is not
        empty.
758
759
760
761
762
763
764
765
766

    Examples
    --------

    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.triangulation(random((300,2)))[0]
    >>> ug = gt.graph_union(g, g)
    >>> uug = gt.graph_union(g, ug)
767
768
    >>> pos = gt.arf_layout(g)
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="graph_original.pdf")
769
    <...>
770
771
    >>> pos = gt.arf_layout(ug)
    >>> gt.graph_draw(ug, pos=pos, output_size=(300,300), output="graph_union.pdf")
772
    <...>
773
774
    >>> pos = gt.arf_layout(uug)
    >>> gt.graph_draw(uug, pos=pos, output_size=(300,300), output="graph_union2.pdf")
775
776
    <...>

777
778
779
    .. image:: graph_original.*
    .. image:: graph_union.*
    .. image:: graph_union2.*
780

781
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
782
783
    if props == None:
        props = []
Tiago Peixoto's avatar
Tiago Peixoto committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    if not include:
        g1 = Graph(g1)
    g1.stash_filter(directed=True)
    g1.set_directed(True)
    g2.stash_filter(directed=True)
    g2.set_directed(True)
    n_props = []

    try:
        vmap, emap = libgraph_tool_generation.graph_union(g1._Graph__graph,
                                                          g2._Graph__graph)
        for p in props:
            p1, p2 = p
            if not include:
                p1 = g1.copy_property(p1)
            if p2.value_type() != p1.value_type():
                p2 = g2.copy_property(p2, value_type=p1.value_type())
            if p1.key_type() == 'v':
                libgraph_tool_generation.\
                      vertex_property_union(g1._Graph__graph, g2._Graph__graph,
                                            vmap, emap,
                                            _prop(p1.key_type(), g1, p1),
                                            _prop(p2.key_type(), g2, p2))
            else:
                libgraph_tool_generation.\
                      edge_property_union(g1._Graph__graph, g2._Graph__graph,
                                          vmap, emap,
                                          _prop(p1.key_type(), g1, p1),
                                          _prop(p2.key_type(), g2, p2))
            n_props.append(p1)
    finally:
        g1.pop_filter(directed=True)
        g2.pop_filter(directed=True)

    if len(n_props) > 0:
        return g1, n_props
    else:
        return g1
822

Tiago Peixoto's avatar
Tiago Peixoto committed
823
824

@_limit_args({"type": ["simple", "delaunay"]})
825
def triangulation(points, type="simple", periodic=False):
826
827
828
829
830
831
832
833
    r"""
    Generate a 2D or 3D triangulation graph from a given point set.

    Parameters
    ----------
    points : :class:`~numpy.ndarray`
        Point set for the triangulation. It may be either a N x d array, where N
        is the number of points, and d is the space dimension (either 2 or 3).
834
    type : string (optional, default: ``'simple'``)
835
        Type of triangulation. May be either 'simple' or 'delaunay'.
836
837
838
    periodic : bool (optional, default: ``False``)
        If ``True``, periodic boundary conditions will be used. This is
        parameter is valid only for type="delaunay", and is otherwise ignored.
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

    Returns
    -------
    triangulation_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        Vertex property map with the Cartesian coordinates.

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----

Tiago Peixoto's avatar
Tiago Peixoto committed
854
    A triangulation [cgal-triang]_ is a division of the convex hull of a point
855
    set into triangles, using only that set as triangle vertices.
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

    In simple triangulations (`type="simple"`), the insertion of a point is done
    by locating a face that contains the point, and splitting this face into
    three new faces (the order of insertion is therefore important). If the
    point falls outside the convex hull, the triangulation is restored by
    flips. Apart from the location, insertion takes a time O(1). This bound is
    only an amortized bound for points located outside the convex hull.

    Delaunay triangulations (`type="delaunay"`) have the specific empty sphere
    property, that is, the circumscribing sphere of each cell of such a
    triangulation does not contain any other vertex of the triangulation in its
    interior. These triangulations are uniquely defined except in degenerate
    cases where five points are co-spherical. Note however that the CGAL
    implementation computes a unique triangulation even in these cases.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
875
    >>> points = random((500, 2)) * 4
876
    >>> g, pos = gt.triangulation(points)
877
878
879
880
881
882
883
    >>> weight = g.new_edge_property("double") # Edge weights corresponding to
    ...                                        # Euclidean distances
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 100
884
885
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), vertex_fill_color=b[0],
    ...               edge_pen_width=b[1], output="triang.pdf")
886
887
    <...>
    >>> g, pos = gt.triangulation(points, type="delaunay")
888
889
890
891
892
893
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 120
894
895
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), vertex_fill_color=b[0],
    ...               edge_pen_width=b[1], output="triang-delaunay.pdf")
896
897
898
899
    <...>

    2D triangulation of random points:

900
901
    .. image:: triang.*
    .. image:: triang-delaunay.*
902

903
904
905
    *Left:* Simple triangulation. *Right:* Delaunay triangulation. The vertex
    colors and the edge thickness correspond to the weighted betweenness
    centrality.
906
907
908

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
909
    .. [cgal-triang] http://www.cgal.org/Manual/last/doc_html/cgal_manual/Triangulation_3/Chapter_main.html
910
911
912

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
913
    if points.shape[1] not in [2, 3]:
914
915
916
917
918
919
920
921
922
923
        raise ValueError("points array must have shape N x d, with d either 2 or 3.")
    # copy points to ensure continuity and correct data type
    points = numpy.array(points, dtype='float64')
    if points.shape[1] == 2:
        npoints = numpy.zeros((points.shape[0], 3))
        npoints[:,:2] = points
        points = npoints
    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    libgraph_tool_generation.triangulation(g._Graph__graph, points,
924
                                           _prop("v", g, pos), type, periodic)
925
    return g, pos
926
927
928
929
930
931
932
933
934
935


def lattice(shape, periodic=False):
    r"""
    Generate a N-dimensional square lattice.

    Parameters
    ----------
    shape : list or :class:`~numpy.ndarray`
        List of sizes in each dimension.
936
    periodic : bool (optional, default: ``False``)
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
        If ``True``, periodic boundary conditions will be used.

    Returns
    -------
    lattice_graph : :class:`~graph_tool.Graph`
        The generated graph.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation

    Examples
    --------
    >>> g = gt.lattice([10,10])
952
953
    >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, cooling_step=0.99, epsilon=1e-3),
    ...               output_size=(300,300), output="lattice.pdf")
954
955
    <...>
    >>> g = gt.lattice([10,20], periodic=True)
956
957
    >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, cooling_step=0.99, epsilon=1e-3, multilevel=True),
    ...               output_size=(300,300), output="lattice_periodic.pdf")
958
959
    <...>
    >>> g = gt.lattice([10,10,10])
960
961
    >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, cooling_step=0.99, epsilon=1e-3, multilevel=True),
    ...               output_size=(300,300), output="lattice_3d.pdf")
962
963
    <...>

964
965
966
    .. image:: lattice.*
    .. image:: lattice_periodic.*
    .. image:: lattice_3d.*
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

    *Left:* 10x10 2D lattice. *Middle:* 10x20 2D periodic lattice (torus).
    *Right:* 10x10x10 3D lattice.

    References
    ----------
    .. [lattice] http://en.wikipedia.org/wiki/Square_lattice

    """

    g = Graph(directed=False)
    libgraph_tool_generation.lattice(g._Graph__graph, shape, periodic)
    return g


def geometric_graph(points, radius, ranges=None):
    r"""
    Generate a geometric network form a set of N-dimensional points.

    Parameters
    ----------
    points : list or :class:`~numpy.ndarray`
        List of points. This must be a two-dimensional array, where the rows are
        coordinates in a N-dimensional space.
    radius : float
        Pairs of points with an euclidean distance lower than this parameters
        will be connected.
994
    ranges : list or :class:`~numpy.ndarray` (optional, default: ``None``)
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        If provided, periodic boundary conditions will be assumed, and the
        values of this parameter it will be used as the ranges in all
        dimensions. It must be a two-dimensional array, where each row will
        cointain the lower and upper bound of each dimension.

    Returns
    -------
    geometric_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        A vertex property map with the position of each vertex.

    Notes
    -----
    A geometric graph [geometric-graph]_ is generated by connecting points
    embedded in a N-dimensional euclidean space which are at a distance equal to
    or smaller than a given radius.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation
    lattice : N-dimensional square lattice

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> points = random((500, 2)) * 4
    >>> g, pos = gt.geometric_graph(points, 0.3)
1025
    >>> gt.graph_draw(g, pos=pos, output_size=(300,300), output="geometric.pdf")
1026
1027
    <...>
    >>> g, pos = gt.geometric_graph(points, 0.3, [(0,4), (0,4)])
1028
    >>> gt.graph_draw(g, output_size=(300,300), output="geometric_periodic.pdf")
1029
1030
    <...>

1031
1032
    .. image:: geometric.*
    .. image:: geometric_periodic.*
1033
1034
1035
1036
1037
1038
1039

    *Left:* Geometric network with random points. *Right:* Same network, but
     with periodic boundary conditions.

    References
    ----------
    .. [geometric-graph] Jesper Dall and Michael Christensen, "Random geometric
Tiago Peixoto's avatar
Tiago Peixoto committed
1040
       graphs", Phys. Rev. E 66, 016121 (2002), :doi:`10.1103/PhysRevE.66.016121`
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

    """

    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    if type(points) != numpy.ndarray:
        points = numpy.array(points)
    if len(points.shape) < 2:
        raise ValueError("points list must be a two-dimensional array!")
    if ranges is not None:
        periodic = True
        if type(ranges) != numpy.ndarray:
            ranges = numpy.array(ranges, dtype="float")
        else:
            ranges = array(ranges, dtype="float")
    else:
        periodic = False
        ranges = ()

    libgraph_tool_generation.geometric(g._Graph__graph, points, float(radius),
                                       ranges, periodic,
                                       _prop("v", g, pos))
    return g, pos
1064
1065
1066
1067
1068
1069
1070
1071
1072


def price_network(N, m=1, c=None, gamma=1, directed=True, seed_graph=None):
    r"""A generalized version of Price's -- or Barabási-Albert if undirected -- preferential attachment network model.

    Parameters
    ----------
    N : int
        Size of the network.
1073
    m : int (optional, default: ``1``)
1074
        Out-degree of newly added vertices.
1075
    c : float (optional, default: ``1 if directed == True else 0``)
1076
1077
        Constant factor added to the probability of a vertex receiving an edge
        (see notes below).
1078
    gamma : float (optional, default: ``1``)
1079
        Preferential attachment power (see notes below).
1080
    directed : bool (optional, default: ``True``)
1081
1082
        If ``True``, a Price network is generated. If ``False``, a
        Barabási-Albert network is generated.
1083
    seed_graph : :class:`~graph_tool.Graph` (optional, default: ``None``)
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        If provided, this graph will be used as the starting point of the
        algorithm.

    Returns
    -------
    price_graph : :class:`~graph_tool.Graph`
        The generated graph.

    Notes
    -----

    The (generalized) [price]_ network is either a directed or undirected graph
    (the latter is called a Barabási-Albert network), generated dynamically by
    at each step adding a new vertex, and connecting it to :math:`m` other
1098
    vertices, chosen with probability :math:`\pi` defined as:
1099
1100
1101

    .. math::

1102
        \pi \propto k^\gamma + c
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

    where :math:`k` is the in-degree of the vertex (or simply the degree in the
    undirected case). If :math:`\gamma=1`, the tail of resulting in-degree
    distribution of the directed case is given by

    .. math::

        P_{k_\text{in}} \sim k_\text{in}^{-(2 + c/m)},

    or for the undirected case

    .. math::

        P_{k} \sim k^{-(3 + c/m)}.

    However, if :math:`\gamma \ne 1`, the in-degree distribution is not
    scale-free (see [dorogovtsev-evolution]_ for details).

1121
1122
1123
1124
1125
1126
1127
    Note that if `seed_graph` is not given, the algorithm will *always* start
    with one node if :math:`c > 0`, or with two nodes with a link between them
    otherwise. If :math:`m > 1`, the degree of the newly added vertices will be
    vary dynamically as :math:`m'(t) = \min(m, N(t))`, where :math:`N(t)` is the
    number of vertices added so far. If this behaviour is undesired, a proper
    seed graph with :math:`N \ge m` vertices must be provided.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
    This algorithm runs in :math:`O(N\log N)` time.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation
    lattice : N-dimensional square lattice
    geometric_graph : N-dimensional geometric network

    Examples
    --------
    >>> g = gt.price_network(100000)
1140
1141
1142
    >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, epsilon=1e-3, cooling_step=0.99),
    ...               vertex_fill_color=g.vertex_index, vertex_size=2,
    ...               edge_pen_width=1, output="price-network.png")
1143
1144
    <...>
    >>> g = gt.price_network(100000, c=0.1)
1145
1146
1147
    >>> gt.graph_draw(g, pos=gt.sfdp_layout(g, epsilon=1e-3, cooling_step=0.99),
    ...               vertex_fill_color=g.vertex_index, vertex_size=2,
    ...               edge_pen_width=1, output="price-network-broader.png")
1148
1149
    <...>

1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
    .. figure:: price-network.png
        :align: center

        Price network with :math:`N=10^5` nodes and :math:`c=1`.  The colors
        represent the order in which vertices were added.

    .. figure:: price-network-broader.png
        :align: center

        Price network with :math:`N=10^5` nodes and :math:`c=0.1`.  The colors
        represent the order in which vertices were added.
1161
1162
1163
1164
1165
1166
1167
1168


    References
    ----------

    .. [yule] Yule, G. U. "A Mathematical Theory of Evolution, based on the
       Conclusions of Dr. J. C. Willis, F.R.S.". Philosophical Transactions of
       the Royal Society of London, Ser. B 213: 21–87, 1925,
Tiago Peixoto's avatar
Tiago Peixoto committed
1169
       :doi:`10.1098/rstb.1925.0002`
1170
1171
1172
    .. [price] Derek De Solla Price, "A general theory of bibliometric and other
       cumulative advantage processes", Journal of the American Society for
       Information Science, Volume 27, Issue 5, pages 292–306, September 1976,
Tiago Peixoto's avatar
Tiago Peixoto committed
1173
       :doi:`10.1002/asi.4630270505`
1174
    .. [barabasi-albert] Barabási, A.-L., and Albert, R., "Emergence of
Tiago Peixoto's avatar
Tiago Peixoto committed
1175
1176
       scaling in random networks", Science, 286, 509, 1999,
       :doi:`10.1126/science.286.5439.509`
1177
1178
    .. [dorogovtsev-evolution] S. N. Dorogovtsev and J. F. F. Mendes, "Evolution
       of networks", Advances in Physics, 2002, Vol. 51, No. 4, 1079-1187,
Tiago Peixoto's avatar
Tiago Peixoto committed
1179
       :doi:`10.1080/00018730110112519`
1180
1181
1182
1183
1184
1185
    """

    if c is None:
        c = 1 if directed else 0

    if seed_graph is None:
1186
1187
1188
        g = Graph(directed=directed)
        if c > 0:
            g.add_vertex()
1189
        else:
1190
1191
            g.add_vertex(2)
            g.add_edge(g.vertex(1), g.vertex(0))
1192
1193
1194
1195
1196
1197
        N -= g.num_vertices()
    else:
        g = seed_graph
    seed = numpy.random.randint(0, sys.maxint)
    libgraph_tool_generation.price(g._Graph__graph, N, gamma, c, m, seed)
    return g