graph_generation.cc 14.9 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2006  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

#include <algorithm>
#include <tr1/unordered_set>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/random.hpp>
#include <boost/multi_index_container.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/mem_fun.hpp>
#include <iomanip>
#include <map>

#include "graph.hh"
#include "histogram.hh"

using namespace std;
using namespace boost;
using namespace boost::lambda;
using namespace multi_index;
using namespace graph_tool;

typedef boost::mt19937 rng_t;

//==============================================================================
// sample_from_distribution
// this will sample a (j,k) pair from a pjk distribution given a ceil function
// and its inverse
//==============================================================================

template <class Distribution, class Ceil, class InvCeil>
struct sample_from_distribution
{
    sample_from_distribution(Distribution &dist, Ceil& ceil, InvCeil &inv_ceil, double bound, rng_t& rng)
	: _dist(dist), _ceil(ceil), _inv_ceil(inv_ceil), _bound(bound), _rng(rng), _uniform_p(0.0, 1.0) {}
    
    pair<size_t, size_t> operator()()
    {
	// sample j,k from ceil
	size_t j,k;
	double u;
	do
	{
	    tie(j,k) = _inv_ceil(_uniform_p(_rng), _uniform_p(_rng));
	    u = _uniform_p(_rng);
	}
	while (u > _dist(j,k)/(_bound*_ceil(j,k)));
	return make_pair(j,k);
    }

    Distribution& _dist;
    Ceil& _ceil;
    InvCeil& _inv_ceil;
    double _bound;
    rng_t &_rng;
    boost::uniform_real<double> _uniform_p;
};

// vertex type, with desired j,k values and the index in the real graph

struct vertex_t 
{
    vertex_t() {}
    vertex_t(size_t in, size_t out): in_degree(in), out_degree(out) {}
    vertex_t(const pair<size_t,size_t>& deg): in_degree(deg.first), out_degree(deg.second) {}
    size_t index, in_degree, out_degree;
    bool operator==(const vertex_t& other) const {return other.index == index;}
};

inline std::size_t hash_value(const vertex_t& v)
{
    size_t h = hash_value(v.in_degree);
    hash_combine(h, v.out_degree);
    return h;
}

inline size_t dist(const vertex_t& a, const vertex_t& b)
{
    return int(a.in_degree-b.in_degree)*int(a.in_degree-b.in_degree) + 
	int(a.out_degree-b.out_degree)*int(a.out_degree-b.out_degree);
}

struct total_deg_comp
{
    bool operator()(const pair<size_t,size_t>& a, const pair<size_t,size_t>& b)
    {
	return a.first + a.second < b.first + b.second;
    }
};

//==============================================================================
// degree_matrix_t
// this structure will keep the existing (j,k) pairs in the graph in a matrix,
// so that the nearest (j,k) to a given target can be found easily.
//==============================================================================

114
class degree_matrix_t
Tiago Peixoto's avatar
Tiago Peixoto committed
115
{
116
117
public:    
    degree_matrix_t(size_t N, size_t minj, size_t mink, size_t maxj, size_t maxk)
Tiago Peixoto's avatar
Tiago Peixoto committed
118
    {
119
120
121
122
123
124
125
126
127
	_L = max(size_t(pow(2,ceil(log2(sqrt(N))))),size_t(2));
	_minj = minj;
	_mink = mink;
	_maxj = max(maxj,_L);
	_maxk = max(maxk,_L);
	_bins.resize(_L, vector<vector<pair<size_t,size_t> > >(_L));
	_high_bins.resize(size_t(log2(_L)));
	for(size_t i = 0; i < _high_bins.size(); ++i)
	    _high_bins[i].resize(_L/(1<<(i+1)), vector<size_t>(_L/(1<<(i+1))));
Tiago Peixoto's avatar
Tiago Peixoto committed
128
    }
129

Tiago Peixoto's avatar
Tiago Peixoto committed
130
131
132
    void insert(const pair<size_t, size_t>& v)
    {
	size_t j_bin, k_bin;
133
134
135
136
137
138
139
140
	tie(j_bin, k_bin) = get_bin(v.first, v.second, 0);
	_bins[j_bin][k_bin].push_back(v);
	for (size_t i = 0; i < _high_bins.size(); ++i)
	{
	    size_t hj,hk;
	    tie(hj,hk) = get_bin(j_bin,k_bin, i+1);
	    _high_bins[i][hj][hk]++;
	}
Tiago Peixoto's avatar
Tiago Peixoto committed
141
    }
142
    
Tiago Peixoto's avatar
Tiago Peixoto committed
143
144
145
    void erase(const pair<size_t,size_t>& v)
    {
	size_t j_bin, k_bin;
146
147
	tie(j_bin, k_bin) = get_bin(v.first, v.second, 0);
	for(size_t i = 0; i < _bins[j_bin][k_bin].size(); ++i)
Tiago Peixoto's avatar
Tiago Peixoto committed
148
	{
149
	    if (_bins[j_bin][k_bin][i] == v)
Tiago Peixoto's avatar
Tiago Peixoto committed
150
	    {
151
		_bins[j_bin][k_bin].erase(_bins[j_bin][k_bin].begin()+i);
Tiago Peixoto's avatar
Tiago Peixoto committed
152
153
154
		break;
	    }
	}
155
156
	
	for (size_t i = 0; i < _high_bins.size(); ++i)
157
	{
158
159
160
	    size_t hj,hk;
	    tie(hj,hk) = get_bin(j_bin,k_bin, i+1);
	    _high_bins[i][hj][hk]--;
161
162
	}
	
Tiago Peixoto's avatar
Tiago Peixoto committed
163
164
    }

165
    pair<size_t,size_t> find_closest(size_t j, size_t k, rng_t& rng)
Tiago Peixoto's avatar
Tiago Peixoto committed
166
167
168
    {
	vector<pair<size_t,size_t> > candidates;

169
170
171
172
	size_t level;

	// find the appropriate level on which to operate
	for (level = _high_bins.size(); level <= 0; --level)
173
	{
174
175
176
	    size_t hj, hk;
	    tie(hj,hk) = get_bin(j,k,level);
	    if (get_bin_count(hj,hk,level) == 0)
Tiago Peixoto's avatar
Tiago Peixoto committed
177
	    {
178
179
180
		if (level < _high_bins.size())
		    level++;
		break;
Tiago Peixoto's avatar
Tiago Peixoto committed
181
	    }
182
	}
183
184
185
186
187
188
189

	size_t j_bin, k_bin;
	tie(j_bin, k_bin) = get_bin(j, k, level);

	for (size_t hj = ((j_bin>0)?j_bin-1:j_bin); hj < j_bin + 1 && hj <= get_bin(_maxj, _maxk, level).first; ++hj)
	    for (size_t hk = ((k_bin>0)?k_bin-1:k_bin); hk < k_bin + 1 && hk <= get_bin(_maxj, _maxk, level).second; ++hk)
		search_bin(hj,hk,j,k,level,candidates);
190
	
Tiago Peixoto's avatar
Tiago Peixoto committed
191
	uniform_int<size_t> sample(0, candidates.size() - 1);
192
	return candidates[sample(rng)];
Tiago Peixoto's avatar
Tiago Peixoto committed
193
194
195
    }

private:
196
197
    
    pair<size_t,size_t> get_bin(size_t j, size_t k, size_t level) 
Tiago Peixoto's avatar
Tiago Peixoto committed
198
    {
199
200
201
202
203
204
205
206
207
208
209
210
211
	if (level == 0)
	    return make_pair(((j-_minj)*(_L-1))/_maxj, ((k-_mink)*(_L-1))/_maxk);

	pair<size_t, size_t> bin = get_bin(j,k,0);
	bin.first /=  1 << level;
	bin.second /= 1 << level;
	return bin;
    }

    size_t get_bin_count(size_t bin_j, size_t bin_k, size_t level)
    {
	if (level == 0)
	    return _bins[bin_j][bin_k].size();
Tiago Peixoto's avatar
Tiago Peixoto committed
212
	else
213
	    return _high_bins[level-1][bin_j][bin_k];
Tiago Peixoto's avatar
Tiago Peixoto committed
214
    }
215
216

    void search_bin(size_t hj, size_t hk, size_t j, size_t k, size_t level, vector<pair<size_t,size_t> >& candidates)
Tiago Peixoto's avatar
Tiago Peixoto committed
217
    {
218
219
220
	size_t w = 1 << level;
	for (size_t j_bin = hj*w; j_bin < (hj+1)*w; ++j_bin)
	    for (size_t k_bin = hk*w; k_bin < (hk+1)*w; ++k_bin)
221
	    {
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
		for (size_t i = 0; i < _bins[j_bin][k_bin].size(); ++i)
		{
		    pair<size_t, size_t>& v = _bins[j_bin][k_bin][i];
		    if (candidates.empty())
		    {
			candidates.push_back(v);
			continue;
		    }
		    if (dist(vertex_t(v), vertex_t(j,k)) < dist(vertex_t(candidates.front()),vertex_t(j,k)))
		    {
			candidates.clear();
			candidates.push_back(v);
		    }
		    else if (dist(vertex_t(v), vertex_t(j,k)) == dist(vertex_t(candidates.front()),vertex_t(j,k)))
		    {
			candidates.push_back(v);
		    }
		}
Tiago Peixoto's avatar
Tiago Peixoto committed
240
241
242
243
	    }
    }

    size_t _L;
244
245
246
247
248
249
    vector<vector<vector<pair<size_t,size_t> > > > _bins;
    vector<vector<vector<size_t> > > _high_bins;
    size_t _minj;
    size_t _mink;
    size_t _maxj;
    size_t _maxk;
Tiago Peixoto's avatar
Tiago Peixoto committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
};

//==============================================================================
// GenerateCorrelatedConfigurationalModel
// generates a directed graph with given pjk and degree correlation
//==============================================================================
void GraphInterface::GenerateCorrelatedConfigurationalModel(size_t N, pjk_t pjk, pjk_t ceil_pjk, inv_ceil_t inv_ceil_pjk, double ceil_pjk_bound,
							    corr_t corr, corr_t ceil_corr, inv_corr_t inv_ceil_corr, double ceil_corr_bound, 
							    bool undirected_corr, size_t seed, bool verbose)
{
    _mg.clear();
    _properties = dynamic_properties();
    rng_t rng(seed);

    // sample the N (j,k) pairs

    sample_from_distribution<pjk_t, pjk_t, inv_ceil_t> pjk_sample(pjk, ceil_pjk, inv_ceil_pjk, ceil_pjk_bound, rng);
    vector<vertex_t> vertices(N);
268
    size_t sum_j=0, sum_k=0, min_j=0, min_k=0, max_j=0, max_k=0;
Tiago Peixoto's avatar
Tiago Peixoto committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    if (verbose)
    {
	cout << "adding vertices: " << flush;
    }
    for(size_t i = 0; i < N; ++i)
    {
	if (verbose)
	{
	    static stringstream str;
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << "\b";
	    str.str("");
	    str << i+1 << " of " << N << " (" << (i+1)*100/N << "%)";
	    cout << str.str() << flush;
	}
	vertex_t& v = vertices[i];
	v.index = _vertex_index[add_vertex(_mg)];
	tie(v.in_degree, v.out_degree) = pjk_sample();
	sum_j += v.in_degree;
	sum_k += v.out_degree;
289
290
	min_j = min(v.in_degree,min_j);
	min_k = min(v.out_degree,min_k);
Tiago Peixoto's avatar
Tiago Peixoto committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
	max_j = max(v.in_degree,max_j);
	max_k = max(v.out_degree,max_k); 
    }

    if (verbose)
	cout << "\nfixing average degrees: " << flush;

    // <j> and <k> must be the same. Resample random pairs until this holds.
    uniform_int<size_t> vertex_sample(0, N-1);
    while (sum_j != sum_k)
    {
	vertex_t& v = vertices[vertex_sample(rng)];
	sum_j -= v.in_degree;
	sum_k -= v.out_degree;
	tie(v.in_degree, v.out_degree) = pjk_sample();
	sum_j += v.in_degree;
        sum_k +=  v.out_degree;
	max_j = max(v.in_degree,max_j);
	max_k = max(v.out_degree,max_k);
	if (verbose)
	{
	    static stringstream str;
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << "\b";
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << " ";
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << "\b";
	    str.str("");
	    str << min(sum_j-sum_k, sum_k-sum_j);
	    cout << str.str() << flush;
	}
    }

    size_t E = sum_k;
 
    vector<vertex_t> sources; // sources of edges
    typedef tr1::unordered_multimap<pair<size_t,size_t>, vertex_t, hash<pair<size_t,size_t> > > targets_t;
    targets_t targets; // vertices with j > 0
    typedef tr1::unordered_set<pair<size_t,size_t>, hash<pair<size_t,size_t> > > target_degrees_t;
    target_degrees_t target_degrees; // existing (j,k) pairs
    
    // fill up sources, targets and target_degrees
    sources.reserve(E);
    for(size_t i = 0; i < N; ++i)
    {
	for(size_t k = 0; k < vertices[i].out_degree; ++k)
	    sources.push_back(vertices[i]);
	if (vertices[i].in_degree > 0)
	{
	    targets.insert(make_pair(make_pair(vertices[i].in_degree, vertices[i].out_degree), vertices[i]));
	    target_degrees.insert(make_pair(vertices[i].in_degree, vertices[i].out_degree));
	}
    }

    typedef multiset<pair<size_t,size_t>, total_deg_comp> ordered_degrees_t;
    ordered_degrees_t ordered_degrees; // (j,k) pairs ordered by (j+k), i.e, total degree
348
    degree_matrix_t degree_matrix(target_degrees.size(), min_j, min_k, max_j, max_k); // (j,k) pairs layed out in a 2 dimensional matrix
Tiago Peixoto's avatar
Tiago Peixoto committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    for(typeof(target_degrees.begin()) iter = target_degrees.begin(); iter != target_degrees.end(); ++iter)
	if (undirected_corr)
	    ordered_degrees.insert(*iter);
	else
	    degree_matrix.insert(*iter);
    
    // shuffle sources 
    for (size_t i = 0; i < sources.size(); ++i)
    {
	uniform_int<size_t> source_sample(i, sources.size()-1);
	swap(sources[i], sources[source_sample(rng)]);
    }

    if (verbose)
	cout << "\nadding edges: " << flush;

    // connect the sources to targets
    uniform_real<double> sample_probability(0.0, 1.0); 
    for (size_t i = 0; i < sources.size(); ++i)
    {
	vertex_t source = sources[i], target;
	size_t j = source.in_degree;
	size_t k = source.out_degree;
	
	//choose the target vertex according to correlation
	    
	pjk_t prob_func = lambda::bind(corr,lambda::_1,lambda::_2,j,k);
	pjk_t ceil = lambda::bind(ceil_corr,lambda::_1,lambda::_2,j,k);
	inv_ceil_t inv_ceil = lambda::bind(inv_ceil_corr,lambda::_1,lambda::_2,j,k);
	sample_from_distribution<pjk_t, pjk_t, inv_ceil_t> corr_sample(prob_func, ceil, inv_ceil, ceil_corr_bound, rng);
	
380
381
382
383
384
	size_t jl,kl;
	tie(jl,kl) = corr_sample(); // target (j,k)
	
	target_degrees_t::iterator iter = target_degrees.find(make_pair(jl,kl));
	if (iter != target_degrees.end())
Tiago Peixoto's avatar
Tiago Peixoto committed
385
	{
386
387
388
389
390
391
	    target = targets.find(*iter)->second; // if an (jl,kl) pair exists, just use that
	}
	else
	{	
	    pair<size_t, size_t> deg;
	    if (undirected_corr)
Tiago Peixoto's avatar
Tiago Peixoto committed
392
	    {
393
394
395
396
		// select the (j,k) pair with the closest total degree (j+k)
		ordered_degrees_t::iterator upper;
		upper = ordered_degrees.upper_bound(make_pair(jl,kl));
		if (upper == ordered_degrees.end())
Tiago Peixoto's avatar
Tiago Peixoto committed
397
		{
398
399
400
401
402
403
404
405
406
407
408
409
410
411
		    --upper;
		    deg = *upper;
		}
		else if (upper == ordered_degrees.begin())
		{
		    deg = *upper;
		}
		else
		{
		    ordered_degrees_t::iterator lower = upper;
		    --lower;
		    if (jl + kl - (lower->first + lower->second) < upper->first + upper->second - (jl + kl))
			deg = *lower;
		    else if (jl + kl - (lower->first + lower->second) != upper->first + upper->second - (jl + kl))
Tiago Peixoto's avatar
Tiago Peixoto committed
412
413
414
			deg = *upper;
		    else
		    {
415
416
417
			// if equal, choose randomly with equal probability
			uniform_int<size_t> sample(0, 1);
			if (sample(rng))
Tiago Peixoto's avatar
Tiago Peixoto committed
418
419
			    deg = *lower;
			else
420
			    deg = *upper;
Tiago Peixoto's avatar
Tiago Peixoto committed
421
422
		    }
		}
423
424
425
426
427
428
429
430
431
432
		target = targets.find(deg)->second;
	    }
	    else
	    {   
		// select the (j,k) which is the closest in the j,k plane.
		deg = degree_matrix.find_closest(jl, kl, rng);
		target = targets.find(deg)->second;
//		cerr << "wanted: " << jl << ", " << kl
//		     << " got: " << deg.first << ", " << deg.second << "\n";
	       
Tiago Peixoto's avatar
Tiago Peixoto committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
	    }	    
	}

	//add edge
	graph_traits<multigraph_t>::edge_descriptor e;
	e = add_edge(vertex(source.index, _mg), vertex(target.index, _mg), _mg).first;
	_edge_index[e] = i;

	// if target received all the edges it should, remove it from target
	if (in_degree(vertex(target.index, _mg), _mg) == target.in_degree)
	{
	    targets_t::iterator iter,end;
	    for(tie(iter,end) = targets.equal_range(make_pair(target.in_degree, target.out_degree)); iter != end; ++iter)
		if (iter->second == target)
		{
		    targets.erase(iter);
		    break;
		}

	    // if there are no more targets with (jl,kl), remove pair from target_degrees, etc.
	    if (targets.find(make_pair(target.in_degree, target.out_degree)) == targets.end())
	    {
		target_degrees.erase(target_degrees.find(make_pair(target.in_degree, target.out_degree)));
		if (target_degrees.bucket_count() > 2*target_degrees.size())
		{
		    target_degrees_t temp;
		    for(target_degrees_t::iterator iter = target_degrees.begin(); iter != target_degrees.end(); ++iter)
			temp.insert(*iter);
		    target_degrees = temp;
		}
		if (undirected_corr)
		{
		    for(ordered_degrees_t::iterator iter = ordered_degrees.find(make_pair(target.in_degree, target.out_degree)); 
			iter != ordered_degrees.end(); ++iter)
			if (*iter == make_pair(target.in_degree, target.out_degree))
			{
			    ordered_degrees.erase(iter);
			    break;
			}
		}
		else
		{
		    degree_matrix.erase(make_pair(target.in_degree, target.out_degree));
		}
	    }
	    
	}

	if (verbose)
	{
	    static stringstream str;	    
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << "\b";
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << " ";
	    for (size_t j = 0; j < str.str().length(); ++j)
		cout << "\b";
	    str.str("");
491
	    str << (i+1) << " of " << E << " (" << (i+1)*100/E << "%)";
Tiago Peixoto's avatar
Tiago Peixoto committed
492
493
494
495
496
497
498
499
	    cout << str.str() << flush;
	}
	
    }
    
    if (verbose)
	cout << "\n";
}