__init__.py 51.8 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
45
46
   dominator_tree
   topological_sort
   transitive_closure
   label_components
   label_biconnected_components
47
   label_largest_component
48
   label_out_component
49
   is_bipartite
50
   is_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   edge_reciprocity
52
53
54

Contents
++++++++
55

56
57
"""

58
59
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
60
from .. dl_import import dl_import
61
dl_import("from . import libgraph_tool_topology")
62

63
from .. import _prop, Vector_int32_t, _check_prop_writable, \
64
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView
65
import random, sys, numpy
66
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
67
           "max_cardinality_matching", "max_independent_vertex_set",
68
69
70
71
72
73
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
           "topological_sort", "transitive_closure", "label_components",
           "label_largest_component", "label_biconnected_components",
           "label_out_component", "shortest_distance", "shortest_path",
           "pseudo_diameter", "is_bipartite", "is_planar", "similarity",
           "edge_reciprocity"]
74
75
76
77
78
79
80
81
82
83


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
84
        Second graph to be compared.
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
    0.03333333333333333
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
136

Tiago Peixoto's avatar
Tiago Peixoto committed
137

138
def isomorphism(g1, g2, isomap=False):
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

157
    """
158
159
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
160
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
161
                             _prop("v", g1, imap))
162
163
164
165
166
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
167

168
def subgraph_isomorphism(sub, g, max_n=0, random=False):
169
    r"""
170
171
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
172

173
174
175
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

176
177
178
179
180
181
182
183
184
185
186
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
187
    >>> print(len(vm))
188
    102
189
    >>> for i in range(len(vm)):
190
191
192
193
194
195
196
197
198
199
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
200
201
202
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
203
    ...               output="subgraph-iso-embed.pdf")
204
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
205
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
206
207
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
208
209
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
210

211

Tiago Peixoto's avatar
Tiago Peixoto committed
212
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
213
214
215

    Notes
    -----
216
217
218
219
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
220
221
222

    References
    ----------
223
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
224
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
225
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
226
227
228
229

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
230
231
    vlabels=(None, None)
    elabels=(None, None)
232
233
    vmaps = []
    emaps = []
234
    if random:
235
        seed = numpy.random.randint(0, sys.maxsize)
236
237
    else:
        seed = 42
238
239
240
241
242
243
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
244
                                vmaps, emaps, max_n, seed)
245
    for i in range(len(vmaps)):
246
247
248
249
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
250

251
252
253
254
255
256
257
258
259
260
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
261
    `sub`.
262
    """
263
    if vmask is None:
264
        vmask = g.new_vertex_property("bool")
265
    if emask is None:
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
280

Tiago Peixoto's avatar
Tiago Peixoto committed
281

282
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
283
284
285
286
287
288
289
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
290
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
291
292
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
293
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
294
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
295
        is used. Otherwise, Kruskal's algorithm is used.
296
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
312
    >>> from numpy.random import seed, random
313
    >>> seed(42)
314
315
316
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
317
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
318
    >>> tree = gt.min_spanning_tree(g, weights=weight)
319
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
320
321
    <...>
    >>> g.set_edge_filter(tree)
322
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
323
324
325
    <...>


326
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
327
        :width: 400px
328
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
329
        :width: 400px
330
331

    *Left:* Original graph, *Right:* The minimum spanning tree.
332
333
334
335
336

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
337
338
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
339
340
341
342
343
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
344
    if tree_map is None:
345
346
347
348
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
364
    return tree_map
365

Tiago Peixoto's avatar
Tiago Peixoto committed
366

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
    <...>


    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
    g = GraphView(g, vfilt=l)

    seed = numpy.random.randint(0, sys.maxsize)
    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
                             _prop("e", g, tree_map), seed)
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
479
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
480
    >>> dom = gt.dominator_tree(g, root[0])
481
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
482
483
484
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
485
486
487

    References
    ----------
488
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
489
490

    """
491
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
492
493
494
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
495
496
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
497
        raise ValueError("dominator tree requires a directed graph.")
498
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
499
500
501
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
502

Tiago Peixoto's avatar
Tiago Peixoto committed
503

504
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
525
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
526
527
    [ 3 20  9 29 15  0 10 23  1  2 21  7  4 12 11  5 26 27  6  8 13 14 22 16 17
     28 18 19 24 25]
Tiago Peixoto's avatar
Tiago Peixoto committed
528
529
530

    References
    ----------
531
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
532
533
534
535
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

536
537
538
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
539
    return numpy.array(topological_order)
540

Tiago Peixoto's avatar
Tiago Peixoto committed
541

542
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
563
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
564
565
566
567
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

568
569
570
571
572
573
574
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
575

576
577
def label_components(g, vprop=None, directed=None):
    """
578
    Label the components to which each vertex in the graph belongs. If the
579
580
    graph is directed, it finds the strongly connected components.

581
582
583
    A property map with the component labels is returned, together with an
    histogram of component labels.

584
585
    Parameters
    ----------
586
    g : :class:`~graph_tool.Graph`
587
        Graph to be used.
588
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
589
590
591
592
593
594
595
596
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
597
    comp : :class:`~graph_tool.PropertyMap`
598
        Vertex property map with component labels.
599
600
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
601
602
603
604
605
606

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

607
    The algorithm runs in :math:`O(V + E)` time.
608
609
610

    Examples
    --------
611
612
613
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
614
    >>> comp, hist = gt.label_components(g)
615
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
616
617
618
    [0 0 0 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 0 1 2 0 1 0 0 1 0 2 0 2 1 0 2 0 0 0 0
     0 0 1 0 0 2 2 2 0 0 0 0 0 0 2 0 0 1 1 0 0 2 0 1 0 0 0 2 0 0 2 2 1 2 1 0 0
     2 0 0 1 2 1 2 2 0 0 0 0 0 2 0 0 0 1 1 0 0 0 1 1 2 2]
619
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
620
    [58 18 24]
621
622
    """

623
    if vprop is None:
624
625
626
627
628
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

629
630
    if directed is not None:
        g = GraphView(g, directed=directed)
631

632
633
634
635
636
637
638
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
639
640
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
641
642
643
644
645
646
647
648
649
650
651
652
653
654

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
655
         Boolean vertex property map which labels the largest component.
656
657
658
659
660
661
662
663
664
665
666

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
667
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
668
669
670
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
671
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
672
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
673
    31
674
675
676
677
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
678
679
680
681
682
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
683
    return label
684

Tiago Peixoto's avatar
Tiago Peixoto committed
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(0))
    >>> print(l.a)
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]

    The in-component can be obtained by reversing the graph.

    >>> l = gt.label_out_component(GraphView(g, reversed=True), g.vertex(0))
    >>> print(l.a)
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


734
def label_biconnected_components(g, eprop=None, vprop=None):
735
736
737
738
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

739
740
741
742
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
787
    >>> seed(43)
788
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
789
    >>> comp, art, hist = gt.label_biconnected_components(g)
790
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
791
792
793
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
     0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
     0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
794
    >>> print(art.a)
795
796
797
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
798
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
799
    [87 13]
800
    """
801

802
    if vprop is None:
803
        vprop = g.new_vertex_property("bool")
804
    if eprop is None:
805
806
807
808
809
810
811
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

812
813
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
814
815
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
816
    return eprop, vprop, hist
817

Tiago Peixoto's avatar
Tiago Peixoto committed
818

819
def shortest_distance(g, source=None, weights=None, max_dist=None,
820
821
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
822
823
824
825
826
827
828
829
830
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
831
        Source vertex of the search. If unspecified, the all pairs shortest
832
833
834
835
836
837
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
838
        are searched. This parameter has no effect if source is None.
839
840
841
842
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
843
844
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
845
846
847
848
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
849
850
851
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
878
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
896
    >>> dist = gt.shortest_distance(g)
897
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
915
916
917
918
919

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
920
921
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
922
923
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
924
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
925
926
927
928
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

929
    if weights is None:
930
931
932
933
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

934
935
    if dist_map is None:
        if source is not None:
936
937
938
939
940
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
941
    if source is not None:
942
943
944
945
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

946
    if max_dist is None:
947
948
        max_dist = 0

949
    if directed is not None:
950
951
952
953
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
954
        if source is not None:
955
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
956
957
958
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
959
                                             _prop("v", g, pmap),
960
961
962
963
964
965
966
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
967
        if directed is not None:
968
            g.pop_filter(directed=True)
969
    if source is not None and pred_map:
970
971
972
973
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
974

975
976
977
978
979
980
981
982
983
984
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
985
    target : :class:`~graph_tool.Vertex`
986
987
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
988
        The edge weights.
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1016
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1017
    ['10', '222', '246', '0', '50', '257', '12', '242', '11']
1018
    >>> print([str(e) for e in elist])
1019
    ['(10, 222)', '(222, 246)', '(246, 0)', '(0, 50)', '(50, 257)', '(257, 12)', '(12, 242)', '(242, 11)']
1020
1021
1022
1023
1024

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1025
1026
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1027
1028
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1029
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1030
1031
    """

1032
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
1033
1034
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
1035

Tiago Peixoto's avatar
Tiago Peixoto committed
1036
    if pred_map[target] == int(target):  # no path to source
1037
1038
1039
1040
1041
        return [], []

    vlist = [target]
    elist = []

1042
    if weights is not None:
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1056
                if weights is not None:
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1068

Tiago Peixoto's avatar
Tiago Peixoto committed
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1114
    >>> print(dist)
1115
    9.0
1116
    >>> print(int(ends[0]), int(ends[1]))
1117
    0 255
Tiago Peixoto's avatar
Tiago Peixoto committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
        source = g.vertex(0)
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
def is_bipartite(g, partition=False):
    """
    Test if the graph is bipartite.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    partition : bool (optional, default: ``False``)
        If ``True``, return the two partitions in case the graph is bipartite.

    Returns
    -------
    is_bipartite : bool
        Whether or not the graph is bipartite.
    partition : :class:`~graph_tool.PropertyMap` (only if `partition=True`)
        A vertex property map with the graph partitioning (or `None`) if the
        graph is not bipartite.

    Notes
    -----

    An undirected graph is bipartite if one can partition its set of vertices
    into two sets, such that all edges go from one set to the other.

    This algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> is_bi, part = gt.is_bipartite(g, partition=True)
    >>> print(is_bi)
    True
    >>> gt.graph_draw(g, vertex_color=part, output_size=(300, 300), output="bipartite.pdf")
    <...>

    .. figure:: bipartite.*
        :align: center

        Bipartition of a 2D lattice.

    References
    ----------
    .. [boost-bipartite] http://www.boost.org/libs/graph/doc/is_bipartite.html
    """

    if partition:
        part = g.new_vertex_property("bool")
    else:
        part = None
    g = GraphView(g, directed=False)
    is_bi = libgraph_tool_topology.is_bipartite(g._Graph__graph,
                                                _prop("v", g, part))
    if partition:
        return is_bi, part
    else:
        return is_bi


1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
1242
    >>> print(p)
1243
    True
1244
    >>> print(list(embed_order[g.vertex(0)]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1245
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1246
1247
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
1248
    >>> print(p)
1249
1250
    False
    >>> g.set_edge_filter(kur, True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1251
    >>> gt.graph_draw(g, output_size=(300, 300), output="kuratowski.pdf")
1252
1253
    <...>

1254
    .. figure:: kuratowski.*
1255
1256
1257
1258
1259
1260
1261
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
1262
1263
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
1288
    if embed is not None:
1289
        ret.append(embed)
1290
    if kur is not None:
1291
1292
1293
1294
1295
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)
1296
1297
1298
1299


def max_cardinality_matching(g, heuristic=False, weight=None, minimize=True,
                             match=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1300
    r"""Find a maximum cardinality matching in the graph.
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    heuristic : bool (optional, default: `False`)
        If true, a random heuristic will be used, which runs in linear time.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the matching will minimize the edge weights (or maximize
        if ``minimize == False``. This option has no effect if
        ``heuristic == False``.
    minimize : bool (optional, default: `True`)
        If `True`, the matching will minimize the weights, otherwise they will
        be maximized. This option has no effect if ``heuristic == False``.
    match : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Edge property map where the matching will be specified.

    Returns
    -------
    match : :class:`~graph_tool.PropertyMap`
        Boolean edge property map where the matching is specified.
    is_maximal : bool
        True if the matching is indeed maximal, or False otherwise. This is only
        returned if ``heuristic == False``.

    Notes
    -----
    A *matching* is a subset of the edges of a graph such that no two edges
    share a common vertex. A *maximum cardinality matching* has maximum size
    over all matchings in the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
1332
1333
1334
1335
    This algorithm runs in time :math:`O(EV\times\alpha(E,V))`, where
    :math:`\alpha(m,n)` is a slow growing function that is at most 4 for any
    feasible input. If `heuristic == True`, the algorithm runs in time :math:`O(V + E)`.

1336
1337
1338
1339
    For a more detailed description, see [boost-max-matching]_.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
1340
    >>> from numpy.random import seed
1341
    >>> seed(43)
Tiago Peixoto's avatar
Tiago Peixoto committed
1342
    >>> g = gt.GraphView(gt.price_network(300), directed=False)
1343
    >>> res = gt.max_cardinality_matching(g)
1344
    >>> print(res[1])
1345
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1346
1347
1348
1349
    >>> w = res[0].copy("double")
    >>> w.a = 2 * w.a + 2
    >>> gt.graph_draw(g, edge_color=res[0], edge_pen_width=w, vertex_fill_color="grey",
    ...               output="max_card_match.pdf")
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
    <...>

    .. figure:: max_card_match.*
        :align: center

        Edges belonging to the matching are in red.

    References
    ----------
    .. [boost-max-matching] http://www.boost.org/libs/graph/doc/maximum_matching.html
    .. [matching-heuristic] B. Hendrickson and R. Leland. "A Multilevel Algorithm
       for Partitioning Graphs." In S. Karin, editor, Proc. Supercomputing ’95,
       San Diego. ACM Press, New York, 1995, :doi:`10.1145/224170.224228`

    """
    if match is None:
        match = g.new_edge_property("bool")
    _check_prop_scalar(match, "match")
    _check_prop_writable(match, "match")
    if weight is not None:
        _check_prop_scalar(weight, "weight")

1372
    seed = numpy.random.randint(0, sys.maxsize)
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
    u = GraphView(g, directed=False)
    if not heuristic:
        check = libgraph_tool_flow.\
                max_cardinality_matching(u._Graph__graph, _prop("e", u, match))
        return match, check
    else:
        libgraph_tool_topology.\
                random_matching(u._Graph__graph, _prop("e", u, weight),
                                 _prop("e", u, match), minimize, seed)
        return match
1383
1384
1385


def max_independent_vertex_set(g, high_deg=False, mivs=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1386
    r"""Find a maximal independent vertex set in the graph.
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    high_deg : bool (optional, default: `False`)
        If `True`, vertices with high degree will be included first in the set,
        otherwise they will be included last.
    mivs : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Vertex property map where the vertex set will be specified.

    Returns
    -------
Tiago Peixoto's avatar
Tiago Peixoto committed
1400
1401
    mivs : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map where the set is specified.
1402
1403
1404

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
1405
1406
1407
    A maximal independent vertex set is an independent set such that adding any
    other vertex to the set forces the set to contain an edge between two
    vertices of the set.
1408

Tiago Peixoto's avatar
Tiago Peixoto committed
1409
1410
    This implements the algorithm described in [mivs-luby]_, which runs in time
    :math:`O(V + E)`.
1411
1412
1413

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
1414
    >>> from numpy.random import seed
1415
    >>> seed(43)
Tiago Peixoto's avatar
Tiago Peixoto committed
1416
1417
1418
    >>> g = gt.GraphView(gt.price_network(300), directed=False)
    >>> res = gt.max_independent_vertex_set(g)
    >>> gt.graph_draw(g, vertex_fill_color=res, output="mivs.pdf")
1419
1420
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
1421
    .. figure:: mivs.*
1422
1423
        :align: center

Tiago Peixoto's avatar
Tiago Peixoto committed
1424
        Vertices belonging to the set are in red.
1425
1426
1427

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
1428
1429
1430
1431
    .. [mivs-wikipedia] http://en.wikipedia.org/wiki/Independent_set_%28graph_theory%29
    .. [mivs-luby] Luby, M., "A simple parallel algorithm for the maximal independent set problem",
       Proc. 17th Symposium on Theory of Computing, Association for Computing Machinery, pp. 1–10, (1985)
       :doi:`10.1145/22145.22146`.
1432
1433
1434
1435
1436
1437
1438

    """
    if mivs is None:
        mivs = g.new_vertex_property("bool")
    _check_prop_scalar(mivs, "mivs")
    _check_prop_writable(mivs, "mivs")

1439
    seed = numpy.random.randint(0, sys.maxsize)
1440
1441
1442
1443
1444
1445
    u = GraphView(g, directed=False)
    libgraph_tool_topology.\
        maximal_vertex_set(u._Graph__graph, _prop("v", u, mivs), high_deg,
                           seed)
    mivs = g.own_property(mivs)
    return mivs
Tiago Peixoto's avatar
Tiago Peixoto committed
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490


def edge_reciprocity(g):
    r"""Calculate the edge reciprocity of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used
        edges.

    Returns
    -------
    reciprocity : float
        The reciprocity value.

    Notes
    -----

    The edge [reciprocity]_ is defined as :math:`E^\leftrightarrow/E`, where
    :math:`E^\leftrightarrow` and :math:`E` are the number of bidirectional and
    all edges in the graph, respectively.

    The algorithm runs with complexity :math:`O(E + V)`.

    Examples
    --------

    >>> g = gt.Graph()
    >>> g.add_vertex(2)
    [<Vertex object with index '0' at 0x1254dd0>,
     <Vertex object with index '1' at 0x1254bd0>]
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <Edge object with source '0' and target '1' at 0x33bc710>
    >>> gt.edge_reciprocity(g)
    0.0
    >>> g.add_edge(g.vertex(1), g.vertex(0))
    <Edge object with source '1' and target '0' at 0x33bc7a0>
    >>> gt.edge_reciprocity(g)
    1.0

    References
    ----------
    .. [reciprocity] S. Wasserman and K. Faust, "Social Network Analysis".
       (Cambridge University Press, Cambridge, 1994)
1491
    .. [lopez-reciprocity-2007] Gorka Zamora-López, Vinko Zlatić, Changsong Zhou, Hrvoje Štefančić, and Jürgen Kurths
Tiago Peixoto's avatar
Tiago Peixoto committed
1492
1493
1494
1495
1496
1497
1498
       "Reciprocity of networks with degree correlations and arbitrary degree sequences", Phys. Rev. E 77, 016106 (2008)
       :doi:`10.1103/PhysRevE.77.016106`, :arxiv:`0706.3372`

    """

    r = libgraph_tool_topology.reciprocity(g._Graph__graph)
    return r
1499

1500
from .. flow import libgraph_tool_flow