graph_rewiring.hh 21.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
#include <boost/random.hpp>
#include <boost/functional/hash.hpp>

#include "graph.hh"
#include "graph_filtering.hh"

namespace graph_tool
{
using namespace std;
using namespace boost;

typedef boost::mt19937 rng_t;

// this will get the source of an edge for directed graphs and the target for
// undirected graphs, i.e. "the source of an in-edge"
struct source_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
        return get_source(e, g, typename is_convertible
                          <typename graph_traits<Graph>::directed_category,
                           directed_tag>::type());
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return source(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return target(e, g);
    }
};

// this will get the target of an edge for directed graphs and the source for
// undirected graphs, i.e. "the target of an in-edge"
struct target_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
        return get_target(e, g, typename is_convertible
                          <typename graph_traits<Graph>::directed_category,
                           directed_tag>::type());
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return target(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return source(e, g);
    }
};

// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
            nt = target_in()(te, g),   // new target
            te_s = source_in()(te, g), // target edge source
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
        if (edge_is_new[te] && (te_s == ns) && (nt == t) )
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
        if (is_adjacent_in_new(ns,  nt, se, te, edge_is_new, g))
            return true; // e would clash with an existing (new) edge
        if (is_adjacent_in_new(te_s, t, se, te, edge_is_new, g))
            return true; // te would clash with an existing (new) edge
        if (is_adjacent_in_new(s, se_t, se, te, edge_is_new, g))
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         typename graph_traits<Graph>::edge_descriptor e1,
         typename graph_traits<Graph>::edge_descriptor e2,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
            if (target(*e,g) == v && edge_is_new[*e] &&
                (*e != e1) && (*e != e2))
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
            ne = add_edge(source(se, g), target_in()(te, g), g).first;
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
                nte = add_edge(source_in()(te, g), target(e, g), g).first;
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
    void operator()(Graph* gp, EdgeIndexMap edge_index, size_t seed,
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        Graph& g = *gp;
        rng_t rng(static_cast<rng_t::result_type>(seed));

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
                throw GraphException("Self-loop detected. Can't rewire graph "
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
                throw GraphException("Parallel edge detected. Can't rewire "
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
        int i, N = num_vertices(g);
        #pragma omp parallel for default(shared) private(i) schedule(dynamic)
        for (i = 0; i < N; ++i)
        {
            vertex_t v = vertex(i, g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e, e_end;
            for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                edges[edge_index[*e]] = *e;
        }

        // for each edge simultaneously rewire its source and target
        for (i = 0; i < int(edges.size()); ++i)
        {
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
            tie(se, te) = rewire(e, edges, self_loops, parallel_edges);
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
template <class RandomAccessIterator, class RNG>
class random_permutation_iterator
{
public:
    random_permutation_iterator(RandomAccessIterator first,
                                RandomAccessIterator last, RNG& rng )
        : _i(first), _last(last), _rng(rng)
    {
        std::iter_swap(_i, _i + _rng(_last - _i));
    }
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
    random_permutation_iterator& operator++()
    {
        ++_i;
        if(_i != _last)
            std::iter_swap(_i, _i + _rng(_last - _i));
        return *this;
    }
    bool operator==(const RandomAccessIterator& i)
    {
        return _i == i;
    }
    bool operator!=(const RandomAccessIterator& i)
    {
        return _i != i;
    }
private:
    RandomAccessIterator _i, _last;
    RNG& _rng;
};

// utility function for random_permutation_iterator
template <class RandomAccessIterator, class RNG>
inline random_permutation_iterator<RandomAccessIterator,RNG>
make_random_permutation_iterator(RandomAccessIterator first,
                                 RandomAccessIterator last, RNG& rng)
{
    return random_permutation_iterator<RandomAccessIterator,RNG>(first, last,
                                                                 rng);
}

// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
class RandomRewireStrategy
{
public:
    RandomRewireStrategy (const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
        : _g(g), _rng(rng), _edge_is_new(edge_index)
    {
    }
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;

    template<class EdgesType>
    pair<edge_t,edge_t> operator()(const edge_t& e, const EdgesType& edges,
                                   bool self_loops, bool parallel_edges)
    {
        _edges_source = edges;
        _edges_target = edges;
        typedef random_number_generator<rng_t,size_t> random_t;
        random_t random(_rng);
        typedef random_permutation_iterator<typename edges_t::iterator,random_t>
            random_edge_iter;

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
        edge_t se, te;

        random_edge_iter esi(_edges_source.begin(), _edges_source.end(),
                             random);
        for (; esi != _edges_source.end() && !found; ++esi)
        {
            if(!self_loops) // reject self-loops if not allowed
            {
                if((source(e, _g) == target(*esi, _g)))
                    continue;
            }

            random_edge_iter eti(_edges_target.begin(), _edges_target.end(),
                                 random);

            for (; eti != _edges_target.end() && !found; ++eti)
            {
                if (!self_loops) // reject self-loops if not allowed
                {
                    if ((source(*esi, _g) == target_in()(*eti, _g)) ||
                        (source_in()(*eti, _g) == target(e, _g)))
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
                    if (swap_edge_triad::parallel_check(e, *esi, *eti,
                                                        _edge_is_new, _g))
                        continue;
                }
                se = *esi;
                te = *eti;
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
        _edge_is_new[e]=true;
        return make_pair(se, te);
    }

private:
    const Graph& _g;
    rng_t& _rng;
    typedef vector<edge_t> edges_t;
    edges_t _edges_target, _edges_source;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
};

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
class CorrelatedRewireStrategy
{
public:
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
                              rng_t& rng)
        : _g(g), _rng(rng), _edge_is_new(edge_index)
    {
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
        {
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;

            size_t j = in_degreeS()(v, _g);
            size_t k = out_degree(v, _g);

            typedef typename is_convertible
                <typename graph_traits<Graph>::directed_category,
                 directed_tag>::type is_directed;

            if (j > 0 || !is_directed::value)
                _deg_target_vertices[make_pair(j,k)].push_back(v);

            if (k > 0)
                _deg_source_vertices[make_pair(j,k)].push_back(v);
        }
    }

    template<class EdgesType>
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
                                    bool self_loops, bool parallel_edges)
    {
        vector<vertex_t>& source_vertices =
            _deg_source_vertices[make_pair(in_degreeS()(source(e, _g), _g),
                                           out_degree(source(e, _g), _g))];
        vector<vertex_t>& target_vertices =
            _deg_target_vertices[make_pair(in_degreeS()(target(e, _g), _g),
                                           out_degree(target(e, _g), _g))];

        typedef random_number_generator<rng_t, size_t> random_t;
        random_t random(_rng);
        typedef random_permutation_iterator<typename vector<vertex_t>::iterator,
                                            random_t>
            random_vertex_iter;
        typedef random_permutation_iterator<typename vector<edge_t>::iterator,
                                            random_t>
            random_edge_iter;

        edge_t se, te;
        //try new combinations until one satisfies all the consistency checks
        bool found = false;
        random_vertex_iter vs(source_vertices.begin(),
                              source_vertices.end(), random);
        for (; vs != source_vertices.end() && !found; ++vs)
        {
            random_vertex_iter vt(target_vertices.begin(),
                                  target_vertices.end(), random);
            for (; vt != target_vertices.end() && !found; ++vt)
            {
                // set up the edges to draw from
                vector<edge_t> in_edges_vt, out_edges_vs;
                typename in_or_out_edge_iteratorS<Graph>::type ie, ie_end;
                typename graph_traits<Graph>::out_edge_iterator oe, oe_end;
                tie(ie, ie_end) =
                    in_or_out_edge_iteratorS<Graph>::get_edges(*vt, _g);
                for (; ie != ie_end; ++ie)
                    in_edges_vt.push_back(*ie);
                for (tie(oe, oe_end) = out_edges(*vs, _g); oe != oe_end ; ++oe)
                    out_edges_vs.push_back(*oe);

                // for combinations of in_vt and out_vs...
                random_edge_iter out_vs_i(out_edges_vs.begin(),
                                          out_edges_vs.end(), random);
                for (; out_vs_i != out_edges_vs.end() && !found; ++out_vs_i)
                {

                    if(!self_loops) // reject self-loops if not allowed
                    {
                        if((*vs == *vt) ||
                           (source(e, _g) == target(*out_vs_i, _g)))
                            continue;
                    }

                    random_edge_iter in_vt_i(in_edges_vt.begin(),
                                             in_edges_vt.end(), random);
                    for (; in_vt_i != in_edges_vt.end() && !found; ++in_vt_i)
                    {
                        if(!self_loops) // reject self-loops if not allowed
                        {
                            if((source_in()(*in_vt_i, _g) == target(e, _g)))
                                continue;
                        }
                        if(!parallel_edges) // reject parallel edges if not
                                            // allowed
                        {
                            if (swap_edge_triad::parallel_check
                                (e, *out_vs_i, *in_vt_i, _edge_is_new, _g))
                                continue;
                        }
                        se = *out_vs_i;
                        te = *in_vt_i;
                        found = true;
                    }
                }
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
        _edge_is_new[e]=true;
        return make_pair(se, te);
    }

private:
    const Graph& _g;
    rng_t& _rng;
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<vertex_t>,
                               hash<pair<size_t, size_t> > > deg_vertices_t;
    deg_vertices_t _deg_source_vertices;
    deg_vertices_t _deg_target_vertices;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH