cairo_draw.py 95.6 KB
Newer Older
1001
    props = _convert_props(props, "e", g, kwargs.get("ecmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1002
1003
1004
    eprops.update(props)

    if pos is None:
1005
        if (g.num_vertices() > 2 and output is None and
1006
            not inline and kwargs.get("update_layout", True)):
Tiago Peixoto's avatar
Tiago Peixoto committed
1007
1008
1009
1010
1011
1012
1013
1014
1015
            L = np.sqrt(g.num_vertices())
            pos = random_layout(g, [L, L])
            if g.num_vertices() > 1000:
                if "multilevel" not in kwargs:
                    kwargs["multilevel"] = True
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos) / 10
        else:
            pos = sfdp_layout(g)
1016
1017
    else:
        _check_prop_vector(pos, name="pos", floating=True)
1018
        if output is None and not inline:
1019
1020
1021
1022
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos)
            if "update_layout" not in kwargs:
                kwargs["update_layout"] = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1023

1024
1025
1026
    if "pen_width" in eprops and "marker_size" not in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1027
            pw = pw.copy("double")
1028
            pw.fa *= 2.75
1029
1030
1031
            eprops["marker_size"] = pw
        else:
            eprops["marker_size"] = pw * 2.75
1032

1033
1034
1035
    if "text" in eprops and "text_distance" not in eprops and "pen_width" in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1036
            pw = pw.copy("double")
1037
            pw.fa *= 2
1038
1039
1040
1041
            eprops["text_distance"] = pw
        else:
            eprops["text_distance"] = pw * 2

1042
    if "text" in vprops and ("text_color" not in vprops or vprops["text_color"] == "auto"):
1043
        vcmap = kwargs.get("vcmap", matplotlib.cm.jet)
1044
1045
1046
1047
        bg = _convert(vertex_attrs.fill_color,
                      vprops.get("fill_color", _vdefaults["fill_color"]),
                      vcmap)
        bg_color = kwargs.get("bg_color", [1., 1., 1., 1.])
1048
1049
1050
1051
1052
        vprops["text_color"] = auto_colors(g, bg,
                                           vprops.get("text_position",
                                                      _vdefaults["text_position"]),
                                           bg_color)

1053
    if mplfig:
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        ax = None
        if isinstance(mplfig, matplotlib.figure.Figure):
            ctr = ax = mplfig.gca()
        elif isinstance(mplfig, matplotlib.axes.Axes):
            ctr = ax = mplfig
        else:
            ctr = mplfig

        artist = GraphArtist(g, pos, vprops, eprops, vorder, eorder, nodesfirst,
                             ax, **kwargs)
        ctr.artists.append(artist)

1066
1067
1068
1069
1070
1071
1072
1073
1074
        if fit_view != False and ax is not None:
            try:
                x, y, w, h = fit_view
            except TypeError:
                x, y = ungroup_vector_property(pos, [0, 1])
                l, r = x.a.min(), x.a.max()
                b, t = y.a.min(), y.a.max()
                w = r - l
                h = t - b
1075
1076
1077
            if fit_view != True:
                w *= float(fit_view)
                h *= float(fit_view)
1078
1079
1080
1081
            ax.set_xlim(l - w * .1, r + w * .1)
            ax.set_ylim(b - h * .1, t + h * .1)

        return pos
1082

1083
1084
    if inline:
        if fmt == "auto":
1085
1086
1087
1088
1089
            if output is None:
                fmt = "png"
            else:
                fmt = get_file_fmt(output)
        output_file = output
1090
1091
        output = io.BytesIO()

1092
    if output is None:
1093
        fit_area = fit_view if fit_view != True else 0.95
Tiago Peixoto's avatar
Tiago Peixoto committed
1094
        return interactive_window(g, pos, vprops, eprops, vorder, eorder,
1095
1096
                                  nodesfirst, geometry=output_size,
                                  fit_area=fit_area, **kwargs)
Tiago Peixoto's avatar
Tiago Peixoto committed
1097
    else:
1098
        if isinstance(output, (str, unicode)):
1099
1100
1101
1102
1103
            out, auto_fmt = open_file(output, mode="wb")
        else:
            out = output
            if fmt == "auto":
                raise ValueError("File format must be specified.")
Tiago Peixoto's avatar
Tiago Peixoto committed
1104
1105

        if fmt == "auto":
1106
            fmt = auto_fmt
Tiago Peixoto's avatar
Tiago Peixoto committed
1107
1108
1109
1110
        if fmt == "pdf":
            srf = cairo.PDFSurface(out, output_size[0], output_size[1])
        elif fmt == "ps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
Tiago Peixoto's avatar
Tiago Peixoto committed
1111
1112
1113
        elif fmt == "eps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
            srf.set_eps(True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
        elif fmt == "svg":
            srf = cairo.SVGSurface(out, output_size[0], output_size[1])
        elif fmt == "png":
            srf = cairo.ImageSurface(cairo.FORMAT_ARGB32, output_size[0],
                                     output_size[1])
        else:
            raise ValueError("Invalid format type: " + fmt)

        cr = cairo.Context(srf)

        adjust_default_sizes(g, output_size, vprops, eprops)
1125
1126
1127
1128
1129
        if fit_view != False:
            try:
                x, y, w, h = fit_view
                offset, zoom = [0, 0], 1
            except TypeError:
1130
                pad = fit_view if fit_view != True else 0.95
1131
1132
1133
1134
1135
1136
1137
                offset, zoom = fit_to_view(g, pos, output_size, vprops["size"],
                                           vprops["pen_width"], None,
                                           vprops.get("text", None),
                                           vprops.get("font_family",
                                                      _vdefaults["font_family"]),
                                           vprops.get("font_size",
                                                      _vdefaults["font_size"]),
1138
                                           pad, cr)
1139
                fit_view = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
        else:
            offset, zoom = [0, 0], 1

        if "bg_color" in kwargs:
            bg_color = kwargs["bg_color"]
            del  kwargs["bg_color"]
            cr.set_source_rgba(bg_color[0], bg_color[1],
                               bg_color[2], bg_color[3])
            cr.paint()
1149

Tiago Peixoto's avatar
Tiago Peixoto committed
1150
1151
1152
1153
        cr.translate(offset[0], offset[1])
        cr.scale(zoom, zoom)

        cairo_draw(g, pos, cr, vprops, eprops, vorder, eorder,
1154
                   nodesfirst, fit_view=fit_view, **kwargs)
1155

1156
        if fmt == "png":
Tiago Peixoto's avatar
Tiago Peixoto committed
1157
            srf.write_to_png(out)
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

        del cr

        if inline:
            img = None
            if fmt == "png":
                img = IPython.display.Image(data=out.getvalue())
            if fmt == "svg":
                img = IPython.display.SVG(data=out.getvalue())
            if img is None:
1168
1169
                inl_out = io.BytesIO()
                inl_srf = cairo.ImageSurface(cairo.FORMAT_ARGB32,
Pietro Battiston's avatar
Pietro Battiston committed
1170
1171
                                             output_size[0],
                                             output_size[1])
1172
1173
1174
1175
1176
1177
                inl_cr = cairo.Context(inl_srf)
                inl_cr.set_source_surface(srf, 0, 0)
                inl_cr.paint()
                inl_srf.write_to_png(inl_out)
                del inl_srf
                img = IPython.display.Image(data=inl_out.getvalue())
1178
            srf.finish()
1179
            if output_file is not None:
1180
                if isinstance(output_file, (str, unicode)):
1181
1182
1183
1184
                    ofile, auto_fmt = open_file(output_file, mode="wb")
                else:
                    ofile = output_file
                ofile.write(out.getvalue())
1185
                if isinstance(output_file, (str, unicode)):
1186
                    ofile.close()
1187
            IPython.display.display(img)
1188
        del srf
Tiago Peixoto's avatar
Tiago Peixoto committed
1189
        return pos
1190
1191
1192
1193
1194


def adjust_default_sizes(g, geometry, vprops, eprops, force=False):
    if "size" not in vprops or force:
        A = geometry[0] * geometry[1]
Tiago Peixoto's avatar
Tiago Peixoto committed
1195
1196
        N = max(g.num_vertices(), 1)
        vprops["size"] = np.sqrt(A / N) / 3.5
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

    if "pen_width" not in vprops or force:
        size = vprops["size"]
        if isinstance(vprops["size"], PropertyMap):
            size = vprops["size"].fa.mean()
        vprops["pen_width"] = size / 10
        if "pen_width" not in eprops or force:
            eprops["pen_width"] = size / 10
        if "marker_size" not in eprops or force:
            eprops["marker_size"] = size * 0.8


def scale_ink(scale, vprops, eprops):
    if "size" not in vprops:
        vprops["size"] = _vdefaults["size"]
    if "pen_width" not in vprops:
        vprops["pen_width"] = _vdefaults["pen_width"]
    if "font_size" not in vprops:
        vprops["font_size"] = _vdefaults["font_size"]
    if "pen_width" not in eprops:
        eprops["pen_width"] = _edefaults["pen_width"]
    if "marker_size" not in eprops:
        eprops["marker_size"] = _edefaults["marker_size"]
1220
1221
1222
1223
    if "font_size" not in eprops:
        eprops["font_size"] = _edefaults["font_size"]
    if "text_distance" not in eprops:
        eprops["text_distance"] = _edefaults["text_distance"]
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

    for props in [vprops, eprops]:
        if isinstance(props["pen_width"], PropertyMap):
            props["pen_width"].fa *= scale
        else:
            props["pen_width"] *= scale
    if isinstance(vprops["size"], PropertyMap):
        vprops["size"].fa *= scale
    else:
        vprops["size"] *= scale
    if isinstance(vprops["font_size"], PropertyMap):
        vprops["font_size"].fa *= scale
    else:
        vprops["font_size"] *= scale
    if isinstance(eprops["marker_size"], PropertyMap):
        eprops["marker_size"].fa *= scale
    else:
        eprops["marker_size"] *= scale
1242
1243
1244
1245
1246
1247
1248
1249
    if isinstance(eprops["font_size"], PropertyMap):
        eprops["font_size"].fa *= scale
    else:
        eprops["font_size"] *= scale
    if isinstance(eprops["text_distance"], PropertyMap):
        eprops["text_distance"].fa *= scale
    else:
        eprops["text_distance"] *= scale
1250
1251
1252

def get_bb(g, pos, size, pen_width, size_scale=1, text=None, font_family=None,
           font_size=None, cr=None):
1253
    size = size.fa if isinstance(size, PropertyMap) else size
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
    pen_width = pen_width.fa if isinstance(pen_width, PropertyMap) else pen_width
    pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
    if text is not None and text != "":
        if not isinstance(size, PropertyMap):
            uniform = (not isinstance(font_size, PropertyMap) and
                       not isinstance(font_family, PropertyMap))
            size = np.ones(len(pos_x.fa)) * size
        else:
            uniform = False
        for i, v in enumerate(g.vertices()):
            ff = font_family[v] if isinstance(font_family, PropertyMap) \
               else font_family
            cr.select_font_face(ff)
            fs = font_size[v] if isinstance(font_family, PropertyMap) \
               else font_size
1269
1270
            if not isinstance(font_size, PropertyMap):
                cr.set_font_size(fs)
1271
            t = text[v] if isinstance(text, PropertyMap) else text
1272
            if not isinstance(t, (str, unicode)):
1273
1274
1275
1276
1277
1278
1279
                t = str(t)
            extents = cr.text_extents(t)
            s = max(extents[2], extents[3]) * 1.4
            size[i] = max(size[i] * size_scale, s) / size_scale
            if uniform:
                size[:] = size[i]
                break
1280
    sl = label_self_loops(g)
1281
    slm = sl.fa.max() * 0.75 if g.num_edges() > 0 else 0
1282
    delta = (size * size_scale * (slm + 1)) / 2 + pen_width * 2
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    x_range = [pos_x.fa.min(), pos_x.fa.max()]
    y_range = [pos_y.fa.min(), pos_y.fa.max()]
    x_delta = [x_range[0] - (pos_x.fa - delta).min(),
               (pos_x.fa + delta).max() - x_range[1]]
    y_delta = [y_range[0] - (pos_y.fa - delta).min(),
               (pos_y.fa + delta).max() - y_range[1]]
    return x_range, y_range, x_delta, y_delta


def fit_to_view(g, pos, geometry, size, pen_width, M=None, text=None,
1293
                font_family=None, font_size=None, pad=0.95, cr=None):
1294
1295
    if g.num_vertices() == 0:
        return [0, 0], 1
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
    if M is not None:
        pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
        P = np.zeros((2, len(pos_x.fa)))
        P[0, :] = pos_x.fa
        P[1, :] = pos_y.fa
        T = np.zeros((2, 2))
        O = np.zeros(2)
        T[0, 0], T[1, 0], T[0, 1], T[1, 1], O[0], O[1] = M
        P = np.dot(T, P)
        P[0] += O[0]
        P[1] += O[1]
        pos_x.fa = P[0, :]
        pos_y.fa = P[1, :]
        pos = group_vector_property([pos_x, pos_y])
    x_range, y_range, x_delta, y_delta = get_bb(g, pos, size, pen_width,
                                                1, text, font_family,
                                                font_size, cr)
1313
1314
1315
1316
1317
1318
1319
1320
    dx = (x_range[1] - x_range[0])
    dy = (y_range[1] - y_range[0])
    if dx == 0:
        dx = 1
    if dy == 0:
        dy = 1
    zoom_x = (geometry[0] - sum(x_delta)) / dx
    zoom_y = (geometry[1] - sum(y_delta)) / dy
1321
1322
1323
1324
1325
    if np.isnan(zoom_x) or np.isinf(zoom_x) or zoom_x == 0:
        zoom_x = 1
    if np.isnan(zoom_y) or np.isinf(zoom_y) or zoom_y == 0:
        zoom_y = 1
    zoom = min(zoom_x, zoom_y) * pad
1326
1327
    empty_x = (geometry[0] - sum(x_delta)) - dx * zoom
    empty_y = (geometry[1] - sum(y_delta)) - dy * zoom
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
    offset = [-x_range[0] * zoom + empty_x / 2 + x_delta[0],
              -y_range[0] * zoom + empty_y / 2 + y_delta[0]]
    return offset, zoom


def transform_scale(M, scale):
    p = M.transform_distance(scale / np.sqrt(2),
                             scale / np.sqrt(2))
    return np.sqrt(p[0] ** 2 + p[1] ** 2)

1338
1339
def get_hierarchy_control_points(g, t, tpos, beta=0.8, cts=None, is_tree=True,
                                 max_depth=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1340
    r"""Return the Bézier spline control points for the edges in ``g``, given the hierarchical structure encoded in graph `t`.
1341
1342
1343
1344
1345
1346
1347
1348
1349

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be drawn.
    t : :class:`~graph_tool.Graph`
        Directed graph containing the hierarchy of ``g``. It must be a directed
        tree with a single root. The direction of the edges point from the root
        to the leaves, and the vertices in ``t`` with index in the range
Tiago Peixoto's avatar
Tiago Peixoto committed
1350
        :math:`[0, N-1]`, with :math:`N` being the number of vertices in ``g``,
1351
1352
1353
1354
        must correspond to the respective vertex in ``g``.
    tpos : :class:`~graph_tool.PropertyMap`
        Vector-valued vertex property map containing the x and y coordinates of
        the vertices in graph ``t``.
1355
    beta : ``float`` (optional, default: ``0.8`` or :class:`~graph_tool.PropertyMap`)
1356
        Edge bundling strength. For ``beta == 0`` the edges are straight lines,
1357
1358
1359
        and for ``beta == 1`` they strictly follow the hierarchy. This can be
        optionally an edge property map, which specified a different bundling
        strength for each edge.
1360
1361
1362
    cts : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map of type ``vector<double>`` where the control points
        will be stored.
1363
1364
1365
    is_tree : ``bool`` (optional, default: ``True``)
        If ``True``, ``t`` must be a directed tree, otherwise it can be any
        connected graph.
1366
1367
1368
    max_depth : ``int`` (optional, default: ``None``)
        If supplied, only the first ``max_depth`` bottom levels of the hierarchy
        will be used.
1369

1370
1371
1372
1373

    Returns
    -------

1374
    cts : :class:`~graph_tool.PropertyMap`
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
        Vector-valued edge property map containing the Bézier spline control
        points for the edges in ``g``.

    Notes
    -----
    This is an implementation of the edge-bundling algorithm described in
    [holten-hierarchical-2006]_.


    Examples
    --------
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
    .. testsetup:: nested_cts

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: nested_cts

       >>> g = gt.collection.data["netscience"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g.purge_vertices()
1396
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
1397
       >>> t = gt.get_hierarchy_tree(state)[0]
1398
1399
1400
       >>> tpos = pos = gt.radial_tree_layout(t, t.vertex(t.num_vertices() - 1), weighted=True)
       >>> cts = gt.get_hierarchy_control_points(g, t, tpos)
       >>> pos = g.own_property(tpos)
1401
       >>> b = state.levels[0].b
Tiago Peixoto's avatar
Tiago Peixoto committed
1402
1403
1404
       >>> shape = b.copy()
       >>> shape.a %= 14
       >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts,
1405
1406
1407
1408
1409
       ...               edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.pdf")
       <...>

    .. testcleanup:: nested_cts

Tiago Peixoto's avatar
Tiago Peixoto committed
1410
       gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts, edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.png")
1411
1412
1413
1414
1415
1416
1417

    .. figure:: netscience_nested_mdl.*
       :align: center

       Block partition of a co-authorship network, which minimizes the description
       length of the network according to the nested (degree-corrected) stochastic blockmodel.

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428


    References
    ----------

    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

1429
1430
1431
1432
    if cts is None:
        cts = g.new_edge_property("vector<double>")
    if cts.value_type() != "vector<double>":
        raise ValueError("cts property map must be of type 'vector<double>' not '%s' " % cts.value_type())
1433
1434
1435
1436

    u = GraphView(g, directed=True)
    tu = GraphView(t, directed=True)

1437
1438
1439
1440
1441
    if not isinstance(beta, PropertyMap):
        beta = u.new_edge_property("double", beta)
    else:
        beta = beta.copy("double")

1442
1443
1444
    if max_depth is None:
        max_depth = t.num_vertices()

1445
    tu = GraphView(tu, skip_vfilt=True)
1446
    tpos = tu.own_property(tpos)
1447
1448
    libgraph_tool_draw.get_cts(u._Graph__graph,
                               tu._Graph__graph,
1449
1450
                               _prop("v", tu, tpos),
                               _prop("e", u, beta),
1451
                               _prop("e", u, cts),
1452
                               is_tree, max_depth)
1453
    return cts
1454
1455
1456
1457
1458
1459
1460

#
# The functions and classes below depend on GTK
# =============================================
#

try:
1461
1462
    import gi
    gi.require_version('Gtk', '3.0')
1463
    from gi.repository import Gtk, Gdk, GdkPixbuf
1464
    from gi.repository import GObject as gobject
1465
1466
    from .gtk_draw import *
except (ImportError, RuntimeError) as e:
1467
    msg = "Error importing Gtk module: %s; GTK+ drawing will not work." % str(e)
1468
    warnings.warn(msg, RuntimeWarning)
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

def gen_surface(name):
    fobj, fmt = open_file(name)
    if fmt in ["png", "PNG"]:
        sfc = cairo.ImageSurface.create_from_png(fobj)
        return sfc
    else:
        pixbuf = GdkPixbuf.Pixbuf.new_from_file(name)
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, pixbuf.get_width(),
                                     pixbuf.get_height())
        cr = cairo.Context(surface)
        Gdk.cairo_set_source_pixbuf(cr, pixbuf, 0, 0)
        cr.paint()
        return surface
1483
#
1484
1485
# matplotlib
# ==========
1486
#
1487

1488
1489
1490
1491
1492
1493
1494
class GraphArtist(matplotlib.artist.Artist):
    """:class:`matplotlib.artist.Artist` specialization that draws
       :class:`graph_tool.Graph` instances.

    .. warning::

        Only Cairo-based backends are supported.
1495
1496
1497
1498

    """

    def __init__(self, g, pos, vprops, eprops, vorder, eorder,
1499
                nodesfirst, ax=None, **kwargs):
1500
1501
1502
1503
1504
1505
1506
1507
        matplotlib.artist.Artist.__init__(self)
        self.g = g
        self.pos = pos
        self.vprops = vprops
        self.eprops = eprops
        self.vorder = vorder
        self.eorder = eorder
        self.nodesfirst = nodesfirst
1508
        self.ax = ax
1509
1510
1511
1512
1513
        self.kwargs = kwargs

    def draw(self, renderer):
        if not isinstance(renderer, matplotlib.backends.backend_cairo.RendererCairo):
            raise NotImplementedError("graph plotting is supported only on Cairo backends")
1514
1515

        ctx = renderer.gc.ctx
1516
1517
1518
1519

        if not isinstance(ctx, cairo.Context):
            ctx = _UNSAFE_cairocffi_context_to_pycairo(ctx)

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
        ctx.save()

        if self.ax is not None:
            m = self.ax.transData.get_affine().get_matrix()
            m = cairo.Matrix(m[0,0], m[1, 0], m[0, 1], m[1, 1], m[0, 2], m[1,2])
            ctx.set_matrix(m)

            l, r = self.ax.get_xlim()
            b, t = self.ax.get_ylim()
            ctx.rectangle(l, b, r-l, t-b)
            ctx.clip()

1532
1533
        # flip y direction
        x, y = ungroup_vector_property(self.pos, [0, 1])
1534
1535
        l, t, r, b = ctx.clip_extents()
        y.fa = b + t - y.fa
1536
        pos = group_vector_property([x, y])
1537

1538
        cairo_draw(self.g, pos, ctx, self.vprops, self.eprops,
1539
1540
1541
                   self.vorder, self.eorder, self.nodesfirst, self.kwargs)

        ctx.restore()
1542
1543
1544
1545
1546
1547
1548


#
# Drawing hierarchies
# ===================
#

1549
1550
def draw_hierarchy(state, pos=None, layout="radial", beta=0.8, node_weight=None,
                   vprops=None, eprops=None, hvprops=None, heprops=None,
1551
1552
                   subsample_edges=None, deg_order=True, deg_size=True,
                   vsize_scale=1, hsize_scale=1, hshortcuts=0, hide=0,
1553
                   bip_aspect=1., empty_branches=True, **kwargs):
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
    r"""Draw a nested block model state in a circular hierarchy layout with edge
    bundling.

    Parameters
    ----------
    state : :class:`~graph_tool.community.NestedBlockState`
        Nested block state to be drawn.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If supplied, this specifies a vertex property map with the positions of
        the vertices in the layout.
    layout : ``str`` or :class:`~graph_tool.PropertyMap` (optional, default: ``"radial"``)
        If ``layout == "radial"`` :func:`~graph_tool.draw.radial_tree_layout`
        will be used. If ``layout == "sfdp"``, the hierarchy tree will be
1567
1568
        positioned using :func:`~graph_tool.draw.sfdp_layout`. If ``layout ==
        "bipartite"`` a bipartite layout will be used. If instead a
1569
1570
1571
1572
        :class:`~graph_tool.PropertyMap` is provided, it must correspond to the
        position of the hierarchy tree.
    beta : ``float`` (optional, default: ``.8``)
        Edge bundling strength.
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
    vprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties. Individual properties may also be
        given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    eprops : dict (optional, default: ``None``)
        Dictionary with the edge properties. Individual properties may also be
        given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hvprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties for the *hierarchy tree*.
        Individual properties may also be given via the ``hvertex_<prop-name>``
        parameters, where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
    heprops : dict (optional, default: ``None``)
        Dictionary with the edge properties for the *hierarchy tree*. Individual
        properties may also be given via the ``hedge_<prop-name>`` parameters,
        where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
1593
1594
1595
1596
1597
1598
    subsample_edges : ``int`` or list of :class:`~graph_tool.Edge` instances (optional, default: ``None``)
        If provided, only this number of random edges will be drawn. If the
        value is a list, it should include the edges that are to be drawn.
    deg_order : ``bool`` (optional, default: ``True``)
        If ``True``, the vertices will be ordered according to degree inside
        each group.
1599
1600
1601
    deg_size : ``bool`` (optional, default: ``True``)
        If ``True``, the (total) node degrees will be used for the default
        vertex sizes..
1602
    vsize_scale : ``float`` (optional, default: ``1.``)
1603
        Multiplicative factor for the default vertex sizes.
1604
    hsize_scale : ``float`` (optional, default: ``1.``)
1605
        Multiplicative factor for the default sizes of the hierarchy nodes.
1606
1607
1608
1609
1610
    hshortcuts : ``int`` (optional, default: ``0``)
        Include shortcuts to the number of upper layers in the hierarchy
        determined by this parameter.
    hide : ``int`` (optional, default: ``0``)
        Hide upper levels of the hierarchy.
1611
1612
    bip_aspect : ``float`` (optional, default: ``1.``)
        If ``layout == "bipartite"``, this will define the aspect ratio of layout.
1613
    empty_branches : ``bool`` (optional, default: ``False``)
1614
1615
        If ``empty_branches == False``, dangling branches at the upper layers
        will be pruned.
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
    vertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``vertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``vprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    edge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``edge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``eprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
    hvertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hvertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``hvprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hedge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hedge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``heprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
1634
    **kwargs :
1635
1636
        All remaining keyword arguments will be passed to the
        :func:`~graph_tool.draw.graph_draw` function.
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the vertices in the layout.
    t : :class:`~graph_tool.Graph`
        This is a the hierarchy tree used in the layout.
    tpos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the hierarchy tree in the layout.

    Examples
    --------
    .. testsetup:: draw_hierarchy

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: draw_hierarchy

       >>> g = gt.collection.data["celegansneural"]
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
       >>> gt.draw_hierarchy(state, output="celegansneural_nested_mdl.pdf")
       (...)

    .. testcleanup:: draw_hierarchy

       gt.draw_hierarchy(state, output="celegansneural_nested_mdl.png")

    .. figure:: celegansneural_nested_mdl.*
       :align: center

       Hierarchical block partition of the C. elegans neural network, which
       minimizes the description length of the network according to the nested
       (degree-corrected) stochastic blockmodel.


    References
    ----------
    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

    g = state.g

1685
1686
    overlap = state.levels[0].overlap
    if overlap:
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
        ostate = state.levels[0]
        bv, bcin, bcout, bc = ostate.get_overlap_blocks()
        be = ostate.get_edge_blocks()
        orig_state = state
        state = state.copy()
        b = ostate.get_majority_blocks()
        state.levels[0] = BlockState(g, b=b)
    else:
        b = state.levels[0].b

    if subsample_edges is not None:
        emask = g.new_edge_property("bool", False)
        if isinstance(subsample_edges, int):
            eidx = g.edge_index.copy("int").fa.copy()
            numpy.random.shuffle(eidx)
            emask = g.new_edge_property("bool")
            emask.a[eidx[:subsample_edges]] = True
        else:
            for e in subsample_edges:
                emask[e] = True
        g = GraphView(g, efilt=emask)

1709
1710
    t, tb, vorder = get_hierarchy_tree(state,
                                       empty_branches=empty_branches)
1711
1712
1713
1714
1715
1716

    if layout == "radial":
        if not deg_order:
            vorder = None
        if pos is not None:
            x, y = ungroup_vector_property(pos, [0, 1])
1717
1718
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
1719
            angle = g.new_vertex_property("double")
1720
            angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
1721
            vorder = angle
1722
1723
1724
        if node_weight is not None:
            node_weight = t.own_property(node_weight.copy())
            node_weight.a[node_weight.a == 0] = 1
1725
        tpos = radial_tree_layout(t, root=t.vertex(t.num_vertices() - 1,
1726
                                                   use_index=False),
1727
                                  node_weight=node_weight,
1728
                                  rel_order=vorder)
1729
    elif layout == "bipartite":
1730
        tpos = get_bip_hierachy_pos(state, aspect=bip_aspect,
1731
1732
                                    node_weight=node_weight)
        tpos = t.own_property(tpos)
1733
1734
1735
1736
1737
    elif layout == "sfdp":
        if pos is None:
            tpos = sfdp_layout(t)
        else:
            x, y = ungroup_vector_property(pos, [0, 1])
1738
1739
1740
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
            K = numpy.sqrt(x.fa.std() + y.fa.std()) / 10
1741
1742
            tpos = t.new_vertex_property("vector<double>")
            for v in t.vertices():
1743
                if int(v) < g.num_vertices(True):
1744
1745
1746
1747
                    tpos[v] = [x[v], y[v]]
                else:
                    tpos[v] = [0, 0]
            pin = t.new_vertex_property("bool")
1748
            pin.a[:g.num_vertices(True)] = True
1749
1750
1751
1752
            tpos = sfdp_layout(t, K=K, pos=tpos, pin=pin, multilevel=False)
    else:
        tpos = t.own_property(layout)

1753
1754
    hvvisible = t.new_vertex_property("bool", True)
    if hide > 0:
1755
        root = t.vertex(t.num_vertices(True) - 1)
1756
1757
1758
        dist = shortest_distance(t, source=root)
        hvvisible.fa = dist.fa >= hide

1759
1760
    pos = g.own_property(tpos.copy())

1761
    cts = get_hierarchy_control_points(g, t, tpos, beta,
1762
                                       max_depth=len(state.levels) - hshortcuts)
1763

1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
    vprops_orig = vprops
    eprops_orig = eprops
    hvprops_orig = vprops
    heprops_orig = eprops
    kwargs_orig = kwargs

    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
    vprops.update(props)
    vprops.setdefault("fill_color", b)
    vprops.setdefault("color", b)
1777
    vprops.setdefault("shape", _vdefaults["shape"] if not overlap else "pie")
1778
1779
    s = max(200 / numpy.sqrt(g.num_vertices()), 5)
    vprops.setdefault("size", prop_to_size(g.degree_property_map("total"), s/5, s))
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

    if vprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(g, pos, text_pos=True)
        vprops["text_position"] = text_pos
        vprops["text_rotation"] = angle

    self_loops = label_self_loops(g, mark_only=True)
    if self_loops.fa.max() > 0:
        parallel_distance = vprops.get("size", _vdefaults["size"])
        if isinstance(parallel_distance, PropertyMap):
            parallel_distance = parallel_distance.fa.mean()
        cts_p = position_parallel_edges(g, pos, numpy.nan,
                                        parallel_distance)
        gu = GraphView(g, efilt=self_loops)
        for e in gu.edges():
            cts[e] = cts_p[e]


1798
1799
1800
1801
1802
1803
1804
    vprops = _convert_props(vprops, "v", g, kwargs.get("vcmap", default_cm),
                            pmap_default=True)

    props, kwargs = parse_props("edge", kwargs)
    eprops.update(props)
    eprops.setdefault("control_points", cts)
    eprops.setdefault("pen_width", _edefaults["pen_width"])
1805
    eprops.setdefault("color", list(_edefaults["color"][:-1]) + [.6])
1806
    eprops.setdefault("end_marker", "arrow" if g.is_directed() else "none")
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
    eprops = _convert_props(eprops, "e", g, kwargs.get("ecmap", default_cm),
                            pmap_default=True)

    hvprops = hvprops.copy() if hvprops is not None else {}
    heprops = heprops.copy() if heprops is not None else {}

    props, kwargs = parse_props("hvertex", kwargs)
    hvprops.update(props)

    blue = list(color_converter.to_rgba("#729fcf"))
    blue[-1] = .6
    hvprops.setdefault("fill_color", blue)
    hvprops.setdefault("color", [1, 1, 1, 0])
    hvprops.setdefault("shape", "square")
    hvprops.setdefault("size", 10)

1823
1824
1825
1826
1827
    if hvprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(t, tpos, text_pos=True)
        hvprops["text_position"] = text_pos
        hvprops["text_rotation"] = angle

1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
    hvprops = _convert_props(hvprops, "v", t, kwargs.get("vcmap", default_cm),
                             pmap_default=True)

    props, kwargs = parse_props("hedge", kwargs)
    heprops.update(props)

    heprops.setdefault("color", blue)
    heprops.setdefault("end_marker", "arrow")
    heprops.setdefault("marker_size", 8.)
    heprops.setdefault("pen_width", 1.)

    heprops = _convert_props(heprops, "e", t, kwargs.get("ecmap", default_cm),
                             pmap_default=True)
1841

1842
1843
    vcmap = kwargs.get("vcmap", default_cm)
    ecmap = kwargs.get("ecmap", vcmap)
1844
1845
1846

    B = state.levels[0].B

1847
    if overlap and "pie_fractions" not in vprops:
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
        vprops["pie_fractions"] = bc.copy("vector<double>")
        if "pie_colors" not in vprops:
            vertex_pie_colors = g.new_vertex_property("vector<double>")
            nodes = defaultdict(list)
            def conv(k):
                clrs = [vcmap(r / (B - 1) if B > 1 else 0) for r in k]
                return [item for l in clrs for item in l]
            map_property_values(bv, vertex_pie_colors, conv)
            vprops["pie_colors"] = vertex_pie_colors

    gradient = eprops.get("gradient", None)
1859
1860
    if gradient is None:
        gradient = g.new_edge_property("double")
1861
        gradient = group_vector_property([gradient])
1862
1863
        ecolor = eprops.get("ecolor", _edefaults["color"])
        eprops["gradient"] = gradient
1864
        if overlap:
1865
            for e in g.edges():                       # ******** SLOW *******
1866
                r, s = be[e]
1867
                if not g.is_directed() and e.source() > e.target():
1868
1869
1870
                    r, s = s, r
                gradient[e] = [0] + list(vcmap(r / (B - 1))) + \
                              [1] + list(vcmap(s / (B - 1)))
1871
1872
1873
1874
                if isinstance(ecolor, PropertyMap):
                    gradient[e][4] = gradient[e][9] = ecolor[e][3]
                else:
                    gradient[e][4] = gradient[e][9] = ecolor[3]
1875
1876
1877


    t_orig = t
1878
    t = GraphView(t,
1879
                  vfilt=lambda v: int(v) >= g.num_vertices(True) and hvvisible[v])
1880

1881
1882
    t_vprops = {}
    t_eprops = {}
1883

1884
1885
1886
1887
1888
1889
1890
    props = []
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = (vprops.get(k, None), hvprops.get(k, None))
        props.append(t_vprops[k])
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = (eprops.get(k, None), heprops.get(k, None))
        props.append(t_eprops[k])
1891

1892
1893
1894
    props.append((pos, tpos))
    props.append((g.vertex_index, tb))
    props.append((b, None))
1895

1896
    u, props = graph_union(g, t, props=props)
1897

1898
1899
1900
1901
1902
1903
1904
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = props.pop(0)
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = props.pop(0)
    pos = props.pop(0)
    tb = props.pop(0)
    b = props.pop(0)
1905
1906
1907

    def update_cts(widget, gg, picked, pos, vprops, eprops):
        vmask = gg.vertex_index.copy("int")
1908
        u = GraphView(gg, directed=False, vfilt=vmask.fa < g.num_vertices(True))
1909
        cts = eprops["control_points"]
1910
        get_hierarchy_control_points(u, t_orig, pos, beta, cts=cts,
1911
                                     max_depth=len(state.levels) - hshortcuts)
1912
1913
1914

    def draw_branch(widget, gg, key_id, picked, pos, vprops, eprops):
        if key_id == ord('b'):
1915
1916
            if picked is not None and not isinstance(picked, PropertyMap) and int(picked) > g.num_vertices(True):
                p = shortest_path(t_orig, source=t_orig.vertex(t_orig.num_vertices(True) - 1),
1917
1918
1919
1920
1921
1922
1923
                                  target=picked)[0]
                l = len(state.levels) - max(len(p), 1)

                bstack = state.get_bstack()
                bs = [s.vp["b"].a for s in bstack[:l+1]]
                bs[-1][:] = 0

1924
                if not overlap:
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
                    b = state.project_level(l).b
                    u = GraphView(g, vfilt=b.a == tb[picked])
                    u.vp["b"] = state.levels[0].b
                    u = Graph(u, prune=True)
                    b = u.vp["b"]
                    bs[0] = b.a
                else:
                    be = orig_state.project_level(l).get_edge_blocks()
                    emask = g.new_edge_property("bool")
                    for e in g.edges():
                        rs = be[e]
                        if rs[0] == tb[picked] and rs[1] == tb[picked]:
                            emask[e] = True
1938
1939
1940
                    u = GraphView(g, efilt=emask)
                    d = u.degree_property_map("total")
                    u = GraphView(u, vfilt=d.fa > 0)
1941
1942
1943
1944
1945
1946
1947
                    u.ep["be"] = orig_state.levels[0].get_edge_blocks()
                    u = Graph(u, prune=True)
                    be = u.ep["be"]
                    s = OverlapBlockState(u, b=be)
                    bs[0] = s.b.a.copy()

                nstate = NestedBlockState(u, bs=bs,
1948
                                          base_type=type(state.levels[0]),
1949
1950
                                          deg_corr=state.deg_corr)

1951
1952
1953
1954
1955
1956
                kwargs_ = kwargs_orig.copy()
                if "no_main" in kwargs_:
                    del kwargs_["no_main"]
                draw_hierarchy(nstate, beta=beta, vprops=vprops_orig,
                               eprops=eprops_orig, hvprops=hvprops_orig,
                               heprops=heprops_orig,
1957
                               subsample_edges=subsample_edges,
1958
1959
1960
                               deg_order=deg_order, empty_branches=False,
                               no_main=True, **kwargs_)

1961
        if key_id == ord('r'):
1962
1963
1964
1965
1966
1967
1968
            if layout == "radial":
                x, y = ungroup_vector_property(pos, [0, 1])
                x.fa -= x.fa.mean()
                y.fa -= y.fa.mean()
                angle = gg.new_vertex_property("double")
                angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
                tpos = radial_tree_layout(t_orig,
1969
                                          root=t_orig.vertex(t_orig.num_vertices(True) - 1),
1970
1971
1972
                                          rel_order=angle)
                gg.copy_property(tpos, pos)

1973
1974
1975
1976
1977
1978
            update_cts(widget, gg, picked, pos, vprops, eprops)

            if widget.vertex_matrix is not None:
                widget.vertex_matrix.update()
            widget.picked = None
            widget.selected.fa = False
1979
1980
1981

            widget.fit_to_window()
            widget.regenerate_surface(reset=True)
1982
1983
            widget.queue_draw()

1984
1985
1986
1987
    if kwargs.get("output", None) is None:
        kwargs["layout_callback"] = update_cts
        kwargs["key_press_callback"] = draw_branch

1988
1989
1990
    pos = graph_draw(u, pos, vprops=t_vprops, eprops=t_eprops, vorder=vorder,
                     **kwargs)

1991
1992
    if isinstance(pos, PropertyMap):
        pos = g.own_property(pos)
1993
        t_orig.copy_property(pos, tpos, g=u)
1994
1995
1996
    else:
        pos = (g.own_property(pos[0]),
               g.own_property(pos[1]))
1997
1998
        t_orig.copy_property(pos[0], tpos, g=u)
    return pos, t_orig, tpos
1999

2000