cairo_draw.py 95.9 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1001
1002
1003
1004
    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
1005
    props = _convert_props(props, "v", g, kwargs.get("vcmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1006
1007
    vprops.update(props)
    props, kwargs = parse_props("edge", kwargs)
1008
    props = _convert_props(props, "e", g, kwargs.get("ecmap", default_cm))
Tiago Peixoto's avatar
Tiago Peixoto committed
1009
1010
1011
    eprops.update(props)

    if pos is None:
1012
        if (g.num_vertices() > 2 and output is None and
1013
            not inline and kwargs.get("update_layout", True)):
Tiago Peixoto's avatar
Tiago Peixoto committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
            L = np.sqrt(g.num_vertices())
            pos = random_layout(g, [L, L])
            if g.num_vertices() > 1000:
                if "multilevel" not in kwargs:
                    kwargs["multilevel"] = True
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos) / 10
        else:
            pos = sfdp_layout(g)
1023
1024
    else:
        _check_prop_vector(pos, name="pos", floating=True)
1025
        if output is None and not inline:
1026
1027
1028
1029
            if "layout_K" not in kwargs:
                kwargs["layout_K"] = _avg_edge_distance(g, pos)
            if "update_layout" not in kwargs:
                kwargs["update_layout"] = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1030

1031
1032
1033
    if "pen_width" in eprops and "marker_size" not in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1034
            pw = pw.copy("double")
1035
            pw.fa *= 2.75
1036
1037
1038
            eprops["marker_size"] = pw
        else:
            eprops["marker_size"] = pw * 2.75
1039

1040
1041
1042
    if "text" in eprops and "text_distance" not in eprops and "pen_width" in eprops:
        pw = eprops["pen_width"]
        if isinstance(pw, PropertyMap):
1043
            pw = pw.copy("double")
1044
            pw.fa *= 2
1045
1046
1047
1048
            eprops["text_distance"] = pw
        else:
            eprops["text_distance"] = pw * 2

1049
    if "text" in vprops and ("text_color" not in vprops or vprops["text_color"] == "auto"):
1050
        vcmap = kwargs.get("vcmap", matplotlib.cm.jet)
1051
1052
1053
1054
        bg = _convert(vertex_attrs.fill_color,
                      vprops.get("fill_color", _vdefaults["fill_color"]),
                      vcmap)
        bg_color = kwargs.get("bg_color", [1., 1., 1., 1.])
1055
1056
1057
1058
1059
        vprops["text_color"] = auto_colors(g, bg,
                                           vprops.get("text_position",
                                                      _vdefaults["text_position"]),
                                           bg_color)

1060
    if mplfig:
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        ax = None
        if isinstance(mplfig, matplotlib.figure.Figure):
            ctr = ax = mplfig.gca()
        elif isinstance(mplfig, matplotlib.axes.Axes):
            ctr = ax = mplfig
        else:
            ctr = mplfig

        artist = GraphArtist(g, pos, vprops, eprops, vorder, eorder, nodesfirst,
                             ax, **kwargs)
        ctr.artists.append(artist)

1073
1074
1075
1076
1077
1078
1079
1080
1081
        if fit_view != False and ax is not None:
            try:
                x, y, w, h = fit_view
            except TypeError:
                x, y = ungroup_vector_property(pos, [0, 1])
                l, r = x.a.min(), x.a.max()
                b, t = y.a.min(), y.a.max()
                w = r - l
                h = t - b
1082
1083
1084
            if fit_view != True:
                w *= float(fit_view)
                h *= float(fit_view)
1085
1086
1087
1088
            ax.set_xlim(l - w * .1, r + w * .1)
            ax.set_ylim(b - h * .1, t + h * .1)

        return pos
1089

1090
1091
    if inline:
        if fmt == "auto":
1092
1093
1094
1095
1096
            if output is None:
                fmt = "png"
            else:
                fmt = get_file_fmt(output)
        output_file = output
1097
1098
        output = io.BytesIO()

1099
    if output is None:
1100
        fit_area = fit_view if fit_view != True else 0.95
Tiago Peixoto's avatar
Tiago Peixoto committed
1101
        return interactive_window(g, pos, vprops, eprops, vorder, eorder,
1102
1103
                                  nodesfirst, geometry=output_size,
                                  fit_area=fit_area, **kwargs)
Tiago Peixoto's avatar
Tiago Peixoto committed
1104
    else:
1105
        if isinstance(output, (str, unicode)):
1106
1107
1108
1109
1110
            out, auto_fmt = open_file(output, mode="wb")
        else:
            out = output
            if fmt == "auto":
                raise ValueError("File format must be specified.")
Tiago Peixoto's avatar
Tiago Peixoto committed
1111
1112

        if fmt == "auto":
1113
            fmt = auto_fmt
Tiago Peixoto's avatar
Tiago Peixoto committed
1114
1115
1116
1117
        if fmt == "pdf":
            srf = cairo.PDFSurface(out, output_size[0], output_size[1])
        elif fmt == "ps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
Tiago Peixoto's avatar
Tiago Peixoto committed
1118
1119
1120
        elif fmt == "eps":
            srf = cairo.PSSurface(out, output_size[0], output_size[1])
            srf.set_eps(True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        elif fmt == "svg":
            srf = cairo.SVGSurface(out, output_size[0], output_size[1])
        elif fmt == "png":
            srf = cairo.ImageSurface(cairo.FORMAT_ARGB32, output_size[0],
                                     output_size[1])
        else:
            raise ValueError("Invalid format type: " + fmt)

        cr = cairo.Context(srf)

        adjust_default_sizes(g, output_size, vprops, eprops)
1132
1133
1134
1135
1136
        if fit_view != False:
            try:
                x, y, w, h = fit_view
                offset, zoom = [0, 0], 1
            except TypeError:
1137
                pad = fit_view if fit_view != True else 0.95
1138
1139
1140
1141
1142
1143
1144
                offset, zoom = fit_to_view(g, pos, output_size, vprops["size"],
                                           vprops["pen_width"], None,
                                           vprops.get("text", None),
                                           vprops.get("font_family",
                                                      _vdefaults["font_family"]),
                                           vprops.get("font_size",
                                                      _vdefaults["font_size"]),
1145
                                           pad, cr)
1146
                fit_view = False
Tiago Peixoto's avatar
Tiago Peixoto committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
        else:
            offset, zoom = [0, 0], 1

        if "bg_color" in kwargs:
            bg_color = kwargs["bg_color"]
            del  kwargs["bg_color"]
            cr.set_source_rgba(bg_color[0], bg_color[1],
                               bg_color[2], bg_color[3])
            cr.paint()
1156

Tiago Peixoto's avatar
Tiago Peixoto committed
1157
1158
1159
1160
        cr.translate(offset[0], offset[1])
        cr.scale(zoom, zoom)

        cairo_draw(g, pos, cr, vprops, eprops, vorder, eorder,
1161
                   nodesfirst, fit_view=fit_view, **kwargs)
1162

1163
        if fmt == "png":
Tiago Peixoto's avatar
Tiago Peixoto committed
1164
            srf.write_to_png(out)
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

        del cr

        if inline:
            img = None
            if fmt == "png":
                img = IPython.display.Image(data=out.getvalue())
            if fmt == "svg":
                img = IPython.display.SVG(data=out.getvalue())
            if img is None:
1175
1176
                inl_out = io.BytesIO()
                inl_srf = cairo.ImageSurface(cairo.FORMAT_ARGB32,
Pietro Battiston's avatar
Pietro Battiston committed
1177
1178
                                             output_size[0],
                                             output_size[1])
1179
1180
1181
1182
1183
1184
                inl_cr = cairo.Context(inl_srf)
                inl_cr.set_source_surface(srf, 0, 0)
                inl_cr.paint()
                inl_srf.write_to_png(inl_out)
                del inl_srf
                img = IPython.display.Image(data=inl_out.getvalue())
1185
            srf.finish()
1186
            if output_file is not None:
1187
                if isinstance(output_file, (str, unicode)):
1188
1189
1190
1191
                    ofile, auto_fmt = open_file(output_file, mode="wb")
                else:
                    ofile = output_file
                ofile.write(out.getvalue())
1192
                if isinstance(output_file, (str, unicode)):
1193
                    ofile.close()
1194
            IPython.display.display(img)
1195
        del srf
Tiago Peixoto's avatar
Tiago Peixoto committed
1196
        return pos
1197
1198
1199
1200
1201


def adjust_default_sizes(g, geometry, vprops, eprops, force=False):
    if "size" not in vprops or force:
        A = geometry[0] * geometry[1]
Tiago Peixoto's avatar
Tiago Peixoto committed
1202
1203
        N = max(g.num_vertices(), 1)
        vprops["size"] = np.sqrt(A / N) / 3.5
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

    if "pen_width" not in vprops or force:
        size = vprops["size"]
        if isinstance(vprops["size"], PropertyMap):
            size = vprops["size"].fa.mean()
        vprops["pen_width"] = size / 10
        if "pen_width" not in eprops or force:
            eprops["pen_width"] = size / 10
        if "marker_size" not in eprops or force:
            eprops["marker_size"] = size * 0.8


def scale_ink(scale, vprops, eprops):
    if "size" not in vprops:
        vprops["size"] = _vdefaults["size"]
    if "pen_width" not in vprops:
        vprops["pen_width"] = _vdefaults["pen_width"]
    if "font_size" not in vprops:
        vprops["font_size"] = _vdefaults["font_size"]
    if "pen_width" not in eprops:
        eprops["pen_width"] = _edefaults["pen_width"]
    if "marker_size" not in eprops:
        eprops["marker_size"] = _edefaults["marker_size"]
1227
1228
1229
1230
    if "font_size" not in eprops:
        eprops["font_size"] = _edefaults["font_size"]
    if "text_distance" not in eprops:
        eprops["text_distance"] = _edefaults["text_distance"]
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

    for props in [vprops, eprops]:
        if isinstance(props["pen_width"], PropertyMap):
            props["pen_width"].fa *= scale
        else:
            props["pen_width"] *= scale
    if isinstance(vprops["size"], PropertyMap):
        vprops["size"].fa *= scale
    else:
        vprops["size"] *= scale
    if isinstance(vprops["font_size"], PropertyMap):
        vprops["font_size"].fa *= scale
    else:
        vprops["font_size"] *= scale
    if isinstance(eprops["marker_size"], PropertyMap):
        eprops["marker_size"].fa *= scale
    else:
        eprops["marker_size"] *= scale
1249
1250
1251
1252
1253
1254
1255
1256
    if isinstance(eprops["font_size"], PropertyMap):
        eprops["font_size"].fa *= scale
    else:
        eprops["font_size"] *= scale
    if isinstance(eprops["text_distance"], PropertyMap):
        eprops["text_distance"].fa *= scale
    else:
        eprops["text_distance"] *= scale
1257
1258
1259

def get_bb(g, pos, size, pen_width, size_scale=1, text=None, font_family=None,
           font_size=None, cr=None):
1260
    size = size.fa if isinstance(size, PropertyMap) else size
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
    pen_width = pen_width.fa if isinstance(pen_width, PropertyMap) else pen_width
    pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
    if text is not None and text != "":
        if not isinstance(size, PropertyMap):
            uniform = (not isinstance(font_size, PropertyMap) and
                       not isinstance(font_family, PropertyMap))
            size = np.ones(len(pos_x.fa)) * size
        else:
            uniform = False
        for i, v in enumerate(g.vertices()):
            ff = font_family[v] if isinstance(font_family, PropertyMap) \
               else font_family
            cr.select_font_face(ff)
            fs = font_size[v] if isinstance(font_family, PropertyMap) \
               else font_size
1276
1277
            if not isinstance(font_size, PropertyMap):
                cr.set_font_size(fs)
1278
            t = text[v] if isinstance(text, PropertyMap) else text
1279
            if not isinstance(t, (str, unicode)):
1280
1281
1282
1283
1284
1285
1286
                t = str(t)
            extents = cr.text_extents(t)
            s = max(extents[2], extents[3]) * 1.4
            size[i] = max(size[i] * size_scale, s) / size_scale
            if uniform:
                size[:] = size[i]
                break
1287
    sl = label_self_loops(g)
1288
    slm = sl.fa.max() * 0.75 if g.num_edges() > 0 else 0
1289
    delta = (size * size_scale * (slm + 1)) / 2 + pen_width * 2
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
    x_range = [pos_x.fa.min(), pos_x.fa.max()]
    y_range = [pos_y.fa.min(), pos_y.fa.max()]
    x_delta = [x_range[0] - (pos_x.fa - delta).min(),
               (pos_x.fa + delta).max() - x_range[1]]
    y_delta = [y_range[0] - (pos_y.fa - delta).min(),
               (pos_y.fa + delta).max() - y_range[1]]
    return x_range, y_range, x_delta, y_delta


def fit_to_view(g, pos, geometry, size, pen_width, M=None, text=None,
1300
                font_family=None, font_size=None, pad=0.95, cr=None):
1301
1302
    if g.num_vertices() == 0:
        return [0, 0], 1
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
    if M is not None:
        pos_x, pos_y = ungroup_vector_property(pos, [0, 1])
        P = np.zeros((2, len(pos_x.fa)))
        P[0, :] = pos_x.fa
        P[1, :] = pos_y.fa
        T = np.zeros((2, 2))
        O = np.zeros(2)
        T[0, 0], T[1, 0], T[0, 1], T[1, 1], O[0], O[1] = M
        P = np.dot(T, P)
        P[0] += O[0]
        P[1] += O[1]
        pos_x.fa = P[0, :]
        pos_y.fa = P[1, :]
        pos = group_vector_property([pos_x, pos_y])
    x_range, y_range, x_delta, y_delta = get_bb(g, pos, size, pen_width,
                                                1, text, font_family,
                                                font_size, cr)
1320
1321
1322
1323
1324
1325
1326
1327
    dx = (x_range[1] - x_range[0])
    dy = (y_range[1] - y_range[0])
    if dx == 0:
        dx = 1
    if dy == 0:
        dy = 1
    zoom_x = (geometry[0] - sum(x_delta)) / dx
    zoom_y = (geometry[1] - sum(y_delta)) / dy
1328
1329
1330
1331
1332
    if np.isnan(zoom_x) or np.isinf(zoom_x) or zoom_x == 0:
        zoom_x = 1
    if np.isnan(zoom_y) or np.isinf(zoom_y) or zoom_y == 0:
        zoom_y = 1
    zoom = min(zoom_x, zoom_y) * pad
1333
1334
    empty_x = (geometry[0] - sum(x_delta)) - dx * zoom
    empty_y = (geometry[1] - sum(y_delta)) - dy * zoom
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
    offset = [-x_range[0] * zoom + empty_x / 2 + x_delta[0],
              -y_range[0] * zoom + empty_y / 2 + y_delta[0]]
    return offset, zoom


def transform_scale(M, scale):
    p = M.transform_distance(scale / np.sqrt(2),
                             scale / np.sqrt(2))
    return np.sqrt(p[0] ** 2 + p[1] ** 2)

1345
1346
def get_hierarchy_control_points(g, t, tpos, beta=0.8, cts=None, is_tree=True,
                                 max_depth=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1347
    r"""Return the Bézier spline control points for the edges in ``g``, given the hierarchical structure encoded in graph `t`.
1348
1349
1350
1351
1352
1353
1354
1355
1356

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be drawn.
    t : :class:`~graph_tool.Graph`
        Directed graph containing the hierarchy of ``g``. It must be a directed
        tree with a single root. The direction of the edges point from the root
        to the leaves, and the vertices in ``t`` with index in the range
Tiago Peixoto's avatar
Tiago Peixoto committed
1357
        :math:`[0, N-1]`, with :math:`N` being the number of vertices in ``g``,
1358
1359
1360
1361
        must correspond to the respective vertex in ``g``.
    tpos : :class:`~graph_tool.PropertyMap`
        Vector-valued vertex property map containing the x and y coordinates of
        the vertices in graph ``t``.
1362
    beta : ``float`` (optional, default: ``0.8`` or :class:`~graph_tool.PropertyMap`)
1363
        Edge bundling strength. For ``beta == 0`` the edges are straight lines,
1364
1365
1366
        and for ``beta == 1`` they strictly follow the hierarchy. This can be
        optionally an edge property map, which specified a different bundling
        strength for each edge.
1367
1368
1369
    cts : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map of type ``vector<double>`` where the control points
        will be stored.
1370
1371
1372
    is_tree : ``bool`` (optional, default: ``True``)
        If ``True``, ``t`` must be a directed tree, otherwise it can be any
        connected graph.
1373
1374
1375
    max_depth : ``int`` (optional, default: ``None``)
        If supplied, only the first ``max_depth`` bottom levels of the hierarchy
        will be used.
1376

1377
1378
1379
1380

    Returns
    -------

1381
    cts : :class:`~graph_tool.PropertyMap`
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
        Vector-valued edge property map containing the Bézier spline control
        points for the edges in ``g``.

    Notes
    -----
    This is an implementation of the edge-bundling algorithm described in
    [holten-hierarchical-2006]_.


    Examples
    --------
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
    .. testsetup:: nested_cts

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: nested_cts

       >>> g = gt.collection.data["netscience"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g.purge_vertices()
1403
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
1404
       >>> t = gt.get_hierarchy_tree(state)[0]
1405
1406
1407
       >>> tpos = pos = gt.radial_tree_layout(t, t.vertex(t.num_vertices() - 1), weighted=True)
       >>> cts = gt.get_hierarchy_control_points(g, t, tpos)
       >>> pos = g.own_property(tpos)
1408
       >>> b = state.levels[0].b
Tiago Peixoto's avatar
Tiago Peixoto committed
1409
1410
1411
       >>> shape = b.copy()
       >>> shape.a %= 14
       >>> gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts,
1412
1413
1414
1415
1416
       ...               edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.pdf")
       <...>

    .. testcleanup:: nested_cts

Tiago Peixoto's avatar
Tiago Peixoto committed
1417
       gt.graph_draw(g, pos=pos, vertex_fill_color=b, vertex_shape=shape, edge_control_points=cts, edge_color=[0, 0, 0, 0.3], vertex_anchor=0, output="netscience_nested_mdl.png")
1418
1419
1420
1421
1422
1423
1424

    .. figure:: netscience_nested_mdl.*
       :align: center

       Block partition of a co-authorship network, which minimizes the description
       length of the network according to the nested (degree-corrected) stochastic blockmodel.

1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435


    References
    ----------

    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

1436
1437
1438
1439
    if cts is None:
        cts = g.new_edge_property("vector<double>")
    if cts.value_type() != "vector<double>":
        raise ValueError("cts property map must be of type 'vector<double>' not '%s' " % cts.value_type())
1440
1441
1442
1443

    u = GraphView(g, directed=True)
    tu = GraphView(t, directed=True)

1444
1445
1446
1447
1448
    if not isinstance(beta, PropertyMap):
        beta = u.new_edge_property("double", beta)
    else:
        beta = beta.copy("double")

1449
1450
1451
    if max_depth is None:
        max_depth = t.num_vertices()

1452
    tu = GraphView(tu, skip_vfilt=True)
1453
    tpos = tu.own_property(tpos)
1454
1455
    libgraph_tool_draw.get_cts(u._Graph__graph,
                               tu._Graph__graph,
1456
1457
                               _prop("v", tu, tpos),
                               _prop("e", u, beta),
1458
                               _prop("e", u, cts),
1459
                               is_tree, max_depth)
1460
    return cts
1461
1462
1463
1464
1465
1466
1467

#
# The functions and classes below depend on GTK
# =============================================
#

try:
1468
1469
    import gi
    gi.require_version('Gtk', '3.0')
1470
    from gi.repository import Gtk, Gdk, GdkPixbuf
1471
    from gi.repository import GObject as gobject
1472
1473
    from .gtk_draw import *
except (ImportError, RuntimeError) as e:
1474
    msg = "Error importing Gtk module: %s; GTK+ drawing will not work." % str(e)
1475
    warnings.warn(msg, RuntimeWarning)
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489

def gen_surface(name):
    fobj, fmt = open_file(name)
    if fmt in ["png", "PNG"]:
        sfc = cairo.ImageSurface.create_from_png(fobj)
        return sfc
    else:
        pixbuf = GdkPixbuf.Pixbuf.new_from_file(name)
        surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, pixbuf.get_width(),
                                     pixbuf.get_height())
        cr = cairo.Context(surface)
        Gdk.cairo_set_source_pixbuf(cr, pixbuf, 0, 0)
        cr.paint()
        return surface
1490
#
1491
1492
# matplotlib
# ==========
1493
#
1494

1495
1496
1497
1498
1499
1500
1501
class GraphArtist(matplotlib.artist.Artist):
    """:class:`matplotlib.artist.Artist` specialization that draws
       :class:`graph_tool.Graph` instances.

    .. warning::

        Only Cairo-based backends are supported.
1502
1503
1504
1505

    """

    def __init__(self, g, pos, vprops, eprops, vorder, eorder,
1506
                nodesfirst, ax=None, **kwargs):
1507
1508
1509
1510
1511
1512
1513
1514
        matplotlib.artist.Artist.__init__(self)
        self.g = g
        self.pos = pos
        self.vprops = vprops
        self.eprops = eprops
        self.vorder = vorder
        self.eorder = eorder
        self.nodesfirst = nodesfirst
1515
        self.ax = ax
1516
1517
1518
1519
1520
        self.kwargs = kwargs

    def draw(self, renderer):
        if not isinstance(renderer, matplotlib.backends.backend_cairo.RendererCairo):
            raise NotImplementedError("graph plotting is supported only on Cairo backends")
1521
1522

        ctx = renderer.gc.ctx
1523
1524
1525
1526

        if not isinstance(ctx, cairo.Context):
            ctx = _UNSAFE_cairocffi_context_to_pycairo(ctx)

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
        ctx.save()

        if self.ax is not None:
            m = self.ax.transData.get_affine().get_matrix()
            m = cairo.Matrix(m[0,0], m[1, 0], m[0, 1], m[1, 1], m[0, 2], m[1,2])
            ctx.set_matrix(m)

            l, r = self.ax.get_xlim()
            b, t = self.ax.get_ylim()
            ctx.rectangle(l, b, r-l, t-b)
            ctx.clip()

1539
1540
        # flip y direction
        x, y = ungroup_vector_property(self.pos, [0, 1])
1541
1542
        l, t, r, b = ctx.clip_extents()
        y.fa = b + t - y.fa
1543
        pos = group_vector_property([x, y])
1544

1545
        cairo_draw(self.g, pos, ctx, self.vprops, self.eprops,
1546
1547
1548
                   self.vorder, self.eorder, self.nodesfirst, self.kwargs)

        ctx.restore()
1549
1550
1551
1552
1553
1554
1555


#
# Drawing hierarchies
# ===================
#

1556
1557
def draw_hierarchy(state, pos=None, layout="radial", beta=0.8, node_weight=None,
                   vprops=None, eprops=None, hvprops=None, heprops=None,
1558
1559
                   subsample_edges=None, deg_order=True, deg_size=True,
                   vsize_scale=1, hsize_scale=1, hshortcuts=0, hide=0,
1560
                   bip_aspect=1., empty_branches=True, **kwargs):
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
    r"""Draw a nested block model state in a circular hierarchy layout with edge
    bundling.

    Parameters
    ----------
    state : :class:`~graph_tool.community.NestedBlockState`
        Nested block state to be drawn.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        If supplied, this specifies a vertex property map with the positions of
        the vertices in the layout.
    layout : ``str`` or :class:`~graph_tool.PropertyMap` (optional, default: ``"radial"``)
        If ``layout == "radial"`` :func:`~graph_tool.draw.radial_tree_layout`
        will be used. If ``layout == "sfdp"``, the hierarchy tree will be
1574
1575
        positioned using :func:`~graph_tool.draw.sfdp_layout`. If ``layout ==
        "bipartite"`` a bipartite layout will be used. If instead a
1576
1577
1578
1579
        :class:`~graph_tool.PropertyMap` is provided, it must correspond to the
        position of the hierarchy tree.
    beta : ``float`` (optional, default: ``.8``)
        Edge bundling strength.
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
    vprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties. Individual properties may also be
        given via the ``vertex_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    eprops : dict (optional, default: ``None``)
        Dictionary with the edge properties. Individual properties may also be
        given via the ``edge_<prop-name>`` parameters, where ``<prop-name>`` is
        the name of the property. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hvprops : dict (optional, default: ``None``)
        Dictionary with the vertex properties for the *hierarchy tree*.
        Individual properties may also be given via the ``hvertex_<prop-name>``
        parameters, where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
    heprops : dict (optional, default: ``None``)
        Dictionary with the edge properties for the *hierarchy tree*. Individual
        properties may also be given via the ``hedge_<prop-name>`` parameters,
        where ``<prop-name>`` is the name of the property. See
        :func:`~graph_tool.draw.graph_draw` for details.
1600
1601
1602
1603
1604
1605
    subsample_edges : ``int`` or list of :class:`~graph_tool.Edge` instances (optional, default: ``None``)
        If provided, only this number of random edges will be drawn. If the
        value is a list, it should include the edges that are to be drawn.
    deg_order : ``bool`` (optional, default: ``True``)
        If ``True``, the vertices will be ordered according to degree inside
        each group.
1606
1607
1608
    deg_size : ``bool`` (optional, default: ``True``)
        If ``True``, the (total) node degrees will be used for the default
        vertex sizes..
1609
    vsize_scale : ``float`` (optional, default: ``1.``)
1610
        Multiplicative factor for the default vertex sizes.
1611
    hsize_scale : ``float`` (optional, default: ``1.``)
1612
        Multiplicative factor for the default sizes of the hierarchy nodes.
1613
1614
1615
1616
1617
    hshortcuts : ``int`` (optional, default: ``0``)
        Include shortcuts to the number of upper layers in the hierarchy
        determined by this parameter.
    hide : ``int`` (optional, default: ``0``)
        Hide upper levels of the hierarchy.
1618
1619
    bip_aspect : ``float`` (optional, default: ``1.``)
        If ``layout == "bipartite"``, this will define the aspect ratio of layout.
1620
    empty_branches : ``bool`` (optional, default: ``False``)
1621
1622
        If ``empty_branches == False``, dangling branches at the upper layers
        will be pruned.
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
    vertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``vertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``vprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    edge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``edge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``eprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
    hvertex_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hvertex_<prop-name>`` specify the
        vertex property with name ``<prop-name>``, as an alternative to the
        ``hvprops`` parameter. See :func:`~graph_tool.draw.graph_draw` for
        details.
    hedge_* : :class:`~graph_tool.PropertyMap` or arbitrary types (optional, default: ``None``)
        Parameters following the pattern ``hedge_<prop-name>`` specify the edge
        property with name ``<prop-name>``, as an alternative to the ``heprops``
        parameter. See :func:`~graph_tool.draw.graph_draw` for details.
1641
    **kwargs :
1642
1643
        All remaining keyword arguments will be passed to the
        :func:`~graph_tool.draw.graph_draw` function.
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the vertices in the layout.
    t : :class:`~graph_tool.Graph`
        This is a the hierarchy tree used in the layout.
    tpos : :class:`~graph_tool.PropertyMap`
        This is a vertex property map with the positions of
        the hierarchy tree in the layout.

    Examples
    --------
    .. testsetup:: draw_hierarchy

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: draw_hierarchy

       >>> g = gt.collection.data["celegansneural"]
       >>> state = gt.minimize_nested_blockmodel_dl(g, deg_corr=True)
       >>> gt.draw_hierarchy(state, output="celegansneural_nested_mdl.pdf")
       (...)

    .. testcleanup:: draw_hierarchy

       gt.draw_hierarchy(state, output="celegansneural_nested_mdl.png")

    .. figure:: celegansneural_nested_mdl.*
       :align: center

       Hierarchical block partition of the C. elegans neural network, which
       minimizes the description length of the network according to the nested
       (degree-corrected) stochastic blockmodel.


    References
    ----------
    .. [holten-hierarchical-2006] Holten, D. "Hierarchical Edge Bundles:
       Visualization of Adjacency Relations in Hierarchical Data.", IEEE
       Transactions on Visualization and Computer Graphics 12, no. 5, 741–748
       (2006). :doi:`10.1109/TVCG.2006.147`
    """

    g = state.g

1692
1693
    overlap = state.levels[0].overlap
    if overlap:
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
        ostate = state.levels[0]
        bv, bcin, bcout, bc = ostate.get_overlap_blocks()
        be = ostate.get_edge_blocks()
        orig_state = state
        state = state.copy()
        b = ostate.get_majority_blocks()
        state.levels[0] = BlockState(g, b=b)
    else:
        b = state.levels[0].b

    if subsample_edges is not None:
        emask = g.new_edge_property("bool", False)
        if isinstance(subsample_edges, int):
            eidx = g.edge_index.copy("int").fa.copy()
            numpy.random.shuffle(eidx)
            emask = g.new_edge_property("bool")
            emask.a[eidx[:subsample_edges]] = True
        else:
            for e in subsample_edges:
                emask[e] = True
        g = GraphView(g, efilt=emask)

1716
1717
    t, tb, vorder = get_hierarchy_tree(state,
                                       empty_branches=empty_branches)
1718
1719
1720
1721
1722
1723

    if layout == "radial":
        if not deg_order:
            vorder = None
        if pos is not None:
            x, y = ungroup_vector_property(pos, [0, 1])
1724
1725
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
1726
            angle = g.new_vertex_property("double")
1727
            angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
1728
            vorder = angle
1729
1730
1731
        if node_weight is not None:
            node_weight = t.own_property(node_weight.copy())
            node_weight.a[node_weight.a == 0] = 1
1732
        tpos = radial_tree_layout(t, root=t.vertex(t.num_vertices() - 1,
1733
                                                   use_index=False),
1734
                                  node_weight=node_weight,
1735
                                  rel_order=vorder)
1736
    elif layout == "bipartite":
1737
        tpos = get_bip_hierachy_pos(state, aspect=bip_aspect,
1738
1739
                                    node_weight=node_weight)
        tpos = t.own_property(tpos)
1740
1741
1742
1743
1744
    elif layout == "sfdp":
        if pos is None:
            tpos = sfdp_layout(t)
        else:
            x, y = ungroup_vector_property(pos, [0, 1])
1745
1746
1747
            x.fa -= x.fa.mean()
            y.fa -= y.fa.mean()
            K = numpy.sqrt(x.fa.std() + y.fa.std()) / 10
1748
1749
            tpos = t.new_vertex_property("vector<double>")
            for v in t.vertices():
1750
                if int(v) < g.num_vertices(True):
1751
1752
1753
1754
                    tpos[v] = [x[v], y[v]]
                else:
                    tpos[v] = [0, 0]
            pin = t.new_vertex_property("bool")
1755
            pin.a[:g.num_vertices(True)] = True
1756
1757
1758
1759
            tpos = sfdp_layout(t, K=K, pos=tpos, pin=pin, multilevel=False)
    else:
        tpos = t.own_property(layout)

1760
1761
    hvvisible = t.new_vertex_property("bool", True)
    if hide > 0:
1762
        root = t.vertex(t.num_vertices(True) - 1)
1763
1764
1765
        dist = shortest_distance(t, source=root)
        hvvisible.fa = dist.fa >= hide

1766
1767
    pos = g.own_property(tpos.copy())

1768
    cts = get_hierarchy_control_points(g, t, tpos, beta,
1769
                                       max_depth=len(state.levels) - hshortcuts)
1770

1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    vprops_orig = vprops
    eprops_orig = eprops
    hvprops_orig = vprops
    heprops_orig = eprops
    kwargs_orig = kwargs

    vprops = vprops.copy() if vprops is not None else {}
    eprops = eprops.copy() if eprops is not None else {}

    props, kwargs = parse_props("vertex", kwargs)
    vprops.update(props)
    vprops.setdefault("fill_color", b)
    vprops.setdefault("color", b)
1784
    vprops.setdefault("shape", _vdefaults["shape"] if not overlap else "pie")
1785
1786
    s = max(200 / numpy.sqrt(g.num_vertices()), 5)
    vprops.setdefault("size", prop_to_size(g.degree_property_map("total"), s/5, s))
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

    if vprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(g, pos, text_pos=True)
        vprops["text_position"] = text_pos
        vprops["text_rotation"] = angle

    self_loops = label_self_loops(g, mark_only=True)
    if self_loops.fa.max() > 0:
        parallel_distance = vprops.get("size", _vdefaults["size"])
        if isinstance(parallel_distance, PropertyMap):
            parallel_distance = parallel_distance.fa.mean()
        cts_p = position_parallel_edges(g, pos, numpy.nan,
                                        parallel_distance)
        gu = GraphView(g, efilt=self_loops)
        for e in gu.edges():
            cts[e] = cts_p[e]


1805
1806
1807
1808
1809
1810
1811
    vprops = _convert_props(vprops, "v", g, kwargs.get("vcmap", default_cm),
                            pmap_default=True)

    props, kwargs = parse_props("edge", kwargs)
    eprops.update(props)
    eprops.setdefault("control_points", cts)
    eprops.setdefault("pen_width", _edefaults["pen_width"])
1812
    eprops.setdefault("color", list(_edefaults["color"][:-1]) + [.6])
1813
    eprops.setdefault("end_marker", "arrow" if g.is_directed() else "none")
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
    eprops = _convert_props(eprops, "e", g, kwargs.get("ecmap", default_cm),
                            pmap_default=True)

    hvprops = hvprops.copy() if hvprops is not None else {}
    heprops = heprops.copy() if heprops is not None else {}

    props, kwargs = parse_props("hvertex", kwargs)
    hvprops.update(props)

    blue = list(color_converter.to_rgba("#729fcf"))
    blue[-1] = .6
    hvprops.setdefault("fill_color", blue)
    hvprops.setdefault("color", [1, 1, 1, 0])
    hvprops.setdefault("shape", "square")
    hvprops.setdefault("size", 10)

1830
1831
1832
1833
1834
    if hvprops.get("text_position", None) == "centered":
        angle, text_pos = centered_rotation(t, tpos, text_pos=True)
        hvprops["text_position"] = text_pos
        hvprops["text_rotation"] = angle

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
    hvprops = _convert_props(hvprops, "v", t, kwargs.get("vcmap", default_cm),
                             pmap_default=True)

    props, kwargs = parse_props("hedge", kwargs)
    heprops.update(props)

    heprops.setdefault("color", blue)
    heprops.setdefault("end_marker", "arrow")
    heprops.setdefault("marker_size", 8.)
    heprops.setdefault("pen_width", 1.)

    heprops = _convert_props(heprops, "e", t, kwargs.get("ecmap", default_cm),
                             pmap_default=True)
1848

1849
1850
    vcmap = kwargs.get("vcmap", default_cm)
    ecmap = kwargs.get("ecmap", vcmap)
1851
1852
1853

    B = state.levels[0].B

1854
    if overlap and "pie_fractions" not in vprops:
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
        vprops["pie_fractions"] = bc.copy("vector<double>")
        if "pie_colors" not in vprops:
            vertex_pie_colors = g.new_vertex_property("vector<double>")
            nodes = defaultdict(list)
            def conv(k):
                clrs = [vcmap(r / (B - 1) if B > 1 else 0) for r in k]
                return [item for l in clrs for item in l]
            map_property_values(bv, vertex_pie_colors, conv)
            vprops["pie_colors"] = vertex_pie_colors

    gradient = eprops.get("gradient", None)
1866
1867
    if gradient is None:
        gradient = g.new_edge_property("double")
1868
        gradient = group_vector_property([gradient])
1869
1870
        ecolor = eprops.get("ecolor", _edefaults["color"])
        eprops["gradient"] = gradient
1871
        if overlap:
1872
            for e in g.edges():                       # ******** SLOW *******
1873
                r, s = be[e]
1874
                if not g.is_directed() and e.source() > e.target():
1875
1876
1877
                    r, s = s, r
                gradient[e] = [0] + list(vcmap(r / (B - 1))) + \
                              [1] + list(vcmap(s / (B - 1)))
1878
1879
1880
1881
                if isinstance(ecolor, PropertyMap):
                    gradient[e][4] = gradient[e][9] = ecolor[e][3]
                else:
                    gradient[e][4] = gradient[e][9] = ecolor[3]
1882
1883
1884


    t_orig = t
1885
    t = GraphView(t,
1886
                  vfilt=lambda v: int(v) >= g.num_vertices(True) and hvvisible[v])
1887

1888
1889
    t_vprops = {}
    t_eprops = {}
1890

1891
1892
1893
1894
1895
1896
1897
    props = []
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = (vprops.get(k, None), hvprops.get(k, None))
        props.append(t_vprops[k])
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = (eprops.get(k, None), heprops.get(k, None))
        props.append(t_eprops[k])
1898

1899
1900
1901
    props.append((pos, tpos))
    props.append((g.vertex_index, tb))
    props.append((b, None))
1902

1903
    u, props = graph_union(g, t, props=props)
1904

1905
1906
1907
1908
1909
1910
1911
    for k in set(list(vprops.keys()) + list(hvprops.keys())):
        t_vprops[k] = props.pop(0)
    for k in set(list(eprops.keys()) + list(heprops.keys())):
        t_eprops[k] = props.pop(0)
    pos = props.pop(0)
    tb = props.pop(0)
    b = props.pop(0)
1912
1913
1914

    def update_cts(widget, gg, picked, pos, vprops, eprops):
        vmask = gg.vertex_index.copy("int")
1915
        u = GraphView(gg, directed=False, vfilt=vmask.fa < g.num_vertices(True))
1916
        cts = eprops["control_points"]
1917
        get_hierarchy_control_points(u, t_orig, pos, beta, cts=cts,
1918
                                     max_depth=len(state.levels) - hshortcuts)
1919
1920
1921

    def draw_branch(widget, gg, key_id, picked, pos, vprops, eprops):
        if key_id == ord('b'):
1922
1923
            if picked is not None and not isinstance(picked, PropertyMap) and int(picked) > g.num_vertices(True):
                p = shortest_path(t_orig, source=t_orig.vertex(t_orig.num_vertices(True) - 1),
1924
1925
1926
1927
1928
1929
1930
                                  target=picked)[0]
                l = len(state.levels) - max(len(p), 1)

                bstack = state.get_bstack()
                bs = [s.vp["b"].a for s in bstack[:l+1]]
                bs[-1][:] = 0

1931
                if not overlap:
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
                    b = state.project_level(l).b
                    u = GraphView(g, vfilt=b.a == tb[picked])
                    u.vp["b"] = state.levels[0].b
                    u = Graph(u, prune=True)
                    b = u.vp["b"]
                    bs[0] = b.a
                else:
                    be = orig_state.project_level(l).get_edge_blocks()
                    emask = g.new_edge_property("bool")
                    for e in g.edges():
                        rs = be[e]
                        if rs[0] == tb[picked] and rs[1] == tb[picked]:
                            emask[e] = True
1945
1946
1947
                    u = GraphView(g, efilt=emask)
                    d = u.degree_property_map("total")
                    u = GraphView(u, vfilt=d.fa > 0)
1948
1949
1950
1951
1952
1953
1954
                    u.ep["be"] = orig_state.levels[0].get_edge_blocks()
                    u = Graph(u, prune=True)
                    be = u.ep["be"]
                    s = OverlapBlockState(u, b=be)
                    bs[0] = s.b.a.copy()

                nstate = NestedBlockState(u, bs=bs,
1955
                                          base_type=type(state.levels[0]),
1956
1957
                                          deg_corr=state.deg_corr)

1958
1959
1960
1961
1962
1963
                kwargs_ = kwargs_orig.copy()
                if "no_main" in kwargs_:
                    del kwargs_["no_main"]
                draw_hierarchy(nstate, beta=beta, vprops=vprops_orig,
                               eprops=eprops_orig, hvprops=hvprops_orig,
                               heprops=heprops_orig,
1964
                               subsample_edges=subsample_edges,
1965
1966
1967
                               deg_order=deg_order, empty_branches=False,
                               no_main=True, **kwargs_)

1968
        if key_id == ord('r'):
1969
1970
1971
1972
1973
1974
1975
            if layout == "radial":
                x, y = ungroup_vector_property(pos, [0, 1])
                x.fa -= x.fa.mean()
                y.fa -= y.fa.mean()
                angle = gg.new_vertex_property("double")
                angle.fa = (numpy.arctan2(y.fa, x.fa) + 2 * numpy.pi) % (2 * numpy.pi)
                tpos = radial_tree_layout(t_orig,
1976
                                          root=t_orig.vertex(t_orig.num_vertices(True) - 1),
1977
1978
1979
                                          rel_order=angle)
                gg.copy_property(tpos, pos)

1980
1981
1982
1983
1984
1985
            update_cts(widget, gg, picked, pos, vprops, eprops)

            if widget.vertex_matrix is not None:
                widget.vertex_matrix.update()
            widget.picked = None
            widget.selected.fa = False
1986
1987
1988

            widget.fit_to_window()
            widget.regenerate_surface(reset=True)
1989
1990
            widget.queue_draw()

1991
1992
1993
1994
    if kwargs.get("output", None) is None:
        kwargs["layout_callback"] = update_cts
        kwargs["key_press_callback"] = draw_branch

1995
1996
1997
    pos = graph_draw(u, pos, vprops=t_vprops, eprops=t_eprops, vorder=vorder,
                     **kwargs)

1998
1999
    if isinstance(pos, PropertyMap):
        pos = g.own_property(pos)
2000
        t_orig.copy_property(pos, tpos, g=u)