__init__.py 20.8 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4 5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24 25

This module includes centrality-related algorithms.
26 27 28 29 30 31 32 33 34 35 36

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
   eigentrust
37
   trust_transitivity
38 39 40

Contents
++++++++
41 42
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
43 44 45
from .. dl_import import dl_import
dl_import("import libgraph_tool_centrality")

46
from .. core import _prop, ungroup_vector_property
Tiago Peixoto's avatar
Tiago Peixoto committed
47 48
import sys
import numpy
Tiago Peixoto's avatar
Tiago Peixoto committed
49 50

__all__ = ["pagerank", "betweenness", "central_point_dominance", "eigentrust",
51
           "trust_transitivity"]
Tiago Peixoto's avatar
Tiago Peixoto committed
52

Tiago Peixoto's avatar
Tiago Peixoto committed
53

54
def pagerank(g, damping=0.8, prop=None, epslon=1e-6, max_iter=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
55
             ret_iter=False):
56 57 58 59 60
    r"""
    Calculate the PageRank of each vertex.

    Parameters
    ----------
61
    g : :class:`~graph_tool.Graph`
62 63 64
        Graph to be used.
    damping : float, optional (default: 0.8)
        Damping factor.
65
    prop : :class:`~graph_tool.PropertyMap`, optional (default: None)
66 67 68 69 70 71 72 73 74 75 76
        Vertex property map to store the PageRank values.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
77 78
    pagerank : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the PageRank values.
79 80 81 82 83

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
84
    trust_transitivity: pervasive trust transitivity
85 86 87

    Notes
    -----
88
    The value of PageRank [pagerank-wikipedia]_ of vertex v :math:`PR(v)` is
89 90 91
    given interactively by the relation:

    .. math::
92 93

        PR(v) = \frac{1-d}{N} + d \sum_{w \in \Gamma^{-}(v)}
94
                \frac{PR (w)}{d^{+}(w)}
95 96 97 98 99 100 101 102 103 104 105 106

    where :math:`\Gamma^{-}(v)` are the in-neighbours of v, :math:`d^{+}(w)` is
    the out-degree of w, and d is a damping factor.

    The implemented algorithm progressively iterates the above condition, until
    it no longer changes, according to the parameter epslon. It has a
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
107 108
    >>> from numpy.random import poisson, seed
    >>> seed(42)
109
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
110
    >>> pr = gt.pagerank(g)
111
    >>> print pr.a
Tiago Peixoto's avatar
Tiago Peixoto committed
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    [ 0.87011681  1.73449398  0.47587866  0.4534494   0.2         1.26596887
      0.60964865  0.68064477  0.8137542   0.86269096  0.51833002  0.49194604
      0.74875795  0.52831993  0.601438    0.63921165  1.32489495  0.68360746
      1.02608206  0.90903761  1.1026286   0.56290713  0.2         0.30840086
      0.90726785  0.35583967  0.95582862  0.232       0.41090313  0.88734742
      0.47424296  0.66138242  1.26313184  0.7459428   0.84110051  0.9497316
      1.0589998   0.94412292  0.26433617  0.86197354  0.2         0.25333333
      0.65974242  0.69889305  1.02798531  0.77618244  0.57905885  1.12828577
      0.232       1.18366748  0.38929224  1.72424164  0.47966878  1.0931673
      0.45937603  1.09479766  0.80274459  0.44782081  1.04618114  0.25333333
      0.82295953  0.40210109  0.72779393  0.75075946  0.41742276  0.2
      0.8984279   0.92941713  0.69682427  0.69340983  1.02679348  0.2
      0.67750539  0.85622403  0.77232588  1.09093307  1.14410169  0.59413937
      0.54456339  0.64371752  0.40275133  0.72976606  1.40446885  0.2
      0.31831299  0.3734494   0.2562224   1.05807688  1.02419007  0.82747632
      0.49646186  0.72960178  0.48621114  1.42147072  0.65622314  0.31664379
      1.55387576  0.58439879  2.03922765  1.47802266]
129 130 131

    References
    ----------
132 133
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
134
       "The pagerank citation ranking: Bringing order to the web", Technical
135 136 137 138 139
       report, Stanford University, 1998
    """

    if max_iter == None:
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
140 141 142 143 144 145 146 147 148 149
    if prop == None:
        prop = g.new_vertex_property("double")
    ic = libgraph_tool_centrality.\
            get_pagerank(g._Graph__graph, _prop("v", g, prop), damping, epslon,
                         max_iter)
    if ret_iter:
        return prop, ic
    else:
        return prop

Tiago Peixoto's avatar
Tiago Peixoto committed
150

151 152 153 154 155 156
def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
    r"""
    Calculate the betweenness centrality for each vertex and edge.

    Parameters
    ----------
157
    g : :class:`~graph_tool.Graph`
158
        Graph to be used.
159
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
160
        Vertex property map to store the vertex betweenness values.
161
    eprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
162
        Edge property map to store the edge betweenness values.
163
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
164 165 166 167 168 169
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
170 171 172 173
    vertex_betweenness : A vertex property map with the vertex betweenness
                         values.
    edge_betweenness : An edge property map with the edge betweenness
                       values.
174 175 176 177 178 179

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
180
    trust_transitivity: pervasive trust transitivity
181 182 183 184 185

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

186 187
    .. math::

188 189 190 191 192 193 194 195 196
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

    where :math:`\sigma_{st}` is the number of shortest geodesic paths from s to
    t, and :math:`\sigma_{st}(v)` is the number of shortest geodesic paths from
    s to t that pass through a vertex v.  This may be normalised by dividing
    through the number of pairs of vertices not including v, which is
    :math:`(n-1)(n-2)/2`.

197
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
198 199 200 201 202 203 204
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE + V(V+E)
    \log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
205 206
    >>> from numpy.random import poisson, seed
    >>> seed(42)
207
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
208
    >>> vb, eb = gt.betweenness(g)
209
    >>> print vb.a
Tiago Peixoto's avatar
Tiago Peixoto committed
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    [  2.65012897e-02   1.04414799e-01   2.73374899e-02   1.52782183e-02
       0.00000000e+00   2.74548352e-02   3.54680121e-02   3.72671558e-02
       2.39732112e-02   2.34942149e-02   2.97950758e-02   4.08351383e-02
       4.31702840e-02   1.90317902e-02   3.66879750e-02   8.65571818e-03
       0.00000000e+00   3.74046494e-02   4.22428130e-02   2.10503176e-02
       1.39558854e-02   8.40349783e-03   0.00000000e+00   4.45784374e-03
       3.38671970e-02   1.72390157e-02   4.82232543e-02   1.03071532e-04
       1.42200266e-02   4.82793598e-02   1.82020235e-02   0.00000000e+00
       7.04969679e-02   2.31267158e-02   6.42817952e-02   3.71139131e-02
       3.81618985e-02   4.06231715e-02   2.16376594e-03   2.44758076e-02
       0.00000000e+00   6.86198722e-03   1.36132952e-02   1.73886977e-02
       2.30213129e-02   4.44999980e-02   0.00000000e+00   1.40589569e-02
       0.00000000e+00   4.74213177e-02   2.65427674e-02   1.05684330e-01
       6.30552365e-03   2.86320444e-02   4.50079022e-03   7.76843152e-02
       2.88642900e-02   3.52207159e-02   2.01852506e-02   9.26784855e-04
       4.35733012e-02   1.84745904e-02   1.35102237e-02   2.69638287e-02
       1.88247064e-02   0.00000000e+00   2.03784688e-02   4.14981678e-02
       1.79538495e-02   1.12983577e-02   3.23765203e-02   0.00000000e+00
       3.99771399e-02   2.85164571e-03   2.18967289e-02   3.96111705e-02
       3.40096863e-02   1.72800650e-02   1.36861815e-02   0.00000000e+00
       1.19328203e-02   1.71726485e-02   0.00000000e+00   0.00000000e+00
       6.33251858e-03   4.64324980e-03   1.33084980e-03   9.89021626e-02
       3.52934995e-02   2.96267777e-02   1.73480268e-02   3.07545000e-02
       2.47891161e-02   3.32486832e-02   7.45403501e-03   1.46792267e-02
       0.00000000e+00   3.35642472e-02   8.78597450e-02   3.94517740e-02]
235 236 237

    References
    ----------
238 239
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
240 241
       centrality",  Journal of Mathematical Sociology, 2001
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
242 243 244 245 246 247 248 249 250 251 252 253 254
    if vprop == None:
        vprop = g.new_vertex_property("double")
    if eprop == None:
        eprop = g.new_edge_property("double")
    if weight != None and weight.value_type() != eprop.value_type():
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
    libgraph_tool_centrality.\
            get_betweenness(g._Graph__graph, _prop("e", g, weight),
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

Tiago Peixoto's avatar
Tiago Peixoto committed
255

Tiago Peixoto's avatar
Tiago Peixoto committed
256
def central_point_dominance(g, betweenness):
257 258 259 260 261 262
    r"""
    Calculate the central point dominance of the graph, given the betweenness
    centrality of each vertex.

    Parameters
    ----------
263
    g : :class:`~graph_tool.Graph`
264
        Graph to be used.
265
    betweenness : :class:`~graph_tool.PropertyMap`
266 267 268 269 270
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
271 272
    cp : float
        The central point dominance.
273 274 275 276 277 278 279 280

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
281
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
282 283
    as:

284 285
    .. math::

286 287 288 289 290 291 292 293 294
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
295 296
    >>> from numpy.random import poisson, seed
    >>> seed(42)
297
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
298 299
    >>> vb, eb = gt.betweenness(g)
    >>> print gt.central_point_dominance(g, vb)
Tiago Peixoto's avatar
Tiago Peixoto committed
300
    0.0813233725942
301 302 303

    References
    ----------
304
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
305 306 307
       Based on Betweenness", Sociometry, Vol. 40, No. 1,  pp. 35-41 (1977)
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
308
    return libgraph_tool_centrality.\
309
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
310 311
                                       _prop("v", g, betweenness))

312 313

def eigentrust(g, trust_map, vprop=None, norm=False, epslon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
314
               ret_iter=False):
315 316 317 318 319
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
320
    g : :class:`~graph_tool.Graph`
321
        Graph to be used.
322
    trust_map : :class:`~graph_tool.PropertyMap`
323
        Edge property map with the values of trust associated with each
324
        edge. The values must lie in the range [0,1].
325 326 327 328 329 330 331 332 333 334 335 336 337 338
    vprop : PropertyMap, optional (default: None)
        Vertex property map where the values of eigentrust must be stored.
    norm : bool, optional (default: false)
        Norm eigentrust values so that the total sum equals 1.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
339
    eigentrust : A vertex property map containing the eigentrust values.
340 341 342 343 344

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
345
    trust_transitivity: pervasive trust transitivity
346 347 348

    Notes
    -----
349
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
350 351
    following limit

352 353
    .. math::

354 355 356 357 358
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

359 360
    .. math::

361 362 363 364 365 366 367 368 369 370
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
371
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
372 373
    >>> trust = g.new_edge_property("double")
    >>> trust.get_array()[:] = random(g.num_edges())*42
374
    >>> t = gt.eigentrust(g, trust, norm=True)
375
    >>> print t.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    [ 0.01610395  0.03518828  0.00387335  0.00506519  0.          0.02120586
      0.00328345  0.00514034  0.00361398  0.01331587  0.00626757  0.00788882
      0.01599836  0.00607798  0.00879484  0.01028104  0.01742029  0.00522399
      0.0206618   0.0098984   0.00918508  0.01344131  0.          0.00047679
      0.01760032  0.00078869  0.01045936  0.          0.00387405  0.01761267
      0.00730843  0.00514523  0.01708638  0.0084908   0.01237811  0.01401104
      0.0209564   0.0132232   0.00031255  0.01400855  0.          0.          0.0077233
      0.00479587  0.01646928  0.01499744  0.01901516  0.00843277  0.
      0.01764526  0.00243523  0.01726375  0.01272935  0.0163525   0.00382533
      0.02037745  0.00758792  0.00350063  0.01303079  0.          0.02086308
      0.00062028  0.00841231  0.00983605  0.00327547  0.          0.01016667
      0.0170241   0.00782474  0.00516862  0.02394048  0.          0.00747778
      0.00792131  0.01495136  0.01513948  0.02287957  0.00788276  0.0053207
      0.00145811  0.00183203  0.0033493   0.01627589  0.          0.00476343
      0.00937439  0.00200381  0.01400712  0.02135004  0.00549685  0.00230923
      0.01426992  0.01083921  0.03439618  0.00514281  0.00114438  0.02259093
      0.00672266  0.02753108  0.01859351]
393 394 395

    References
    ----------
396
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
397 398 399 400 401
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
       Pages: 640 - 651, 2003
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
402 403
    if vprop == None:
        vprop = g.new_vertex_property("double")
404 405 406 407 408 409 410 411 412 413 414
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
                          _prop("v", g, vprop), epslon, max_iter)
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
415

416
def trust_transitivity(g, trust_map, source=None, target=None, vprop=None):
417
    r"""
418 419
    Calculate the pervasive trust transitivity between chosen (or all) vertices
    in the graph.
420 421 422

    Parameters
    ----------
423
    g : :class:`~graph_tool.Graph`
424
        Graph to be used.
425
    trust_map : :class:`~graph_tool.PropertyMap`
426 427
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
428
    source : Vertex (optional, default: None)
429
        Source vertex. All trust values are computed relative to this vertex.
430
        If left unspecified, the trust values for all sources are computed.
431
    target : Vertex (optional, default: None)
432 433 434
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
435 436
        A vertex property map where the values of transitive trust must be
        stored.
437 438 439

    Returns
    -------
440 441 442 443 444 445 446 447
    trust_transitivity : :class:`~graph_tool.PropertyMap` or float
        A vertex vector property map containing, for each source vertex, a
        vector with the trust values for the other vertices. If only one of
        `source` or `target` is specified, this will be a single-valued vertex
        property map containing the trust vector from/to the source/target
        vertex to/from the rest of the network. If both `source` and `target`
        are specified, the result is a single float, with the corresponding
        trust value for the target.
448

449 450 451 452 453 454 455 456 457 458
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
    The absolute trust between vertices i and j is defined as

459 460
    .. math::

461 462
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
463

464 465 466
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
467

468 469
    .. math::

470
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
471

472 473
    The algorithm measures the transitive trust by finding the paths with
    maximum weight, using Dijkstra's algorithm, to all in-neighbours of a given
474
    target. This search needs to be performed repeatedly for every target, since
475 476 477 478 479 480 481
    it needs to be removed from the graph first. For each given source, the
    resulting complexity is therefore :math:`O(N^2\log N)` for all targets, and
    :math:`O(N\log N)` for a single target. For a given target, the complexity
    for obtaining the trust from all given sources is :math:`O(kN\log N)`, where
    :math:`k` is the in-degree of the target. Thus, the complexity for obtaining
    the complete trust matrix is :math:`O(EN\log N)`, where :math:`E` is the
    number of edges in the network.
482 483 484 485 486 487 488

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
489
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
490
    >>> trust = g.new_edge_property("double")
491
    >>> trust.a = random(g.num_edges())
492
    >>> t = gt.trust_transitivity(g, trust, source=g.vertex(0))
493
    >>> print t.a
494
    [ 1.          0.15271582  0.07130332  0.10597708  0.          0.58940763
Tiago Peixoto's avatar
Tiago Peixoto committed
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
      0.04233924  0.03619048  0.04137002  0.05926363  0.06584407  0.06315985
      0.22301815  0.02671845  0.10566551  0.08018763  0.57668762  0.08440303
      0.17612948  0.37579015  0.0415804   0.19919108  0.          0.0141547
      0.14901031  0.00910391  0.02680543  0.          0.0887711   0.0296914
      0.09800672  0.06421615  0.16420105  0.10226839  0.08667606  0.07944174
      0.17174637  0.10932321  0.0137295   0.09342906  0.          0.
      0.11065065  0.03725047  0.23554212  0.10971862  0.54564134  0.0462946   0.
      0.24820041  0.15281463  0.09449931  0.22419781  0.03108608  0.10964166
      0.08642532  0.03495468  0.05656444  0.04045297  0.          0.13789871
      0.0197414   0.05512572  0.08297112  0.21448002  0.          0.08649514
      0.0718887   0.16546776  0.04108292  0.11710843  0.          0.12518596
      0.04797708  0.02275816  0.10413969  0.1294644   0.08656727  0.28371423
      0.1036658   0.01575087  0.02023104  0.067158    0.          0.03241519
      0.19613692  0.05684533  0.29652909  0.03038526  0.02423028  0.01695595
      0.0759531   0.17360708  0.51113999  0.03714076  0.03167552  0.04359062
      0.0267188   0.47605313  0.06471942]
511
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
512 513

    if vprop == None:
514
        vprop = g.new_vertex_property("vector<double>")
515

516 517 518 519
    if target == None:
        target = -1
    else:
        target = g.vertex_index[target]
520

521 522 523 524 525
    if source == None:
        source = -1
    else:
        source = g.vertex_index[source]

526
    libgraph_tool_centrality.\
527 528 529 530
            get_trust_transitivity(g._Graph__graph, source, target,
                                   _prop("e", g, trust_map),
                                   _prop("v", g, vprop))
    if target != -1 or source != -1:
531
        vprop = ungroup_vector_property(vprop, [0])[0]
532
    if target != -1 and source != -1:
533
        return vprop.a[target]
534
    return vprop