__init__.py 20.8 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.draw`` - Graph drawing and layout
----------------------------------------------
24
25
26
27

Summary
+++++++

28
29
30
Layout algorithms
=================

31
32
33
.. autosummary::
   :nosignatures:

Tiago Peixoto's avatar
Tiago Peixoto committed
34
   sfdp_layout
35
   fruchterman_reingold_layout
36
37
   arf_layout
   random_layout
38
39
40
41
42
43
44
45
46


Graph drawing
=============

.. autosummary::
   :nosignatures:

   graph_draw
Tiago Peixoto's avatar
Tiago Peixoto committed
47
   graphviz_draw
48

49
50
51
52
53
54
55
56
57
58
59
60

Low-level graph drawing
^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:

   cairo_draw
   interactive_window
   GraphWidget
   GraphWindow

61
62
Contents
++++++++
63
64
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
65
66
67
68
69
70
71
72
from .. import GraphView, _check_prop_vector, group_vector_property, \
     ungroup_vector_property, infect_vertex_property, _prop
from .. topology import max_cardinality_matching, max_independent_vertex_set, \
    label_components,  pseudo_diameter
from .. community import condensation_graph
from .. stats import label_parallel_edges
import numpy.random
from numpy import sqrt
73
import sys
74
75
76

from .. dl_import import dl_import
dl_import("import libgraph_tool_layout")
77

78

Tiago Peixoto's avatar
Tiago Peixoto committed
79
80
__all__ = ["graph_draw", "graphviz_draw", "fruchterman_reingold_layout",
           "arf_layout", "sfdp_layout", "random_layout",
81
           "cairo_draw"]
82

Tiago Peixoto's avatar
Tiago Peixoto committed
83

84
def random_layout(g, shape=None, pos=None, dim=2):
85
86
87
88
    r"""Performs a random layout of the graph.

    Parameters
    ----------
89
    g : :class:`~graph_tool.Graph`
90
        Graph to be used.
91
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
92
93
94
95
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
96
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
97
        Vector vertex property maps where the coordinates should be stored.
98
    dim : int (optional, default: ``2``)
99
100
101
102
        Number of coordinates per vertex.

    Returns
    -------
103
104
105
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
106
107
108
109

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
110
111
112
113
114
115
116
117
118
119
120

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
    array([ 86.59969709,   1.31435598,   0.64651486])

121
122
    """

123
    if pos == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
124
125
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
126

Tiago Peixoto's avatar
Tiago Peixoto committed
127
    pos = ungroup_vector_property(pos, range(0, dim))
128
129

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
130
        shape = [sqrt(g.num_vertices())] * dim
131
132

    for i in xrange(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
133
134
135
136
137
138
139
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
140
141
142
143

        # deal with filtering
        p = pos[i].ma
        p[:] = numpy.random.random(len(p)) * d + r[0]
144

Tiago Peixoto's avatar
Tiago Peixoto committed
145
    pos = group_vector_property(pos)
146
147
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
148

149
150
151
152
153
154
155
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
156
    g : :class:`~graph_tool.Graph`
157
        Graph to be used.
158
    weight : :class:`PropertyMap` (optional, default: ``None``)
159
160
161
162
163
164
165
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
166
167
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
168
        will be a square.
169
170
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
171
        the same site on a grid. Otherwise they will act on all vertex pairs.
172
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
173
174
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
175
    n_iter : int (optional, default: ``100``)
176
        Total number of iterations.
177
    pos : :class:`PropertyMap` (optional, default: ``None``)
178
179
180
181
182
183
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
184
185
186
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
187
188
189
190

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
191
192
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
193
194
195
196
197
198
199

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
200
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-fr.pdf")
201
202
    <...>

203
    .. figure:: graph-draw-fr.*
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
       "Graph Drawing by Force-Directed Placement". Software – Practice & Experience
       (Wiley) 21 (11): 1129–1164. (1991) :doi:`10.1002/spe.4380211102`
    """

    if pos == None:
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
239
               max_iter=1000, pos=None, dim=2):
240
241
    r"""Calculate the ARF spring-block layout of the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
242
243
244
245
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
Tiago Peixoto's avatar
Tiago Peixoto committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        An edge property map with the respective weights.
    d : float (optional, default: ``0.5``)
        Opposing force between vertices.
    a : float (optional, default: ``10``)
        Attracting force between adjacent vertices.
    dt : float (optional, default: ``0.001``)
        Iteration step size.
    epsilon : float (optional, default: ``1e-6``)
        Convergence criterion.
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
        convergence.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: ``2``)
        Number of coordinates per vertex.
Tiago Peixoto's avatar
Tiago Peixoto committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm is defined in [geipel-self-organization-2007]_, and has
    complexity :math:`O(V^2)`.

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
281
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-arf.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    <...>

    .. figure:: graph-draw-arf.*
        :align: center

        ARF layout of a Price network.

    References
    ----------
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

    if pos is None:
299
        pos = random_layout(g, dim=dim)
Tiago Peixoto's avatar
Tiago Peixoto committed
300
301
302
303
304
305
306
307
308
    _check_prop_vector(pos, name="pos", floating=True)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    return pos


Tiago Peixoto's avatar
Tiago Peixoto committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
def _coarse_graph(g, vweight, eweight, mivs=False):
    if mivs:
        mivs = max_independent_vertex_set(g, high_deg=True)
        u = GraphView(g, vfilt=mivs, directed=False)
        c = label_components(u)[0]
        c.fa += 1
        u = GraphView(g, directed=False)
        infect_vertex_property(u, c,
                               range(1, c.fa.max() + 1))
        c = g.own_property(c)
    else:
        mivs = None
        m = max_cardinality_matching(GraphView(g, directed=False),
                                     heuristic=True, weight=eweight,
                                     minimize=False)
        u = GraphView(g, efilt=m, directed=False)
        c = label_components(u)[0]
        c = g.own_property(c)
        u = GraphView(g, directed=False)
    cg, cc, vcount, ecount = condensation_graph(u, c, vweight, eweight)
    return cg, cc, vcount, ecount, c, mivs


def _propagate_pos(g, cg, c, cc, cpos, delta, mivs):
    seed = numpy.random.randint(sys.maxint)
    pos = g.new_vertex_property(cpos.value_type())

    if mivs is not None:
        g = GraphView(g, vfilt=mivs)
    libgraph_tool_layout.propagate_pos(g._Graph__graph,
                                       cg._Graph__graph,
                                       _prop("v", g, c),
                                       _prop("v", cg, cc),
                                       _prop("v", g, pos),
                                       _prop("v", cg, cpos),
                                       delta if mivs is None else 0,
                                       seed)
    if mivs is not None:
        g = g.base
        u = GraphView(g, directed=False)
        try:
            libgraph_tool_layout.propagate_pos_mivs(u._Graph__graph,
                                                    _prop("v", u, mivs),
                                                    _prop("v", u, pos),
                                                    delta, seed)
        except ValueError:
            graph_draw(u, mivs, vertex_fillcolor=mivs)
    return pos


def _avg_edge_distance(g, pos):
360
361
362
363
    ad = libgraph_tool_layout.avg_dist(g._Graph__graph, _prop("v", g, pos))
    if numpy.isnan(ad):
        ad = 1.
    return ad
Tiago Peixoto's avatar
Tiago Peixoto committed
364
365
366


def coarse_graphs(g, method="hybrid", mivs_thres=0.9, ec_thres=0.75,
367
368
                  weighted_coarse=False, eweight=None, vweight=None,
                  verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
369
    cg = [[g, None, None, None, None, None]]
370
371
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
Tiago Peixoto's avatar
Tiago Peixoto committed
372
373
374
    mivs = not (method in ["hybrid", "ec"])
    while True:
        u = _coarse_graph(cg[-1][0], cg[-1][2], cg[-1][3], mivs)
375
376
377
        thres = mivs_thres if mivs else ec_thres
        if u[0].num_vertices() >= thres * cg[-1][0].num_vertices():
            if method == "hybrid" and not mivs:
Tiago Peixoto's avatar
Tiago Peixoto committed
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
                mivs = True
            else:
                break
        if u[0].num_vertices() <= 2:
            break
        cg.append(u)
        if verbose:
            print "Coarse level (%s):" % ("MIVS" if mivs else "EC"),
            print len(cg), " num vertices:",
            print u[0].num_vertices()
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
    for i in xrange(len(cg)):
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

    for i in xrange(len(cg)):
        u, cc, vcount, ecount, c, mivs = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
            print "avg edge distance:", _avg_edge_distance(u, pos)

        if i < len(cg) - 1:
            if verbose:
                print "propagating...",
                print mivs.a.sum() if mivs is not None else ""
            pos = _propagate_pos(cg[i + 1][0], u, c, cc, pos,
                                 Ks[i] / 1000, mivs)


def sfdp_layout(g, vweight=None, eweight=None, pin=None, C=0.2, K=None, p=2.,
424
425
426
427
428
429
                theta=0.6, max_level=11, gamma=1., init_step=None,
                cooling_step=0.9, adaptive_cooling=True, epsilon=1e-1,
                max_iter=0, pos=None, multilevel=None, coarse_method="hybrid",
                mivs_thres=0.9, ec_thres=0.75, weighted_coarse=False,
                verbose=False):
    r"""Obtain the SFDP spring-block layout of the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
430

431
432
    Parameters
    ----------
433
    g : :class:`~graph_tool.Graph`
434
        Graph to be used.
435
436
437
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with the respective weights.
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
438
        An edge property map with the respective weights.
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    pin : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with with boolean values, which, if given,
        specifies the vertices which will not have their positions modified.
    C : float (optional, default: ``0.2``)
        Relative strength of repulsive forces.
    K : float (optional, default: ``None``)
        Optimal edge length. If not provided, it will be taken to be the average
        edge distance in the initial layout.
    p : float (optional, default: ``2``)
        Repulsive force exponent.
    theta : float (optional, default: ``0.6``)
        Quadtree opening parameter, a.k.a. Barnes–Hut opening criterion.
    max_level : int (optional, default: ``11``)
        Maximum quadtree level.
    gamma : float (optional, default: ``1.0``)
        Strength of the attractive force between connected components.
    init_step : float (optional, default: ``None``)
        Initial update step. If not provided, it will be chosen automatically.
    cooling_step : float (optional, default: ``0.9``)
        Cooling update step.
    adaptive_cooling : bool (optional, default: ``True``)
        Use an adaptive cooling scheme.
    epsilon : float (optional, default: ``0.1``)
        Relative convergence criterion.
    max_iter : int (optional, default: ``0``)
464
        Maximum number of iterations. If this value is ``0``, it runs until
465
        convergence.
466
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        Initial vertex layout. If not provided, it will be randomly chosen.
    multilevel : bool (optional, default: ``None``)
        Use a multilevel layout algorithm. If ``None`` is given, it will be
        activated based on the size of the graph.
    coarse_method : str (optional, default: ``"hybrid"``)
        Coarsening method used if ``multilevel == True``. Allowed methods are
        ``"hybrid"``, ``"mivs"`` and ``"ec"``.
    mivs_thres : float (optional, default: ``0.9``)
        If the relative size of the MIVS coarse graph is above this value, the
        coarsening stops.
    ec_thres : float (optional, default: ``0.75``)
        If the relative size of the EC coarse graph is above this value, the
        coarsening stops.
    weighted_coarse : bool (optional, default: ``False``)
        Use weighted coarse graphs.
    verbose : bool (optional, default: ``False``)
        Provide verbose information.
484
485
486

    Returns
    -------
487
488
489
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
490
491
492

    Notes
    -----
493
494
    This algorithm is defined in [hu-multilevel-2005]_, and has
    complexity :math:`O(V\log V)`.
495
496
497
498
499

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
500
501
502
    >>> g = gt.price_network(3000)
    >>> pos = gt.sfdp_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.pdf")
503
504
    <...>

505
    .. figure:: graph-draw-sfdp.*
506
507
        :align: center

508
        SFDP layout of a Price network.
509
510
511

    References
    ----------
512
513
514
    .. [hu-multilevel-2005] Yifan Hu, "Efficient and High Quality Force-Directed
       Graph", Mathematica Journal, vol. 10, Issue 1, pp. 37-71, (2005)
       http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
515
516
    """

517
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
518
        pos = random_layout(g, dim=2)
519
520
    _check_prop_vector(pos, name="pos", floating=True)

Tiago Peixoto's avatar
Tiago Peixoto committed
521
522
    g = GraphView(g, directed=False)

Tiago Peixoto's avatar
Tiago Peixoto committed
523
524
525
526
    if pin is not None and pin.value_type() != "bool":
        raise ValueError("'pin' property must be of type 'bool'.")

    if K is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
527
        K = _avg_edge_distance(g, pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
528
529

    if init_step is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
530
531
532
533
534
535
        init_step = 10 * max(_avg_edge_distance(g, pos), K)

    if multilevel is None:
        multilevel = g.num_vertices() > 1000

    if multilevel:
536
537
        if eweight is not None or vweight is not None:
            weighted_coarse = True
Tiago Peixoto's avatar
Tiago Peixoto committed
538
539
540
541
        cgs = coarse_graphs(g, method=coarse_method,
                            mivs_thres=mivs_thres,
                            ec_thres=ec_thres,
                            weighted_coarse=weighted_coarse,
542
543
                            eweight=eweight,
                            vweight=vweight,
Tiago Peixoto's avatar
Tiago Peixoto committed
544
545
546
547
548
549
550
551
552
553
554
555
                            verbose=verbose)
        count = 0
        for u, pos, K, vcount, ecount in cgs:
            if verbose:
                print "Positioning level:", count, u.num_vertices(),
                print "with K =", K, "..."
                count += 1
            #graph_draw(u, pos)
            pos = sfdp_layout(u, pos=pos,
                              vweight=vcount if weighted_coarse else None,
                              eweight=ecount if weighted_coarse else None,
                              C=C, K=K, p=p,
556
                              theta=theta, gamma=gamma, epsilon=epsilon,
Tiago Peixoto's avatar
Tiago Peixoto committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                              max_iter=max_iter,
                              cooling_step=cooling_step,
                              adaptive_cooling=False,
                              init_step=max(2 * K,
                                            _avg_edge_distance(u, pos) / 10),
                              multilevel=False,
                              verbose=False)
            #graph_draw(u, pos)
        return pos

    if g.num_vertices() <= 1:
        return pos
    if g.num_vertices() == 2:
        vs = [g.vertex(0, False), g.vertex(1, False)]
        pos[vs[0]] = [0, 0]
        pos[vs[1]] = [1, 1]
        return pos
    if g.num_vertices() <= 50:
        max_level = 0
576
    groups = label_components(g)[0]
Tiago Peixoto's avatar
Tiago Peixoto committed
577
578
579
    libgraph_tool_layout.sfdp_layout(g._Graph__graph, _prop("v", g, pos),
                                     _prop("v", g, vweight),
                                     _prop("e", g, eweight),
580
581
582
                                     _prop("v", g, pin),
                                     (C, K, p, gamma, _prop("v", g, groups)),
                                     theta, init_step, cooling_step, max_level,
Tiago Peixoto's avatar
Tiago Peixoto committed
583
584
                                     epsilon, max_iter, not adaptive_cooling,
                                     verbose)
585
    return pos
Tiago Peixoto's avatar
Tiago Peixoto committed
586

587
588
589
590
591
592
593
594
from cairo_draw import graph_draw, cairo_draw

try:
    from cairo_draw import GraphWidget, GraphWindow, \
        interactive_window
    __all__ += ["interactive_window", "GraphWidget", "GraphWindow"]
except ImportError:
    pass
Tiago Peixoto's avatar
Tiago Peixoto committed
595

Tiago Peixoto's avatar
Tiago Peixoto committed
596
from graphviz_draw import graphviz_draw