__init__.py 21.3 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#! /usr/bin/env python
# graph_tool.py -- a general graph manipulation python module
#
# Copyright (C) 2007 Tiago de Paula Peixoto <tiago@forked.de>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

19
"""
20 21
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
22 23 24 25

This module includes centrality-related algorithms.
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
26 27 28 29
from .. dl_import import dl_import
dl_import("import libgraph_tool_centrality")

from .. core import _prop
30
import sys, numpy
Tiago Peixoto's avatar
Tiago Peixoto committed
31 32 33 34

__all__ = ["pagerank", "betweenness", "central_point_dominance", "eigentrust",
           "absolute_trust"]

35
def pagerank(g, damping=0.8, prop=None, epslon=1e-6, max_iter=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
36
             ret_iter=False):
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    r"""
    Calculate the PageRank of each vertex.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    damping : float, optional (default: 0.8)
        Damping factor.
    prop : ProperyMap, optional (default: None)
        Vertex property map to store the PageRank values.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
58
    pagerank : A vertex property map containing the PageRank values.
59 60 61 62 63 64 65 66 67

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
    absolute_trust: absolute trust centrality

    Notes
    -----
68 69 70 71
    The value of PageRank [pagerank_wikipedia]_ of vertex v :math:`PR(v)` is
    given interactively by the relation:

    .. math::
72 73

        PR(v) = \frac{1-d}{N} + d \sum_{w \in \Gamma^{-}(v)}
74
                \frac{PR (w)}{d^{+}(w)}
75 76 77 78 79 80 81 82 83 84 85 86

    where :math:`\Gamma^{-}(v)` are the in-neighbours of v, :math:`d^{+}(w)` is
    the out-degree of w, and d is a damping factor.

    The implemented algorithm progressively iterates the above condition, until
    it no longer changes, according to the parameter epslon. It has a
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
87 88
    >>> from numpy.random import poisson, seed
    >>> seed(42)
89 90 91
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)), seed=42)
    >>> pr = gt.pagerank(g)
    >>> print pr.get_array()
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    [ 1.01514315  0.60117439  0.32514372  0.28        0.2         1.54971179
      0.28        1.0236911   0.33123536  0.4778296   0.62078363  1.25377064
      0.49213262  1.70011842  0.30671734  0.56424761  0.86810689  1.68765055
      0.49551575  0.72837655  0.39240949  1.43802363  0.51563806  0.41983927
      0.37857787  0.45875573  0.97033399  0.38531927  0.54001665  0.89328562
      0.52122532  0.94064256  1.39911631  0.64663655  1.23521006  0.71722741
      0.59460778  0.2         0.63239854  1.86292923  0.2         0.31277737
      0.74650027  0.32415672  0.47975325  1.11611173  0.53433883  0.63352435
      0.23822967  0.93151021  0.5440643   0.69188579  0.97489471  0.51216733
      1.31721331  1.32808547  0.39894203  0.50384137  0.75225633  0.28220146
      1.10818407  0.58685184  1.26437262  0.67929902  0.69678112  1.34428502
      0.61651094  0.43008378  0.7905129   1.35318411  0.2         0.2
      1.6584374   0.98009079  0.27200222  0.3413639   0.23822967  0.27963213
      1.22498499  0.34097559  0.50749002  1.21145838  0.50430676  0.50218939
      0.74232491  0.5335867   0.27254191  0.36031317  0.65344358  0.96712961
      0.53252883  0.86479464  0.59958851  0.82703737  0.68722079  0.52036384
      0.65299724  0.42291513  0.81729152  1.7586996 ]
109 110 111 112 113

    References
    ----------
    .. [pagerank_wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence_pagerank_1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
114
       "The pagerank citation ranking: Bringing order to the web", Technical
115 116 117 118 119
       report, Stanford University, 1998
    """

    if max_iter == None:
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
120 121 122 123 124 125 126 127 128 129
    if prop == None:
        prop = g.new_vertex_property("double")
    ic = libgraph_tool_centrality.\
            get_pagerank(g._Graph__graph, _prop("v", g, prop), damping, epslon,
                         max_iter)
    if ret_iter:
        return prop, ic
    else:
        return prop

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
    r"""
    Calculate the betweenness centrality for each vertex and edge.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    vprop : ProperyMap, optional (default: None)
        Vertex property map to store the vertex betweenness values.
    eprop : ProperyMap, optional (default: None)
        Edge property map to store the edge betweenness values.
    weight : ProperyMap, optional (default: None)
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
149 150 151 152
    vertex_betweenness : A vertex property map with the vertex betweenness
                         values.
    edge_betweenness : An edge property map with the edge betweenness
                       values.
153 154 155 156 157 158 159 160 161 162 163 164

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
    absolute_trust: absolute trust centrality

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

165 166
    .. math::

167 168 169 170 171 172 173 174 175
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

    where :math:`\sigma_{st}` is the number of shortest geodesic paths from s to
    t, and :math:`\sigma_{st}(v)` is the number of shortest geodesic paths from
    s to t that pass through a vertex v.  This may be normalised by dividing
    through the number of pairs of vertices not including v, which is
    :math:`(n-1)(n-2)/2`.

176
    The algorithm used here is defined in [brandes_faster_2001]_, and has a
177 178 179 180 181 182 183
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE + V(V+E)
    \log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
184 185
    >>> from numpy.random import poisson, seed
    >>> seed(42)
186 187 188
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)), seed=42)
    >>> vb, eb = gt.betweenness(g)
    >>> print vb.get_array()
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
    [ 0.03536033  0.03251351  0.00813873  0.00496977  0.          0.08339989
      0.00948258  0.05751528  0.00236377  0.00868464  0.04443961  0.04691023
      0.01768388  0.          0.01130552  0.01277964  0.04223144  0.05040177
      0.01202611  0.0012722   0.00828095  0.11598601  0.01864867  0.01412404
      0.03343004  0.01772387  0.04780278  0.01351748  0.03616999  0.09074218
      0.          0.          0.03901368  0.02526396  0.07471888  0.00219886
      0.          0.          0.01062083  0.07973799  0.          0.01410051
      0.02025676  0.          0.00988767  0.07519014  0.          0.06380861
      0.          0.01954769  0.04576145  0.04151243  0.          0.04198926
      0.0462918   0.07353227  0.00606605  0.02597097  0.02566416  0.00196642
      0.06240786  0.02996611  0.03252566  0.01451141  0.05149852  0.
      0.03582571  0.04600123  0.03776439  0.03326425  0.          0.
      0.11568858  0.01361223  0.00515358  0.007151    0.00241302  0.00271168
      0.01780978  0.01867583  0.02020758  0.01254292  0.00054971  0.00698211
      0.02359226  0.0385241   0.00157871  0.00576513  0.04173662  0.03233332
      0.0208791   0.02286212  0.04366053  0.03701801  0.02142117  0.03099565
      0.02555676  0.03365458  0.03542124  0.06174975]
206 207 208 209 210 211 212

    References
    ----------
    .. [betweenness_wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes_faster_2001] U. Brandes, "A faster algorithm for betweenness
       centrality",  Journal of Mathematical Sociology, 2001
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226
    if vprop == None:
        vprop = g.new_vertex_property("double")
    if eprop == None:
        eprop = g.new_edge_property("double")
    if weight != None and weight.value_type() != eprop.value_type():
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
    libgraph_tool_centrality.\
            get_betweenness(g._Graph__graph, _prop("e", g, weight),
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

def central_point_dominance(g, betweenness):
227 228 229 230 231 232 233 234 235 236 237 238 239 240
    r"""
    Calculate the central point dominance of the graph, given the betweenness
    centrality of each vertex.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    betweenness : ProperyMap
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
241 242
    cp : float
        The central point dominance.
243 244 245 246 247 248 249 250

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
251
    centrality; then, the central point dominance [freeman_set_1977]_ is defined
252 253
    as:

254 255
    .. math::

256 257 258 259 260 261 262 263 264
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
265 266
    >>> from numpy.random import poisson, seed
    >>> seed(42)
267 268 269
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)), seed=42)
    >>> vb, eb = gt.betweenness(g)
    >>> print gt.central_point_dominance(g, vb)
270
    0.0902382147799
271 272 273 274 275 276 277

    References
    ----------
    .. [freeman_set_1977] Linton C. Freeman, "A Set of Measures of Centrality
       Based on Betweenness", Sociometry, Vol. 40, No. 1,  pp. 35-41 (1977)
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
278
    return libgraph_tool_centrality.\
279
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
280 281
                                       _prop("v", g, betweenness))

282 283

def eigentrust(g, trust_map, vprop=None, norm=False, epslon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
284
               ret_iter=False):
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
    g : Graphs
        Graph to be used.
    trust_map : ProperyMap
        Edge property map with the values of trust associated with each
        edge. The values must not lie in the range [0,1].
    vprop : PropertyMap, optional (default: None)
        Vertex property map where the values of eigentrust must be stored.
    norm : bool, optional (default: false)
        Norm eigentrust values so that the total sum equals 1.
    epslon : float, optional (default: 1e-6)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
309
    eigentrust : A vertex property map containing the eigentrust values.
310 311 312 313 314 315 316 317 318 319 320 321

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
    absolute_trust: absolute trust centrality

    Notes
    -----
    The eigentrust _[kamvar_eigentrust_2003] values :math:`t_i` correspond the
    following limit

322 323
    .. math::

324 325 326 327 328
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

329 330
    .. math::

331 332 333 334 335 336 337 338 339 340 341 342 343
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)), seed=42)
    >>> trust = g.new_edge_property("double")
    >>> trust.get_array()[:] = random(g.num_edges())*42
344
    >>> t = gt.eigentrust(g, trust, norm=True)
345
    >>> print t.get_array()
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    [  1.86170852e-02   3.54163528e-03   6.09712602e-04   0.00000000e+00
       0.00000000e+00   3.49545179e-02   0.00000000e+00   2.59814288e-02
       8.41396546e-04   4.78599541e-03   1.01228999e-02   1.43178181e-02
       2.24766294e-03   1.80046830e-02   3.55639433e-03   4.24974765e-03
       1.11631004e-02   3.12332820e-02   6.70174456e-03   1.09689726e-02
       5.42202976e-03   2.51547994e-02   6.87197775e-03   3.90316493e-03
       2.81858126e-03   6.26514036e-03   1.12322993e-02   4.35905749e-03
       1.86938930e-02   1.93055029e-02   3.25522183e-03   9.48081499e-03
       1.84882500e-02   8.17367673e-03   4.02113149e-02   1.07092572e-02
       1.02184616e-02   0.00000000e+00   4.21126174e-03   3.97005433e-02
       0.00000000e+00   6.23025347e-04   1.92797472e-02   5.22705075e-04
       4.07751175e-03   2.11704089e-02   7.49484415e-03   8.10935540e-03
       9.47352873e-05   1.74518912e-02   1.18865927e-02   8.49808309e-03
       8.07449129e-03   6.04464513e-03   1.31497182e-02   1.61277706e-02
       3.45965628e-03   9.28003800e-03   5.81189874e-03   2.67273946e-03
       1.33359267e-02   3.99664807e-03   1.45641237e-02   2.06551771e-03
       1.89334085e-02   2.44376969e-02   7.44521415e-03   6.35266998e-03
       9.90439343e-03   2.61315207e-02   0.00000000e+00   0.00000000e+00
       4.08351424e-02   1.21805039e-02   3.45041723e-03   1.84601840e-03
       1.09623699e-03   2.37115682e-03   1.70221593e-02   4.57709422e-03
       4.21193747e-03   2.26493986e-02   3.92636239e-03   2.42441556e-03
       7.41276227e-03   7.01899189e-03   3.30982461e-03   4.18470116e-04
       8.46801514e-03   9.05050341e-03   5.09784610e-03   3.20304076e-02
       6.71276214e-03   5.26109355e-03   5.29170118e-03   3.46248974e-03
       1.10436337e-02   2.20158077e-03   1.26859707e-02   2.25728004e-02]
371 372 373 374 375 376 377 378 379

    References
    ----------
    .. [kamvar_eigentrust_2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
       Pages: 640 - 651, 2003
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
380 381
    if vprop == None:
        vprop = g.new_vertex_property("double")
382 383 384 385 386 387 388 389 390 391 392
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
                          _prop("v", g, vprop), epslon, max_iter)
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

393 394
def absolute_trust(g, trust_map, source=None, vprop=None, n_iter=100,
                   reversed=False, seed=None):
395
    r"""
396 397
    Samples the absolute trust centrality of each vertex in the graph, or only
    for a given source, if one is provided.
398 399 400 401 402 403 404 405

    Parameters
    ----------
    g : Graphs
        Graph to be used.
    trust_map : ProperyMap
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
406 407 408
    source : Vertex, optional (default: None)
        A vertex which is used the as the sole source for gathering trust
        values, instead of all the vertices in the graph.
409 410
    vprop : PropertyMap, optional (default: None)
        Vertex property map where the values of eigentrust must be stored.
411 412 413
    n_iter : int, optional (default: 100)
        Number of iterations (independent self-avoiding walks) per source
        vertex.
414 415 416 417
    reversed : bool, optional (default: False)
        Calculates the "reversed" trust instead: The direction of the edges are
        inverted, but the path weighting is preserved in the original direction
        (see Notes below).
418 419 420 421 422 423
    seed : int, optional (default: None)
         The initializing seed for the random number generator. If not supplied
         a different random value will be chosen each time.

    Returns
    -------
424 425
    absolute_trust : PropertyMap
        A vertex property map containing the absolute trust vector from the
426
        corresponding vertex to the rest of the network. Each element i of the
427 428
        vector is the trust value of the vertex with index i, from the given
        vertex.
429

430 431
        If the parameter "source" is specified, the values of the
        property map are scalars, instead of vectors.
432

433 434 435 436 437 438 439 440 441 442
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
    The absolute trust between vertices i and j is defined as

443 444
    .. math::

Tiago Peixoto's avatar
Tiago Peixoto committed
445 446
        t_{ij} = \frac{1}{\sum_{\{i\to j\}}w_{\{i\to j\}}}\sum_{\{i\to j\}}
                 w_{\{i\to j\}} \prod_{e\in \{i\to j\}}c_e
447

Tiago Peixoto's avatar
Tiago Peixoto committed
448 449 450 451
    where the sum is taken over all paths from i to j (without loops),
    :math:`c_e` is the direct trust value associated with edge e, and
    :math:`w_{\{i\to j\}}` is the weight of a given path, which is defined as

452 453
    .. math::

Tiago Peixoto's avatar
Tiago Peixoto committed
454 455 456
       w_{\{i\to j\}} = \prod_{e\in \{i\to j\}}\{\delta_{t(e),j}(1-c_e) + c_e\},

    such that the direct trust of the last edge on the path is not considered.
457

458 459 460 461 462 463 464 465
    The algorithm performs only an approximation of the above measure, by doing
    several self-avoiding random walks per source vertex, and computing the
    trust for all different paths found. Each complete walk is done by one of
    three types of biased choices, which govern the probability of following a
    specific edge: 1. With probability proportional to an edge's trust value;
    2. With probability proportional to the complement of an edge's trust value
    :math:`(1-t_{e})`; 3. All edges with equal probability. The parameter
    "n_iter" controls how many walks of each type are performed.
466 467 468 469 470 471 472 473 474 475

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)), seed=42)
    >>> trust = g.new_edge_property("double")
    >>> trust.get_array()[:] = random(g.num_edges())
Tiago Peixoto's avatar
Tiago Peixoto committed
476
    >>> t = gt.absolute_trust(g, trust)
477
    >>> print array(t[g.vertex(10)])
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    [  4.34269834e-01   1.84086073e-02   2.71138999e-03   0.00000000e+00
       0.00000000e+00   2.34151772e-01   0.00000000e+00   2.74629641e-01
       3.82398108e-02   3.51593064e-03   0.00000000e+00   2.25062582e-03
       7.34404022e-02   3.02164679e-02   1.10468968e-01   3.36602968e-01
       1.43712489e-01   1.09583017e-02   9.97860841e-03   6.20179844e-03
       3.92453395e-03   5.93950226e-01   2.42696614e-01   1.10854185e-02
       5.30694827e-02   8.71279579e-02   1.71495793e-01   4.53369014e-01
       4.08880943e-01   2.43222424e-01   2.31048774e-02   1.97243934e-01
       2.28690841e-02   3.89067069e-01   5.65879939e-01   2.64268559e-01
       1.02377787e-02   0.00000000e+00   2.24908740e-01   1.37897878e-01
       0.00000000e+00   3.84890236e-02   1.36013255e-01   1.13238046e-01
       4.42613337e-02   1.54047730e-01   7.26844315e-04   9.74848849e-01
       2.01388742e-03   2.98355979e-01   5.06984528e-01   1.99649387e-01
       2.77657386e-02   4.29460962e-01   1.02848076e-01   4.89428001e-02
       8.00972222e-02   1.44641703e-01   5.47481542e-02   6.50547255e-01
       8.27105379e-02   1.39682293e-01   1.53401434e-01   1.86305773e-03
       1.10090329e-01   1.66675096e-01   6.19209248e-01   4.98140945e-01
       2.94691587e-01   2.72221755e-01   0.00000000e+00   0.00000000e+00
       3.26706417e-01   4.91620740e-02   1.97732120e-01   5.43678807e-01
       3.22718844e-01   3.99852058e-03   1.28240520e-01   5.80458086e-02
       6.15485883e-04   2.65672284e-01   1.44784379e-01   5.08912552e-02
       1.02175200e-01   2.88217333e-01   4.58941581e-01   2.21592754e-04
       2.43926919e-01   2.29463331e-01   2.23860692e-02   3.96450827e-01
       1.50189446e-01   3.84811442e-02   1.43428384e-01   1.96921016e-02
       4.77979398e-01   7.78812012e-02   5.56363349e-01   2.12033381e-01]
503
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
504 505 506 507

    if seed != 0:
        seed = numpy.random.randint(0, sys.maxint)
    if vprop == None:
508 509 510 511 512 513 514
        if source == None:
            vprop = g.new_vertex_property("vector<double>")
        else:
            vprop = g.new_vertex_property("double")

    if source != None:
        vprop_temp = vprop
Tiago Peixoto's avatar
Tiago Peixoto committed
515
        vprop = g.new_vertex_property("vector<double>")
516 517 518 519
        source = g.vertex_index[source]
    else:
        source = -1

520 521 522 523
    if reversed:
        g.stash_filter(reversed=True)
        g.set_reversed(True)

524
    libgraph_tool_centrality.\
525 526
            get_absolute_trust(g._Graph__graph, source,
                               _prop("e", g, trust_map), _prop("v", g, vprop),
527
                               n_iter, reversed, seed)
528 529 530
    if reversed:
        g.pop_filter(reversed=True)

531 532 533 534
    if source != -1:
        vprop_temp.get_array()[:] = numpy.array(vprop[g.vertex(source)])
        vprop = vprop_temp

535
    return vprop
Tiago Peixoto's avatar
Tiago Peixoto committed
536