__init__.py 30.5 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2019 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.draw`` - Graph drawing and layout
----------------------------------------------
24
25
26
27

Summary
+++++++

28
29
30
Layout algorithms
=================

31
32
33
.. autosummary::
   :nosignatures:

Tiago Peixoto's avatar
Tiago Peixoto committed
34
   sfdp_layout
35
   fruchterman_reingold_layout
36
   arf_layout
Tiago Peixoto's avatar
Tiago Peixoto committed
37
   radial_tree_layout
Tiago Peixoto's avatar
Tiago Peixoto committed
38
   planar_layout
39
   random_layout
40
41
42
43
44
45
46
47

Graph drawing
=============

.. autosummary::
   :nosignatures:

   graph_draw
48
   draw_hierarchy
Tiago Peixoto's avatar
Tiago Peixoto committed
49
   graphviz_draw
50
   prop_to_size
51
   get_hierarchy_control_points
52

53
54
55
56
57
58
59
60
61
62
63
64

Low-level graph drawing
^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:

   cairo_draw
   interactive_window
   GraphWidget
   GraphWindow

65
66
Contents
++++++++
67
68
"""

69
70
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
71
from .. import Graph, GraphView, _check_prop_vector, group_vector_property, \
72
     ungroup_vector_property, infect_vertex_property, _prop, _get_rng
Tiago Peixoto's avatar
Tiago Peixoto committed
73
from .. topology import max_cardinality_matching, max_independent_vertex_set, \
Tiago Peixoto's avatar
Tiago Peixoto committed
74
75
    label_components, pseudo_diameter, shortest_distance, make_maximal_planar, \
    is_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
76
from .. stats import label_parallel_edges
77
from .. generation import predecessor_tree, condensation_graph
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
import numpy.random
from numpy import sqrt
80
import sys
81
82

from .. dl_import import dl_import
83
dl_import("from . import libgraph_tool_layout")
84

85

Tiago Peixoto's avatar
Tiago Peixoto committed
86
__all__ = ["graph_draw", "graphviz_draw", "fruchterman_reingold_layout",
Tiago Peixoto's avatar
Tiago Peixoto committed
87
88
89
           "arf_layout", "sfdp_layout", "planar_layout", "random_layout",
           "radial_tree_layout", "cairo_draw", "prop_to_size",
           "get_hierarchy_control_points", "default_cm"]
90

Tiago Peixoto's avatar
Tiago Peixoto committed
91

92
def random_layout(g, shape=None, pos=None, dim=2):
93
94
95
96
    r"""Performs a random layout of the graph.

    Parameters
    ----------
97
    g : :class:`~graph_tool.Graph`
98
        Graph to be used.
99
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
100
101
102
103
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
104
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
105
        Vector vertex property maps where the coordinates should be stored.
106
    dim : int (optional, default: ``2``)
107
108
109
110
        Number of coordinates per vertex.

    Returns
    -------
111
    pos : :class:`~graph_tool.VertexPropertyMap`
112
113
        A vector-valued vertex property map with the coordinates of the
        vertices.
114
115
116
117

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
118
119
120

    Examples
    --------
121
122
123
124
125
126
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
127
128
129
130
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
Tiago Peixoto's avatar
Tiago Peixoto committed
131
    array([68.72700594,  1.03142919,  2.56812658])
Tiago Peixoto's avatar
Tiago Peixoto committed
132

133
134
    """

135
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
136
137
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
138

139
    pos = ungroup_vector_property(pos, list(range(0, dim)))
140

141
    if shape is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
142
        shape = [sqrt(g.num_vertices())] * dim
143

144
    for i in range(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
145
146
147
148
149
150
151
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
152
153

        # deal with filtering
154
155
        p = pos[i].fa
        pos[i].fa = numpy.random.random(len(p)) * d + r[0]
156

Tiago Peixoto's avatar
Tiago Peixoto committed
157
    pos = group_vector_property(pos)
158
159
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
160

Tiago Peixoto's avatar
Tiago Peixoto committed
161
162
163
164
165
166
167
def planar_layout(g, pos=None):
    r"""Performs a canonical layout of a planar graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Planar graph to be used.
168
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
169
170
171
172
        Vector vertex property maps where the coordinates should be stored.

    Returns
    -------
173
    pos : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm has complexity :math:`O(V + E)`.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> pos = gt.planar_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="lattice-planar.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="lattice-planar.png")

    .. figure:: lattice-planar.*
        :align: center

        Straight-line drawing of planar graph (a 2D square lattice).

    References
    ----------
200
    .. [straight-line-boost] http://www.boost.org/doc/libs/release/libs/graph/doc/straight_line_drawing.html
Tiago Peixoto's avatar
Tiago Peixoto committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    .. [chrobak-linear-1995] M. Chrobak, T. Payne, "A Linear-time Algorithm for
       Drawing a Planar Graph on the Grid", Information Processing Letters 54:
       241-246, (1995), :doi:`10.1016/0020-0190(95)00020-D`
    """

    if g.num_vertices() < 3:
        raise ValueError("Graph must have at least 3 vertices.")
    if not is_planar(g):
        raise ValueError("Graph is not planar.")
    u = Graph(GraphView(g, directed=False, skip_properties=True))
    make_maximal_planar(u)
    embed = is_planar(u, embedding=True)[1]
    if pos is None:
        pos = u.new_vp("vector<double>")
    make_maximal_planar(u)
    libgraph_tool_layout.planar_layout(u._Graph__graph,
                                       _prop("v", u, embed),
                                       _prop("v", u, pos))
    pos = g.own_property(pos)
    return pos


223
224
225
226
227
228
229
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
230
    g : :class:`~graph_tool.Graph`
231
        Graph to be used.
232
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
233
234
235
236
237
238
239
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
240
241
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
242
        will be a square.
243
244
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
245
        the same site on a grid. Otherwise they will act on all vertex pairs.
246
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
247
248
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
249
    n_iter : int (optional, default: ``100``)
250
        Total number of iterations.
251
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
252
253
254
255
256
257
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
258
    pos : :class:`~graph_tool.VertexPropertyMap`
259
260
        A vector-valued vertex property map with the coordinates of the
        vertices.
261
262
263
264

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
265
266
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
267
268
269

    Examples
    --------
270
271
272
273
274
275
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

276
277
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
278
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-fr.pdf")
279
280
    <...>

281
282
283
284
285
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-fr.png")

286
    .. figure:: graph-draw-fr.*
287
288
289
290
291
292
293
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
294
295
       "Graph Drawing by Force-Directed Placement". Software - Practice & Experience
       (Wiley) 21 (11): 1129-1164. (1991) :doi:`10.1002/spe.4380211102`
296
297
    """

298
    if pos is None:
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
322
               max_iter=1000, pos=None, dim=2):
323
324
    r"""Calculate the ARF spring-block layout of the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
325
326
327
328
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
329
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
330
331
332
333
334
335
336
337
338
339
340
341
        An edge property map with the respective weights.
    d : float (optional, default: ``0.5``)
        Opposing force between vertices.
    a : float (optional, default: ``10``)
        Attracting force between adjacent vertices.
    dt : float (optional, default: ``0.001``)
        Iteration step size.
    epsilon : float (optional, default: ``1e-6``)
        Convergence criterion.
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
        convergence.
342
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
343
344
345
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: ``2``)
        Number of coordinates per vertex.
Tiago Peixoto's avatar
Tiago Peixoto committed
346
347
348

    Returns
    -------
349
    pos : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
350
351
352
353
354
355
356
357
358
359
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm is defined in [geipel-self-organization-2007]_, and has
    complexity :math:`O(V^2)`.

    Examples
    --------
360
361
362
363
364
365
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
366
367
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
368
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-arf.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
369
370
    <...>

371
372
373
374
375
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-arf.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    .. figure:: graph-draw-arf.*
        :align: center

        ARF layout of a Price network.

    References
    ----------
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

    if pos is None:
391
        pos = random_layout(g, dim=dim)
Tiago Peixoto's avatar
Tiago Peixoto committed
392
393
394
395
396
397
398
399
400
    _check_prop_vector(pos, name="pos", floating=True)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    return pos


401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
def _coarse_graph(g, vweight, eweight, mivs=False, groups=None):
    if groups is None:
        if mivs:
            mivs = max_independent_vertex_set(g, high_deg=True)
            u = GraphView(g, vfilt=mivs, directed=False)
            c = label_components(u)[0]
            c.fa += 1
            u = GraphView(g, directed=False)
            infect_vertex_property(u, c,
                                   list(range(1, c.fa.max() + 1)))
            c = g.own_property(c)
        else:
            mivs = None
            m = max_cardinality_matching(GraphView(g, directed=False),
                                         heuristic=True, weight=eweight,
416
                                         minimize=False, edges=True)
417
418
419
420
            u = GraphView(g, efilt=m, directed=False)
            c = label_components(u)[0]
            c = g.own_property(c)
            u = GraphView(g, directed=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
421
422
    else:
        mivs = None
423
        c = groups
424
    cg, cc, vcount, ecount = condensation_graph(g, c, vweight, eweight)[:4]
Tiago Peixoto's avatar
Tiago Peixoto committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    return cg, cc, vcount, ecount, c, mivs


def _propagate_pos(g, cg, c, cc, cpos, delta, mivs):
    pos = g.new_vertex_property(cpos.value_type())

    if mivs is not None:
        g = GraphView(g, vfilt=mivs)
    libgraph_tool_layout.propagate_pos(g._Graph__graph,
                                       cg._Graph__graph,
                                       _prop("v", g, c),
                                       _prop("v", cg, cc),
                                       _prop("v", g, pos),
                                       _prop("v", cg, cpos),
                                       delta if mivs is None else 0,
440
                                       _get_rng())
441

Tiago Peixoto's avatar
Tiago Peixoto committed
442
443
444
445
446
447
448
    if mivs is not None:
        g = g.base
        u = GraphView(g, directed=False)
        try:
            libgraph_tool_layout.propagate_pos_mivs(u._Graph__graph,
                                                    _prop("v", u, mivs),
                                                    _prop("v", u, pos),
449
                                                    delta, _get_rng())
Tiago Peixoto's avatar
Tiago Peixoto committed
450
451
452
453
454
455
        except ValueError:
            graph_draw(u, mivs, vertex_fillcolor=mivs)
    return pos


def _avg_edge_distance(g, pos):
456
    libgraph_tool_layout.sanitize_pos(g._Graph__graph, _prop("v", g, pos))
457
    ad = libgraph_tool_layout.avg_dist(g._Graph__graph, _prop("v", g, pos))
458
    if numpy.isnan(ad) or ad == 0:
459
460
        ad = 1.
    return ad
Tiago Peixoto's avatar
Tiago Peixoto committed
461
462
463


def coarse_graphs(g, method="hybrid", mivs_thres=0.9, ec_thres=0.75,
464
                  weighted_coarse=False, eweight=None, vweight=None,
465
                  groups=None, verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
466
    cg = [[g, None, None, None, None, None]]
467
468
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
Tiago Peixoto's avatar
Tiago Peixoto committed
469
470
    mivs = not (method in ["hybrid", "ec"])
    while True:
471
472
        u = _coarse_graph(cg[-1][0], cg[-1][2], cg[-1][3], mivs, groups)
        groups = None
473
474
475
        thres = mivs_thres if mivs else ec_thres
        if u[0].num_vertices() >= thres * cg[-1][0].num_vertices():
            if method == "hybrid" and not mivs:
Tiago Peixoto's avatar
Tiago Peixoto committed
476
477
478
479
480
481
482
                mivs = True
            else:
                break
        if u[0].num_vertices() <= 2:
            break
        cg.append(u)
        if verbose:
483
484
485
            print("Coarse level (%s):" % ("MIVS" if mivs else "EC"), end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u[0].num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
486
487
488
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
489
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
490
491
492
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
493
494
            if K == 0:
                K = 1.
Tiago Peixoto's avatar
Tiago Peixoto committed
495
496
497
498
499
500
501
502
503
504
505
506
507
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

508
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
509
510
511
512
        u, cc, vcount, ecount, c, mivs = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
513
            print("avg edge distance:", _avg_edge_distance(u, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
514
515
516

        if i < len(cg) - 1:
            if verbose:
517
518
                print("propagating...", end=' ')
                print(mivs.a.sum() if mivs is not None else "")
Tiago Peixoto's avatar
Tiago Peixoto committed
519
            pos = _propagate_pos(cg[i + 1][0], u, c, cc, pos,
520
                                 Ks[i] / 1000., mivs)
Tiago Peixoto's avatar
Tiago Peixoto committed
521

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def coarse_graph_stack(g, c, coarse_stack, eweight=None, vweight=None,
                       weighted_coarse=True, verbose=False):
    cg = [[g, c, None, None]]
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
    for u in coarse_stack:
        c = u.vp["b"]
        vcount = u.vp["count"]
        ecount = u.ep["count"]
        cg.append((u, c, vcount, ecount))
        if verbose:
            print("Coarse level:", end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u.num_vertices())
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
    for i in range(len(cg)):
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
            if K == 0:
                K = 1.
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

    for i in range(len(cg)):
        u, c, vcount, ecount = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
            print("avg edge distance:", _avg_edge_distance(u, pos))

        if i < len(cg) - 1:
            if verbose:
                print("propagating...")
            pos = _propagate_pos(cg[i + 1][0], u, c, u.vertex_index.copy("int"),
                                 pos, Ks[i] / 1000., None)

Tiago Peixoto's avatar
Tiago Peixoto committed
571

572
def sfdp_layout(g, vweight=None, eweight=None, pin=None, groups=None, C=0.2,
573
                K=None, p=2., theta=0.6, max_level=15, gamma=1., mu=0., mu_p=1.,
574
                init_step=None, cooling_step=0.95, adaptive_cooling=True,
575
                epsilon=1e-2, max_iter=0, pos=None, multilevel=None,
576
577
                coarse_method="hybrid", mivs_thres=0.9, ec_thres=0.75,
                coarse_stack=None, weighted_coarse=False, verbose=False):
578
    r"""Obtain the SFDP spring-block layout of the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
579

580
581
    Parameters
    ----------
582
    g : :class:`~graph_tool.Graph`
583
        Graph to be used.
584
    vweight : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
585
        A vertex property map with the respective weights.
586
    eweight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
587
        An edge property map with the respective weights.
588
    pin : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
589
590
        A vertex property map with boolean values, which, if given,
        specify the vertices which will not have their positions modified.
591
    groups : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
592
593
        A vertex property map with group assignments. Vertices belonging to the
        same group will be put close together.
594
595
596
597
598
599
600
601
    C : float (optional, default: ``0.2``)
        Relative strength of repulsive forces.
    K : float (optional, default: ``None``)
        Optimal edge length. If not provided, it will be taken to be the average
        edge distance in the initial layout.
    p : float (optional, default: ``2``)
        Repulsive force exponent.
    theta : float (optional, default: ``0.6``)
602
        Quadtree opening parameter, a.k.a. Barnes-Hut opening criterion.
603
    max_level : int (optional, default: ``15``)
604
605
        Maximum quadtree level.
    gamma : float (optional, default: ``1.0``)
606
607
608
609
610
611
612
613
        Strength of the attractive force between connected components, or group
        assignments.
    mu : float (optional, default: ``0.0``)
        Strength of the attractive force between vertices of the same connected
        component, or group assignment.
    mu_p : float (optional, default: ``1.0``)
        Scaling exponent of the attractive force between vertices of the same
        connected component, or group assignment.
614
615
    init_step : float (optional, default: ``None``)
        Initial update step. If not provided, it will be chosen automatically.
616
    cooling_step : float (optional, default: ``0.95``)
617
618
619
        Cooling update step.
    adaptive_cooling : bool (optional, default: ``True``)
        Use an adaptive cooling scheme.
620
    epsilon : float (optional, default: ``0.01``)
621
622
        Relative convergence criterion.
    max_iter : int (optional, default: ``0``)
623
        Maximum number of iterations. If this value is ``0``, it runs until
624
        convergence.
625
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        Initial vertex layout. If not provided, it will be randomly chosen.
    multilevel : bool (optional, default: ``None``)
        Use a multilevel layout algorithm. If ``None`` is given, it will be
        activated based on the size of the graph.
    coarse_method : str (optional, default: ``"hybrid"``)
        Coarsening method used if ``multilevel == True``. Allowed methods are
        ``"hybrid"``, ``"mivs"`` and ``"ec"``.
    mivs_thres : float (optional, default: ``0.9``)
        If the relative size of the MIVS coarse graph is above this value, the
        coarsening stops.
    ec_thres : float (optional, default: ``0.75``)
        If the relative size of the EC coarse graph is above this value, the
        coarsening stops.
    weighted_coarse : bool (optional, default: ``False``)
        Use weighted coarse graphs.
    verbose : bool (optional, default: ``False``)
        Provide verbose information.
643
644
645

    Returns
    -------
646
    pos : :class:`~graph_tool.VertexPropertyMap`
647
648
        A vector-valued vertex property map with the coordinates of the
        vertices.
649
650
651

    Notes
    -----
652
653
    This algorithm is defined in [hu-multilevel-2005]_, and has
    complexity :math:`O(V\log V)`.
654
655
656

    Examples
    --------
657
658
659
660
661
662
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

663
664
665
    >>> g = gt.price_network(3000)
    >>> pos = gt.sfdp_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.pdf")
666
667
    <...>

668
669
670
671
672
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.png")

673
    .. figure:: graph-draw-sfdp.*
674
675
        :align: center

676
        SFDP layout of a Price network.
677
678
679

    References
    ----------
680
681
682
    .. [hu-multilevel-2005] Yifan Hu, "Efficient and High Quality Force-Directed
       Graph", Mathematica Journal, vol. 10, Issue 1, pp. 37-71, (2005)
       http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
683
684
    """

685
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
686
        pos = random_layout(g, dim=2)
687
688
    _check_prop_vector(pos, name="pos", floating=True)

689
    g_ = g
Tiago Peixoto's avatar
Tiago Peixoto committed
690
691
    g = GraphView(g, directed=False)

692
693
694
695
696
    if pin is not None:
        if pin.value_type() != "bool":
            raise ValueError("'pin' property must be of type 'bool'.")
    else:
        pin = g.new_vertex_property("bool")
Tiago Peixoto's avatar
Tiago Peixoto committed
697
698

    if K is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
699
        K = _avg_edge_distance(g, pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
700
701

    if init_step is None:
702
        init_step = 2 * max(_avg_edge_distance(g, pos), K)
Tiago Peixoto's avatar
Tiago Peixoto committed
703
704
705
706
707

    if multilevel is None:
        multilevel = g.num_vertices() > 1000

    if multilevel:
708
709
        if eweight is not None or vweight is not None:
            weighted_coarse = True
710
711
712
713
714
715
716
717
718
719
720
721
722
        if coarse_stack is None:
            cgs = coarse_graphs(g, method=coarse_method,
                                mivs_thres=mivs_thres,
                                ec_thres=ec_thres,
                                weighted_coarse=weighted_coarse,
                                eweight=eweight,
                                vweight=vweight,
                                groups=groups,
                                verbose=verbose)
        else:
            cgs = coarse_graph_stack(g, coarse_stack[0], coarse_stack[1],
                                     eweight=eweight, vweight=vweight,
                                     verbose=verbose)
723
        for count, (u, pos, K, vcount, ecount) in enumerate(cgs):
Tiago Peixoto's avatar
Tiago Peixoto committed
724
            if verbose:
725
726
                print("Positioning level:", count, u.num_vertices(), end=' ')
                print("with K =", K, "...")
Tiago Peixoto's avatar
Tiago Peixoto committed
727
728
729
730
                count += 1
            pos = sfdp_layout(u, pos=pos,
                              vweight=vcount if weighted_coarse else None,
                              eweight=ecount if weighted_coarse else None,
731
                              groups=None if u.num_vertices() < g.num_vertices() else groups,
Tiago Peixoto's avatar
Tiago Peixoto committed
732
                              C=C, K=K, p=p,
733
734
                              theta=theta, gamma=gamma, mu=mu, mu_p=mu_p,
                              epsilon=epsilon,
Tiago Peixoto's avatar
Tiago Peixoto committed
735
736
737
                              max_iter=max_iter,
                              cooling_step=cooling_step,
                              adaptive_cooling=False,
738
739
                              # init_step=max(2 * K,
                              #               _avg_edge_distance(u, pos)),
Tiago Peixoto's avatar
Tiago Peixoto committed
740
741
                              multilevel=False,
                              verbose=False)
742
        pos = g_.own_property(pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
743
744
745
746
747
748
749
750
751
752
753
        return pos

    if g.num_vertices() <= 1:
        return pos
    if g.num_vertices() == 2:
        vs = [g.vertex(0, False), g.vertex(1, False)]
        pos[vs[0]] = [0, 0]
        pos[vs[1]] = [1, 1]
        return pos
    if g.num_vertices() <= 50:
        max_level = 0
754
755
756
757
    if groups is None:
        groups = label_components(g)[0]
    elif groups.value_type() != "int32_t":
        raise ValueError("'groups' property must be of type 'int32_t'.")
758
    libgraph_tool_layout.sanitize_pos(g._Graph__graph, _prop("v", g, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
759
760
761
    libgraph_tool_layout.sfdp_layout(g._Graph__graph, _prop("v", g, pos),
                                     _prop("v", g, vweight),
                                     _prop("e", g, eweight),
762
                                     _prop("v", g, pin),
763
                                     (C, K, p, gamma, mu, mu_p, _prop("v", g, groups)),
764
                                     theta, init_step, cooling_step, max_level,
Tiago Peixoto's avatar
Tiago Peixoto committed
765
                                     epsilon, max_iter, not adaptive_cooling,
766
                                     verbose, _get_rng())
767
    pos = g_.own_property(pos)
768
    return pos
Tiago Peixoto's avatar
Tiago Peixoto committed
769

770
771
def radial_tree_layout(g, root, rel_order=None, rel_order_leaf=False,
                       weighted=False, node_weight=None, r=1.):
Tiago Peixoto's avatar
Tiago Peixoto committed
772
773
774
775
776
777
778
779
780
    r"""Computes a radial layout of the graph according to the minimum spanning
    tree centered at the ``root`` vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex` or ``int``
        The root of the radial tree.
781
    rel_order : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
782
        Relative order of the nodes at each respective branch.
783
784
785
    rel_order_leaf : ``bool`` (optional, default: ``False``)
        If ``True``, the relative order of the leafs will propagate to the
        root. Otherwise they will propagate in the opposite direction.
Tiago Peixoto's avatar
Tiago Peixoto committed
786
787
788
    weighted : ``bool`` (optional, default: ``False``)
        If true, the angle between the child branches will be computed according
        to weight of the entire sub-branches.
789
    node_weight : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
790
791
        If given, the relative spacing between leafs will correspond to the node
        weights.
Tiago Peixoto's avatar
Tiago Peixoto committed
792
793
794
795
796
    r : ``float`` (optional, default: ``1.``)
        Layer spacing.

    Returns
    -------
797
    pos : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
798
799
800
801
802
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
803
804
    This algorithm has complexity :math:`O(V + E)`, or :math:`O(V\log V + E)` if
    ``rel_order`` is given.
Tiago Peixoto's avatar
Tiago Peixoto committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835

    Examples
    --------
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.price_network(1000)
    >>> pos = gt.radial_tree_layout(g, g.vertex(0))
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-radial.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-radial.png")

    .. figure:: graph-draw-radial.*
        :align: center

        Radial tree layout of a Price network.

    """

    levels, pred_map = shortest_distance(GraphView(g, directed=False), root,
                                         pred_map=True)
    t = predecessor_tree(g, pred_map)
    pos = t.new_vertex_property("vector<double>")
    levels = t.own_property(levels)
836
837
    if rel_order is None:
        rel_order = g.vertex_index.copy("int")
838
839
840
841
    if node_weight is None:
        node_weight = g.new_vertex_property("double", 1)
    elif node_weight.value_type() != "double":
        node_weight = node_weight.copy("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
842
    libgraph_tool_layout.get_radial(t._Graph__graph,
843
844
                                    _prop("v", t, pos),
                                    _prop("v", t, levels),
845
                                    _prop("v", g, rel_order),
846
                                    _prop("v", g, node_weight),
847
848
                                    int(root), weighted, r,
                                    rel_order_leaf)
Tiago Peixoto's avatar
Tiago Peixoto committed
849
850
    return g.own_property(pos)

851
852
853
854
855
856
def prop_to_size(prop, mi=0, ma=5, log=False, power=0.5):
    r"""Convert property map values to be more useful as a vertex size, or edge
    width. The new values are taken to be

    .. math::

857
        y = mi + (ma - mi) \left(\frac{x_i - \min(x)} {\max(x) - \min(x)}\right)^\text{power}
858

859
    If ``log=True``, the natural logarithm of the property values is used instead.
860
861
862
863
864
865
866
867

    """
    prop = prop.copy(value_type="double")
    if log:
        vals = numpy.log(prop.fa)
    else:
        vals = prop.fa

868
    delta = vals.max() - vals.min()
869
870
871
872
    if delta == 0:
        delta = 1
    prop.fa = mi + (ma - mi) * ((vals - vals.min()) / delta) ** power
    return prop
873
874

try:
875
    from . cairo_draw import graph_draw, cairo_draw, get_hierarchy_control_points, default_cm
876
877
878
879
except ImportError:
    pass

try:
880
    from . cairo_draw import GraphWidget, GraphWindow, \
881
882
883
884
885
886
        interactive_window, draw_hierarchy
    __all__ += ["interactive_window", "GraphWidget", "GraphWindow", "draw_hierarchy"]
except ImportError:
    pass

try:
887
   from . graphviz_draw import graphviz_draw
888
889
except ImportError:
   pass