__init__.py 36.2 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Important functions for assessing graph topology
--------------------------------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
33
   similarity
34
   isomorphism
35
36
   subgraph_isomorphism
   mark_subgraph
37
38
39
40
41
42
   min_spanning_tree
   dominator_tree
   topological_sort
   transitive_closure
   label_components
   label_biconnected_components
43
   label_largest_component
44
   is_planar
45
46
47

Contents
++++++++
48

49
50
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
51
from .. dl_import import dl_import
52
dl_import("import libgraph_tool_topology")
53

54
from .. import _prop, Vector_int32_t, _check_prop_writable, \
55
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView
56
57
58
import random, sys, numpy, weakref
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
           "min_spanning_tree", "dominator_tree", "topological_sort",
59
           "transitive_closure", "label_components", "label_largest_component",
60
           "label_biconnected_components", "shortest_distance",
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
           "shortest_path", "is_planar", "similarity"]


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
        second graph to be compared.
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
    0.03333333333333333
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
124

Tiago Peixoto's avatar
Tiago Peixoto committed
125

126
def isomorphism(g1, g2, isomap=False):
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

145
    """
146
147
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
148
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
149
                             _prop("v", g1, imap))
150
151
152
153
154
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
155

156
def subgraph_isomorphism(sub, g, max_n=0, random=True):
157
    r"""
158
159
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
160

161
162
163
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

164
165
166
167
168
169
170
171
172
173
174
175
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
    >>> print len(vm)
176
    118
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    >>> for i in xrange(len(vm)):
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a *= 1.5
    >>> ewidth.a += 0.5
    >>> gt.graph_draw(g, vcolor=vmask, ecolor=emask, penwidth=ewidth,
    ...               output="subgraph-iso-embed.png")
    <...>
    >>> gt.graph_draw(sub, output="subgraph-iso.png")
    <...>

    .. image:: subgraph-iso.png
    .. image:: subgraph-iso-embed.png

    *Left:* Subgraph searched, *Right:* One isomorphic subgraph found in main
     graph.

    Notes
    -----
203
204
205
206
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
207
208
209

    References
    ----------
210
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
211
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
212
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
213
214
215
216

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
217
218
    vlabels=(None, None)
    elabels=(None, None)
219
220
    vmaps = []
    emaps = []
221
222
223
224
    if random:
        seed = numpy.random.randint(0, sys.maxint)
    else:
        seed = 42
225
226
227
228
229
230
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
231
                                vmaps, emaps, max_n, seed)
232
233
234
235
236
    for i in xrange(len(vmaps)):
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
237

238
239
240
241
242
243
244
245
246
247
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
248
    `sub`.
249
    """
250
    if vmask is None:
251
        vmask = g.new_vertex_property("bool")
252
    if emask is None:
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
267

Tiago Peixoto's avatar
Tiago Peixoto committed
268

269
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
270
271
272
273
274
275
276
277
278
279
280
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: None)
281
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        is used. Otherwise, Kruskal's algorithm is used.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
299
    >>> from numpy.random import seed, random
300
    >>> seed(42)
301
302
303
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
304
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
305
    >>> tree = gt.min_spanning_tree(g, weights=weight)
Tiago Peixoto's avatar
Tiago Peixoto committed
306
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_orig.png")
307
308
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
309
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_min_span_tree.png")
310
311
312
313
    <...>


    .. image:: triang_orig.png
Tiago Peixoto's avatar
Tiago Peixoto committed
314
315
316
        :width: 400px
    .. image:: triang_min_span_tree.png
        :width: 400px
317
318

    *Left:* Original graph, *Right:* The minimum spanning tree.
319
320
321
322
323

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
324
325
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
326
327
328
329
330
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
331
    if tree_map is None:
332
333
334
335
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
351
    return tree_map
352

Tiago Peixoto's avatar
Tiago Peixoto committed
353

Tiago Peixoto's avatar
Tiago Peixoto committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
386
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
387
388
    >>> dom = gt.dominator_tree(g, root[0])
    >>> print dom.a
389
390
391
392
    [ 0  0 33 81  0  6  0  0  0  0  0 33  0  0  0  0  0  0  0  0  0  0  0  0  0
      0  0 67  0  0  5  0  0 81  0  0  0  0 87  0  0  0  0  0  0  0  0  0  0  0
      0 80  0  0  0  0  0 99  0  0  0  0  0  0  0  0  0  3  0  0  0  0  0  0  0
      0  0  0  0  0  0  5 11  0  0  0  0 88 30  0  0  0  0  0  0  0  0  0  0 84]
Tiago Peixoto's avatar
Tiago Peixoto committed
393
394
395

    References
    ----------
396
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
397
398

    """
399
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
400
401
402
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
403
404
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
405
        raise ValueError("dominator tree requires a directed graph.")
406
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
407
408
409
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
410

Tiago Peixoto's avatar
Tiago Peixoto committed
411

412
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
    >>> print sort
434
435
    [ 0  1  2 15  3  4 25  5  6  7 28 14 29 26 12 24  8  9 10 11 13 16 17 18 19
     27 20 21 22 23]
Tiago Peixoto's avatar
Tiago Peixoto committed
436
437
438

    References
    ----------
439
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
440
441
442
443
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

444
445
446
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
447
    return numpy.array(topological_order)
448

Tiago Peixoto's avatar
Tiago Peixoto committed
449

450
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
471
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
472
473
474
475
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

476
477
478
479
480
481
482
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
483

484
485
def label_components(g, vprop=None, directed=None):
    """
486
    Label the components to which each vertex in the graph belongs. If the
487
488
    graph is directed, it finds the strongly connected components.

489
490
491
    A property map with the component labels is returned, together with an
    histogram of component labels.

492
493
    Parameters
    ----------
494
    g : :class:`~graph_tool.Graph`
495
        Graph to be used.
496
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
497
498
499
500
501
502
503
504
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
505
    comp : :class:`~graph_tool.PropertyMap`
506
        Vertex property map with component labels.
507
508
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
509
510
511
512
513
514

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

515
    The algorithm runs in :math:`O(V + E)` time.
516
517
518

    Examples
    --------
519
520
521
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
522
    >>> comp, hist = gt.label_components(g)
523
524
525
526
    >>> print comp.a
    [0 1 0 1 1 1 2 1 1 1 0 1 0 1 0 0 1 0 1 0 3 0 1 0 1 0 4 3 0 0 0 0 1 1 0 4 1
     1 1 1 3 1 0 2 1 1 0 1 0 0 0 1 1 0 0 1 3 1 1 1 1 1 0 1 2 1 1 1 1 0 1 0 0 1
     0 3 1 1 1 1 2 3 1 3 0 1 0 0 1 0 0 0 1 1 0 3 1 4 1 1]
527
    >>> print hist
528
    [35 50  4  8  3]
529
530
    """

531
    if vprop is None:
532
533
534
535
536
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

537
538
    if directed is not None:
        g = GraphView(g, directed=directed)
539

540
541
542
543
544
545
546
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
547
548
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
549
550
551
552
553
554
555
556
557
558
559
560
561
562

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
563
         Boolean vertex property map which labels the largest component.
564
565
566
567
568
569
570
571
572
573
574
575

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
    >>> print l.a
576
577
578
    [0 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 0
     1 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0 1 1
     0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0]
579
580
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
    >>> print u.num_vertices()
581
    50
582
583
584
585
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
586
587
588
589
590
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
591
    return label
592

Tiago Peixoto's avatar
Tiago Peixoto committed
593

594
def label_biconnected_components(g, eprop=None, vprop=None):
595
596
597
598
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

599
600
601
602
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
647
    >>> seed(43)
648
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
649
    >>> comp, art, hist = gt.label_biconnected_components(g)
650
    >>> print comp.a
651
652
653
    [0 1 1 0 0 0 0 0 0 2 2 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0
     1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
654
655
656
657
    >>> print art.a
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
658
    >>> print hist
659
    [83 13  4]
660
661

    """
662

663
    if vprop is None:
664
        vprop = g.new_vertex_property("bool")
665
    if eprop is None:
666
667
668
669
670
671
672
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

673
674
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
675
676
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
677
    return eprop, vprop, hist
678

Tiago Peixoto's avatar
Tiago Peixoto committed
679

680
def shortest_distance(g, source=None, weights=None, max_dist=None,
681
682
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
683
684
685
686
687
688
689
690
691
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
692
        Source vertex of the search. If unspecified, the all pairs shortest
693
694
695
696
697
698
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
699
        are searched. This parameter has no effect if source is None.
700
701
702
703
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
704
705
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
706
707
708
709
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
710
711
712
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
739
    >>> print dist.a
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
    [         0          3          5          4 2147483647          4
              5          2          4          5          4          4
              4          3          2          4          1          5
              4          4          5          3 2147483647          6
              3          4          4 2147483647          6          6
              2          5          4          1          4          4
              4          4          6          3 2147483647          5
              5          5          4          3          6          1
              3          3          4          3          6          5
              4          3          4          5          5          5
              3          4          5          3          3 2147483647
              4          2          2          4          4 2147483647
              5          4          3          3          5          5
              4          3          5          3          5 2147483647
              6          5          5          2          3          4
              7          5          5          3          2          4
              4          1          4          3]
757
    >>> dist = gt.shortest_distance(g)
758
    >>> print dist[g.vertex(0)].a
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    [         0          3          5          4 2147483647          4
              5          2          4          5          4          4
              4          3          2          4          1          5
              4          4          5          3 2147483647          6
              3          4          4 2147483647          6          6
              2          5          4          1          4          4
              4          4          6          3 2147483647          5
              5          5          4          3          6          1
              3          3          4          3          6          5
              4          3          4          5          5          5
              3          4          5          3          3 2147483647
              4          2          2          4          4 2147483647
              5          4          3          3          5          5
              4          3          5          3          5 2147483647
              6          5          5          2          3          4
              7          5          5          3          2          4
              4          1          4          3]
776
777
778
779
780

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
781
782
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
783
784
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
785
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
786
787
788
789
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

790
    if weights is None:
791
792
793
794
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

795
796
    if dist_map is None:
        if source is not None:
797
798
799
800
801
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
802
    if source is not None:
803
804
805
806
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

807
    if max_dist is None:
808
809
        max_dist = 0

810
    if directed is not None:
811
812
813
814
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
815
        if source is not None:
816
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
817
818
819
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
820
                                             _prop("v", g, pmap),
821
822
823
824
825
826
827
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
828
        if directed is not None:
829
            g.pop_filter(directed=True)
830
    if source is not None and pred_map:
831
832
833
834
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
835

836
837
838
839
840
841
842
843
844
845
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
846
    target : :class:`~graph_tool.Vertex`
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
    >>> print [str(v) for v in vlist]
879
    ['10', '243', '171', '60', '94', '116', '266', '11']
880
    >>> print [str(e) for e in elist]
881
    ['(10,243)', '(243,171)', '(171,60)', '(60,94)', '(94,116)', '(116,266)', '(266,11)']
882
883
884
885
886

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
887
888
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
889
890
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
891
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
892
893
    """

894
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
895
896
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
897

Tiago Peixoto's avatar
Tiago Peixoto committed
898
    if pred_map[target] == int(target):  # no path to source
899
900
901
902
903
        return [], []

    vlist = [target]
    elist = []

904
    if weights is not None:
905
906
907
908
909
910
911
912
913
914
915
916
917
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
918
                if weights is not None:
919
920
921
922
923
924
925
926
927
928
929
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
    >>> print p
    True
    >>> print list(embed_order[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
976
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
977
978
979
980
981
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
    >>> print p
    False
    >>> g.set_edge_filter(kur, True)
982
    >>> gt.graph_draw(g, output="kuratowski.png")
983
984
985
986
987
988
989
990
991
992
    <...>

    .. figure:: kuratowski.png
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
993
994
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
995
996
997
998
999
1000
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)