__init__.py 8.72 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
``graph_tool.spectral`` - Spectral properties
---------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35
36

Summary
+++++++

.. autosummary::
   :nosignatures:

   adjacency
   laplacian
   incidence

Contents
++++++++
Tiago Peixoto's avatar
Tiago Peixoto committed
37
38
"""

39
40
from __future__ import division, absolute_import, print_function

41
from .. import _degree, _prop, Graph, _limit_args
Tiago Peixoto's avatar
Tiago Peixoto committed
42
43
44
45
46
47
from numpy import *
import scipy.sparse


__all__ = ["adjacency", "laplacian", "incidence"]

48

Tiago Peixoto's avatar
Tiago Peixoto committed
49
def adjacency(g, sparse=True, weight=None):
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    r"""Return the adjacency matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.
    weight : PropertyMap (optional, default: True)
        Edge property map with the edge weights.

    Returns
    -------
    a : matrix
        The adjacency matrix.

    Notes
    -----
    The adjacency matrix is defined as

    .. math::

        a_{i,j} =
        \begin{cases}
            1 & \text{if } v_i \text{ is adjacent to } v_j, \\
            0 & \text{otherwise}
        \end{cases}

    In the case of weighted edges, the value 1 is replaced the weight of the
    respective edge.

81
82
83
    In the case of networks with parallel edges, the entries in the matrix
    become simply the edge multiplicities.

84
85
86
87
88
89
    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (10,10))
    >>> m = gt.adjacency(g)
90
    >>> print(m.todense())
Tiago Peixoto's avatar
Tiago Peixoto committed
91
    [[ 0.  0.  0. ...,  0.  0.  0.]
92
     [ 0.  0.  0. ...,  0.  0.  0.]
93
     [ 0.  0.  0. ...,  0.  0.  0.]
Tiago Peixoto's avatar
Tiago Peixoto committed
94
95
96
97
     ..., 
     [ 0.  0.  0. ...,  0.  0.  1.]
     [ 0.  0.  1. ...,  0.  0.  0.]
     [ 0.  1.  0. ...,  0.  0.  0.]]
98
99
100

    References
    ----------
101
    .. [wikipedia-adjacency] http://en.wikipedia.org/wiki/Adjacency_matrix
102
103
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
104
105
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
106
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
107
108
109
110
111
            index[v] = i
    else:
        index = g.vertex_index
    N = g.num_vertices()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
112
        m = scipy.sparse.lil_matrix((N, N))
Tiago Peixoto's avatar
Tiago Peixoto committed
113
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
114
        m = matrix(zeros((N, N)))
Tiago Peixoto's avatar
Tiago Peixoto committed
115
116
    for v in g.vertices():
        for e in v.out_edges():
117
            m[index[v], index[e.target()]] += 1 if weight is None else weight[e]
Tiago Peixoto's avatar
Tiago Peixoto committed
118
119
120
121
    if sparse:
        m = m.tocsr()
    return m

Tiago Peixoto's avatar
Tiago Peixoto committed
122

Tiago Peixoto's avatar
Tiago Peixoto committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
def _get_deg(v, deg, weight):
    if deg == "total":
        if weight == None:
            d = v.in_degree() + v.out_degree()
        else:
            d = sum(weight[e] for e in v.all_edges())
    elif deg == "in":
        if weight == None:
            d = v.in_degree()
        else:
            d = sum(weight[e] for e in v.in_edges())
    else:
        if weight == None:
            d = v.out_degree()
        else:
            d = sum(weight[e] for e in v.out_edges())
    return d

Tiago Peixoto's avatar
Tiago Peixoto committed
141
142

@_limit_args({"deg": ["total", "in", "out"]})
Tiago Peixoto's avatar
Tiago Peixoto committed
143
def laplacian(g, deg="total", normalized=True, sparse=True, weight=None):
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    r"""Return the Laplacian matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    deg : str (optional, default: "total")
        Degree to be used, in case of a directed graph.
    normalized : bool (optional, default: True)
        Whether to compute the normalized Laplacian.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.
    weight : PropertyMap (optional, default: True)
        Edge property map with the edge weights.

    Returns
    -------
    l : matrix
        The Laplacian matrix.

    Notes
    -----
    The Laplacian matrix is defined as

    .. math::

        \ell_{i,j} =
        \begin{cases}
        \Gamma(v_i) & \text{if } i = j \\
        -1          & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
        0           & \text{otherwise}.
        \end{cases}

    Where :math:`\Gamma(v_i)` is the degree of vertex :math:`v_i`. The
    normalized version is

    .. math::

        \ell_{i,j} =
        \begin{cases}
        1         & \text{ if } i = j \text{ and } \Gamma(v_i) \neq 0 \\
       -\frac{1}{\sqrt{\Gamma(v_i)\Gamma(v_j)}} & \text{ if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
        0         & \text{otherwise}.
        \end{cases}

    In the case of weighted edges, the value 1 is replaced the weight of the
    respective edge.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (10,10))
    >>> m = gt.laplacian(g)
198
    >>> print(m.todense())
Tiago Peixoto's avatar
Tiago Peixoto committed
199
    [[ 1.    0.    0.   ...,  0.    0.    0.  ]
Tiago Peixoto's avatar
Tiago Peixoto committed
200
     [ 0.    1.    0.   ...,  0.    0.    0.  ]
Tiago Peixoto's avatar
Tiago Peixoto committed
201
     [ 0.    0.    1.   ...,  0.    0.    0.  ]
202
     ..., 
Tiago Peixoto's avatar
Tiago Peixoto committed
203
204
205
     [ 0.    0.    0.   ...,  1.    0.    0.05]
     [ 0.    0.    0.05 ...,  0.    1.    0.  ]
     [ 0.    0.05  0.   ...,  0.    0.    1.  ]]
206
207
208

    References
    ----------
209
    .. [wikipedia-laplacian] http://en.wikipedia.org/wiki/Laplacian_matrix
210
211
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
212
213
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
214
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
215
216
217
218
219
            index[v] = i
    else:
        index = g.vertex_index
    N = g.num_vertices()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
220
        m = scipy.sparse.lil_matrix((N, N))
Tiago Peixoto's avatar
Tiago Peixoto committed
221
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
222
        m = matrix(zeros((N, N)))
Tiago Peixoto's avatar
Tiago Peixoto committed
223
224
225
226
    for v in g.vertices():
        d = _get_deg(v, deg, weight)
        for e in v.out_edges():
            if not normalized:
227
228
                m[index[v], index[e.target()]] += (-1 if weight is None
                                                   else -weight[e])
Tiago Peixoto's avatar
Tiago Peixoto committed
229
            else:
Tiago Peixoto's avatar
Tiago Peixoto committed
230
231
                val = (d * _get_deg(e.target(), deg, weight)) ** (-0.5)
                m[index[v], index[e.target()]] = val
232
233
234
235
        if not normalized:
            m[index[v], index[v]] = d
        elif d > 0:
            m[index[v], index[v]] = 1
Tiago Peixoto's avatar
Tiago Peixoto committed
236
237
238
239
    if sparse:
        m = m.tocsr()
    return m

Tiago Peixoto's avatar
Tiago Peixoto committed
240

Tiago Peixoto's avatar
Tiago Peixoto committed
241
def incidence(g, sparse=True):
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
    r"""Return the incidence matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.

    Returns
    -------
    a : matrix
        The adjacency matrix.

    Notes
    -----
    For undirected graphs, the incidence matrix is defined as

    .. math::

        b_{i,j} =
        \begin{cases}
            1 & \text{if vertex } v_i \text{and edge } e_j \text{ are incident}, \\
            0 & \text{otherwise}
        \end{cases}

    For directed graphs, the definition is

    .. math::

        b_{i,j} =
        \begin{cases}
            1 & \text{if edge } e_j \text{ enters vertex } v_i, \\
            -1 & \text{if edge } e_j \text{ leaves vertex } v_i, \\
            0 & \text{otherwise}
        \end{cases}

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2,2))
    >>> m = gt.incidence(g)
285
    >>> print(m.todense())
286
287
    [[ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
288
     [ 0.  0.  0. ...,  0.  0.  0.]
289
290
291
292
293
294
295
     ..., 
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]]

    References
    ----------
296
    .. [wikipedia-incidence] http://en.wikipedia.org/wiki/Incidence_matrix
297
298
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
299
300
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
301
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
302
303
304
305
306
307
308
309
310
311
312
            index[v] = i
    else:
        index = g.vertex_index

    eindex = g.new_edge_property("int64_t")
    for i, e in enumerate(g.edges()):
        eindex[e] = i

    N = g.num_vertices()
    E = g.num_edges()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
313
        m = scipy.sparse.lil_matrix((N, E))
Tiago Peixoto's avatar
Tiago Peixoto committed
314
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
315
        m = matrix(zeros((N, E)))
Tiago Peixoto's avatar
Tiago Peixoto committed
316
317
318
    for v in g.vertices():
        if g.is_directed():
            for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
319
                m[index[v], eindex[e]] += -1
Tiago Peixoto's avatar
Tiago Peixoto committed
320
            for e in v.in_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
321
                m[index[v], eindex[e]] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
322
323
        else:
            for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
324
                m[index[v], eindex[e]] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
325
326
327
    if sparse:
        m = m.tocsr()
    return m