graph_rewiring.hh 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
22
#include <tr1/random>
23
#include <boost/functional/hash.hpp>
24
#include <boost/vector_property_map.hpp>
25
26
27

#include "graph.hh"
#include "graph_filtering.hh"
28
#include "graph_util.hh"
29
30
31
32
33
34
35
36
37
38
39
40
41
42

namespace graph_tool
{
using namespace std;
using namespace boost;

// this will get the source of an edge for directed graphs and the target for
// undirected graphs, i.e. "the source of an in-edge"
struct source_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
43
        return get_source(e, g, typename is_directed::apply<Graph>::type());
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return source(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return target(e, g);
    }
};

// this will get the target of an edge for directed graphs and the source for
// undirected graphs, i.e. "the target of an in-edge"
struct target_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
71
        return get_target(e, g, typename is_directed::apply<Graph>::type());
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return target(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return source(e, g);
    }
};

// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
            nt = target_in()(te, g),   // new target
            te_s = source_in()(te, g), // target edge source
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
139
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
140
141
142
143
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
144
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
145
            return true; // e would clash with an existing (new) edge
146
        if (edge_is_new[te] && is_adjacent_in_new(te_s, t, edge_is_new, g))
147
            return true; // te would clash with an existing (new) edge
148
        if (edge_is_new[se] && is_adjacent_in_new(s, se_t, edge_is_new, g))
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
164
            if (edge_is_new[*e] && target(*e,g) == v)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
            ne = add_edge(source(se, g), target_in()(te, g), g).first;
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
                nte = add_edge(source_in()(te, g), target(e, g), g).first;
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
227
    void operator()(Graph& g, EdgeIndexMap edge_index, rng_t& rng,
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
                throw GraphException("Self-loop detected. Can't rewire graph "
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
                throw GraphException("Parallel edge detected. Can't rewire "
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
287
288
289
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
290
        {
291
292
293
294
295
296
297
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
298
299
300
        }

        // for each edge simultaneously rewire its source and target
301
        for (size_t i = 0; i < int(edges.size()); ++i)
302
        {
303
304
            if (!is_edge[i])
                continue;
305
306
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
307
            tie(se, te) = rewire(e, edges, is_edge, self_loops, parallel_edges);
308
309
310
311
312
313
314
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
315
316
template <class RandomAccessIterator, class RNG,
          class RandomDist = tr1::uniform_int<size_t> >
317
318
class random_permutation_iterator : public
    std::iterator<input_iterator_tag, typename RandomAccessIterator::value_type>
319
320
{
public:
321
322
323
    random_permutation_iterator(RandomAccessIterator begin,
                                RandomAccessIterator end, RNG& rng)
        : _i(begin), _end(end), _rng(&rng)
324
    {
325
326
327
328
329
        if(_i != _end)
        {
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
        }
330
    }
331

332
333
334
335
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
336

337
338
339
    random_permutation_iterator& operator++()
    {
        ++_i;
340
        if(_i != _end)
341
        {
342
343
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
344
        }
345
346
        return *this;
    }
347

348
    bool operator==(const random_permutation_iterator& ri)
349
    {
350
        return _i == ri._i;
351
    }
352

353
    bool operator!=(const random_permutation_iterator& ri)
354
    {
355
        return _i != ri._i;
356
357
    }
private:
358
359
    RandomAccessIterator _i, _end;
    RNG* _rng;
360
361
};

362
363
364
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
365
366
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
367
368
369
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
370
371
    typedef typename EdgeIndexMap::value_type index_t;

372
    RewireStrategyBase(const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
373
        : _g(g), _edge_is_new(edge_index), _rng(rng) {}
374
375

    template<class EdgesType>
376
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
377
                                    vector<bool>& is_edge,
378
                                    bool self_loops, bool parallel_edges)
379
    {
380
        // where should we sample the edges from
381
382
383
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
384
385
386
387

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
388
389
        edge_t es, et;
        typedef random_permutation_iterator
390
            <typename vector<index_t>::iterator, rng_t> random_edge_iter;
391

392
393
394
395
396
        random_edge_iter esi(edges_source->begin(), edges_source->end(),
                             _rng),
                         esi_end(edges_source->end(), edges_source->end(),
                             _rng);
        for (; esi != esi_end && !found; ++esi)
397
        {
398
399
            if (!is_edge[*esi])
                continue;
400
            es = edges[*esi];
401
402
            if(!self_loops) // reject self-loops if not allowed
            {
403
                if((source(e, _g) == target(es, _g)))
404
405
406
                    continue;
            }

407
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
408
409
                                 _rng),
                             eti_end(edges_target->end(), edges_target->end(),
410
                                 _rng);
411
            for (; eti != eti_end && !found; ++eti)
412
            {
413
414
                if (!is_edge[*eti])
                    continue;
415
                et = edges[*eti];
416
417
                if (!self_loops) // reject self-loops if not allowed
                {
418
419
                    if ((source(es, _g) == target_in()(et, _g)) ||
                        (source_in()(et, _g) == target(e, _g)))
420
421
422
423
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
424
425
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new,
                                                        _g))
426
427
428
429
430
431
432
433
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
434
        _edge_is_new[e] = true;
435
        return make_pair(es, et);
436
437
438
439
440
    }

private:
    const Graph& _g;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
441
    rng_t& _rng;
442
443
};

444
445
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
446
template <class Graph, class EdgeIndexMap>
447
448
449
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
450
451
{
public:
452
453
454
455
456
457
458
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

459
460
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
461
    typedef typename EdgeIndexMap::value_type index_t;
462

463
464
465
    RandomRewireStrategy(const Graph& g, EdgeIndexMap edge_index,
                         rng_t& rng)
        : base_t(g, edge_index, rng)
466
    {
467
468
469
470
        typename graph_traits<Graph>::edge_iterator e_i, e_i_end;
        for (tie(e_i, e_i_end) = edges(g); e_i != e_i_end; ++e_i)
            _all_edges.push_back(edge_index[*e_i]);
        _all_edges2 = _all_edges;
471
    }
472
473
474

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
475
    {
476
        edges_source = &_all_edges;
477
        edges_target = &_all_edges2;
478
    }
479

480
481
private:
    vector<index_t> _all_edges;
482
    vector<index_t> _all_edges2;
483
};
484

485
486
487
488

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
489
490
491
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
492
493
{
public:
494
495
496
497
498
499
500
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

501
502
503
504
505
506
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
                              rng_t& rng)
507
        : base_t(g, edge_index, rng), _g(g)
508
    {
509
510
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
511
        {
512
513
514
515
516
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
517
            {
518
519
                _edges_source_by
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
520
                               out_degree(source(*e_i, _g), _g))]
521
522
523
524
525
                    .push_back(edge_index[*e_i]);
                _edges_target_by
                    [make_pair(in_degreeS()(target_in()(*e_i, _g), _g),
                               out_degree(target_in()(*e_i, _g), _g))]
                    .push_back(edge_index[*e_i]);
526
527
528
            }
        }
    }
529
530
531

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
532
    {
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
        pair<size_t, size_t> deg_source =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));
        edges_source = &_edges_source_by[deg_source];

        pair<size_t, size_t> deg_target =
            make_pair(in_degreeS()(target_in()(e, _g), _g),
                      out_degree(target_in()(e, _g), _g));

        // make sure both vectors are always different
        if (deg_target != deg_source)
        {
            edges_target = &_edges_target_by[deg_target];
        }
        else
        {
            temp = _edges_target_by[deg_target];
            edges_target = &temp;
        }
552
    }
553

554
private:
555
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
556
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
557
    edges_by_end_deg_t _edges_source_by, _edges_target_by;
558
    vector<size_t> temp;
559
560
561

protected:
    const Graph& _g;
562
563
564
565
566
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH