__init__.py 8.53 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
``graph_tool.spectral`` - Spectral properties
---------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35
36

Summary
+++++++

.. autosummary::
   :nosignatures:

   adjacency
   laplacian
   incidence

Contents
++++++++
Tiago Peixoto's avatar
Tiago Peixoto committed
37
38
"""

39
from .. import _degree, _prop, Graph, _limit_args
Tiago Peixoto's avatar
Tiago Peixoto committed
40
41
42
43
44
45
46
from numpy import *
import scipy.sparse


__all__ = ["adjacency", "laplacian", "incidence"]

def adjacency(g, sparse=True, weight=None):
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    r"""Return the adjacency matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.
    weight : PropertyMap (optional, default: True)
        Edge property map with the edge weights.

    Returns
    -------
    a : matrix
        The adjacency matrix.

    Notes
    -----
    The adjacency matrix is defined as

    .. math::

        a_{i,j} =
        \begin{cases}
            1 & \text{if } v_i \text{ is adjacent to } v_j, \\
            0 & \text{otherwise}
        \end{cases}

    In the case of weighted edges, the value 1 is replaced the weight of the
    respective edge.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (10,10))
    >>> m = gt.adjacency(g)
    >>> print m.todense()
Tiago Peixoto's avatar
Tiago Peixoto committed
85
86
    [[ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
87
88
     [ 0.  0.  0. ...,  0.  0.  0.]
     ..., 
89
     [ 0.  0.  0. ...,  0.  1.  0.]
90
     [ 0.  0.  0. ...,  0.  0.  0.]
91
     [ 0.  1.  0. ...,  0.  0.  0.]]
92
93
94

    References
    ----------
95
    .. [wikipedia-adjacency] http://en.wikipedia.org/wiki/Adjacency_matrix
96
97
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
98
99
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
100
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
101
102
103
104
105
            index[v] = i
    else:
        index = g.vertex_index
    N = g.num_vertices()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
106
        m = scipy.sparse.lil_matrix((N, N))
Tiago Peixoto's avatar
Tiago Peixoto committed
107
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
108
        m = matrix(zeros((N, N)))
Tiago Peixoto's avatar
Tiago Peixoto committed
109
110
    for v in g.vertices():
        for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
111
            m[index[v], index[e.target()]] = 1 if weight == None else weight[e]
Tiago Peixoto's avatar
Tiago Peixoto committed
112
113
114
115
    if sparse:
        m = m.tocsr()
    return m

Tiago Peixoto's avatar
Tiago Peixoto committed
116

Tiago Peixoto's avatar
Tiago Peixoto committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
def _get_deg(v, deg, weight):
    if deg == "total":
        if weight == None:
            d = v.in_degree() + v.out_degree()
        else:
            d = sum(weight[e] for e in v.all_edges())
    elif deg == "in":
        if weight == None:
            d = v.in_degree()
        else:
            d = sum(weight[e] for e in v.in_edges())
    else:
        if weight == None:
            d = v.out_degree()
        else:
            d = sum(weight[e] for e in v.out_edges())
    return d

Tiago Peixoto's avatar
Tiago Peixoto committed
135
136

@_limit_args({"deg": ["total", "in", "out"]})
Tiago Peixoto's avatar
Tiago Peixoto committed
137
def laplacian(g, deg="total", normalized=True, sparse=True, weight=None):
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    r"""Return the Laplacian matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    deg : str (optional, default: "total")
        Degree to be used, in case of a directed graph.
    normalized : bool (optional, default: True)
        Whether to compute the normalized Laplacian.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.
    weight : PropertyMap (optional, default: True)
        Edge property map with the edge weights.

    Returns
    -------
    l : matrix
        The Laplacian matrix.

    Notes
    -----
    The Laplacian matrix is defined as

    .. math::

        \ell_{i,j} =
        \begin{cases}
        \Gamma(v_i) & \text{if } i = j \\
        -1          & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
        0           & \text{otherwise}.
        \end{cases}

    Where :math:`\Gamma(v_i)` is the degree of vertex :math:`v_i`. The
    normalized version is

    .. math::

        \ell_{i,j} =
        \begin{cases}
        1         & \text{ if } i = j \text{ and } \Gamma(v_i) \neq 0 \\
       -\frac{1}{\sqrt{\Gamma(v_i)\Gamma(v_j)}} & \text{ if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
        0         & \text{otherwise}.
        \end{cases}

    In the case of weighted edges, the value 1 is replaced the weight of the
    respective edge.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (10,10))
    >>> m = gt.laplacian(g)
    >>> print m.todense()
Tiago Peixoto's avatar
Tiago Peixoto committed
193
    [[ 1.    0.    0.   ...,  0.    0.    0.  ]
194
     [ 0.    1.    0.   ...,  0.    0.    0.  ]
Tiago Peixoto's avatar
Tiago Peixoto committed
195
     [ 0.    0.    1.   ...,  0.    0.    0.  ]
196
     ..., 
Tiago Peixoto's avatar
Tiago Peixoto committed
197
     [ 0.    0.    0.   ...,  1.    0.05  0.  ]
198
     [ 0.    0.    0.   ...,  0.    1.    0.  ]
Tiago Peixoto's avatar
Tiago Peixoto committed
199
     [ 0.    0.05  0.   ...,  0.    0.    1.  ]]
200
201
202

    References
    ----------
203
    .. [wikipedia-laplacian] http://en.wikipedia.org/wiki/Laplacian_matrix
204
205
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
206
207
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
208
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
209
210
211
212
213
            index[v] = i
    else:
        index = g.vertex_index
    N = g.num_vertices()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
214
        m = scipy.sparse.lil_matrix((N, N))
Tiago Peixoto's avatar
Tiago Peixoto committed
215
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
216
        m = matrix(zeros((N, N)))
Tiago Peixoto's avatar
Tiago Peixoto committed
217
218
219
220
221
222
223
224
    for v in g.vertices():
        d = _get_deg(v, deg, weight)
        if not normalized:
            m[index[v], index[v]] = d
        elif d > 0:
            m[index[v], index[v]] = 1
        for e in v.out_edges():
            if not normalized:
Tiago Peixoto's avatar
Tiago Peixoto committed
225
226
                m[index[v], index[e.target()]] = (-1 if weight == None
                                                  else -weight[e])
Tiago Peixoto's avatar
Tiago Peixoto committed
227
            else:
Tiago Peixoto's avatar
Tiago Peixoto committed
228
229
                val = (d * _get_deg(e.target(), deg, weight)) ** (-0.5)
                m[index[v], index[e.target()]] = val
Tiago Peixoto's avatar
Tiago Peixoto committed
230
231
232
233
    if sparse:
        m = m.tocsr()
    return m

Tiago Peixoto's avatar
Tiago Peixoto committed
234

Tiago Peixoto's avatar
Tiago Peixoto committed
235
def incidence(g, sparse=True):
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    r"""Return the incidence matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.

    Returns
    -------
    a : matrix
        The adjacency matrix.

    Notes
    -----
    For undirected graphs, the incidence matrix is defined as

    .. math::

        b_{i,j} =
        \begin{cases}
            1 & \text{if vertex } v_i \text{and edge } e_j \text{ are incident}, \\
            0 & \text{otherwise}
        \end{cases}

    For directed graphs, the definition is

    .. math::

        b_{i,j} =
        \begin{cases}
            1 & \text{if edge } e_j \text{ enters vertex } v_i, \\
            -1 & \text{if edge } e_j \text{ leaves vertex } v_i, \\
            0 & \text{otherwise}
        \end{cases}

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2,2))
    >>> m = gt.incidence(g)
    >>> print m.todense()
    [[ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
Tiago Peixoto's avatar
Tiago Peixoto committed
282
     [ 0.  0.  0. ..., -1.  0.  0.]
283
284
285
286
287
288
289
     ..., 
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]]

    References
    ----------
290
    .. [wikipedia-incidence] http://en.wikipedia.org/wiki/Incidence_matrix
291
292
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
293
294
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
295
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
296
297
298
299
300
301
302
303
304
305
306
            index[v] = i
    else:
        index = g.vertex_index

    eindex = g.new_edge_property("int64_t")
    for i, e in enumerate(g.edges()):
        eindex[e] = i

    N = g.num_vertices()
    E = g.num_edges()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
307
        m = scipy.sparse.lil_matrix((N, E))
Tiago Peixoto's avatar
Tiago Peixoto committed
308
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
309
        m = matrix(zeros((N, E)))
Tiago Peixoto's avatar
Tiago Peixoto committed
310
311
312
    for v in g.vertices():
        if g.is_directed():
            for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
313
                m[index[v], eindex[e]] += -1
Tiago Peixoto's avatar
Tiago Peixoto committed
314
            for e in v.in_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
315
                m[index[v], eindex[e]] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
316
317
        else:
            for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
318
                m[index[v], eindex[e]] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
319
320
321
    if sparse:
        m = m.tocsr()
    return m