graph_rewiring.hh 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
22
23
#include <tr1/random>
#include <boost/random/random_number_generator.hpp> // just the decorator
24
#include <boost/functional/hash.hpp>
25
#include <boost/vector_property_map.hpp>
26
27
28

#include "graph.hh"
#include "graph_filtering.hh"
29
#include "graph_util.hh"
30
31
32
33
34
35
36
37
38
39
40
41
42
43

namespace graph_tool
{
using namespace std;
using namespace boost;

// this will get the source of an edge for directed graphs and the target for
// undirected graphs, i.e. "the source of an in-edge"
struct source_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
44
        return get_source(e, g, typename is_directed::apply<Graph>::type());
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return source(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return target(e, g);
    }
};

// this will get the target of an edge for directed graphs and the source for
// undirected graphs, i.e. "the target of an in-edge"
struct target_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
72
        return get_target(e, g, typename is_directed::apply<Graph>::type());
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return target(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return source(e, g);
    }
};

// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
            nt = target_in()(te, g),   // new target
            te_s = source_in()(te, g), // target edge source
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
140
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
141
142
143
144
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
145
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
146
            return true; // e would clash with an existing (new) edge
147
        if (edge_is_new[te] && is_adjacent_in_new(te_s, t, edge_is_new, g))
148
            return true; // te would clash with an existing (new) edge
149
        if (edge_is_new[se] && is_adjacent_in_new(s, se_t, edge_is_new, g))
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
165
            if (edge_is_new[*e] && target(*e,g) == v)
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
            ne = add_edge(source(se, g), target_in()(te, g), g).first;
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
                nte = add_edge(source_in()(te, g), target(e, g), g).first;
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
228
    void operator()(Graph& g, EdgeIndexMap edge_index, rng_t& rng,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
                throw GraphException("Self-loop detected. Can't rewire graph "
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
                throw GraphException("Parallel edge detected. Can't rewire "
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
288
289
290
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
291
        {
292
293
294
295
296
297
298
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
299
300
301
        }

        // for each edge simultaneously rewire its source and target
302
        for (size_t i = 0; i < int(edges.size()); ++i)
303
        {
304
305
            if (!is_edge[i])
                continue;
306
307
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
308
            tie(se, te) = rewire(e, edges, is_edge, self_loops, parallel_edges);
309
310
311
312
313
314
315
316
317
318
319
320
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
template <class RandomAccessIterator, class RNG>
class random_permutation_iterator
{
public:
    random_permutation_iterator(RandomAccessIterator first,
321
                                RandomAccessIterator last, RNG& rng)
322
323
324
325
326
327
328
329
        : _i(first), _last(last), _rng(rng)
    {
        std::iter_swap(_i, _i + _rng(_last - _i));
    }
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
330

331
332
333
334
335
336
337
    random_permutation_iterator& operator++()
    {
        ++_i;
        if(_i != _last)
            std::iter_swap(_i, _i + _rng(_last - _i));
        return *this;
    }
338

339
340
341
342
    bool operator==(const RandomAccessIterator& i)
    {
        return _i == i;
    }
343

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    bool operator!=(const RandomAccessIterator& i)
    {
        return _i != i;
    }
private:
    RandomAccessIterator _i, _last;
    RNG& _rng;
};

// utility function for random_permutation_iterator
template <class RandomAccessIterator, class RNG>
inline random_permutation_iterator<RandomAccessIterator,RNG>
make_random_permutation_iterator(RandomAccessIterator first,
                                 RandomAccessIterator last, RNG& rng)
{
    return random_permutation_iterator<RandomAccessIterator,RNG>(first, last,
                                                                 rng);
}

363
364
365
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
366
367
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
368
369
370
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
371
    typedef typename EdgeIndexMap::value_type index_t;
372
    typedef random_number_generator<rng_t, size_t> random_t;
373

374
375
    RewireStrategyBase(const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
        : _g(g), _edge_is_new(edge_index), _random(rng) {}
376
377

    template<class EdgesType>
378
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
379
                                    vector<bool>& is_edge,
380
                                    bool self_loops, bool parallel_edges)
381
    {
382
        // where should we sample the edges from
383
384
385
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
386
387
388
389

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
390
391
392
        edge_t es, et;
        typedef random_permutation_iterator
            <typename vector<index_t>::iterator, random_t> random_edge_iter;
393

394
        random_edge_iter esi(edges_source->begin(), edges_source->end(),
395
                             _random);
396
        for (; esi != edges_source->end() && !found; ++esi)
397
        {
398
399
            if (!is_edge[*esi])
                continue;
400
            es = edges[*esi];
401
402
            if(!self_loops) // reject self-loops if not allowed
            {
403
                if((source(e, _g) == target(es, _g)))
404
405
406
                    continue;
            }

407
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
408
                                 _random);
409
            for (; eti != edges_target->end() && !found; ++eti)
410
            {
411
412
                if (!is_edge[*eti])
                    continue;
413
                et = edges[*eti];
414
415
                if (!self_loops) // reject self-loops if not allowed
                {
416
417
                    if ((source(es, _g) == target_in()(et, _g)) ||
                        (source_in()(et, _g) == target(e, _g)))
418
419
420
421
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
422
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new, _g))
423
424
425
426
427
428
429
430
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
431
        _edge_is_new[e] = true;
432
        return make_pair(es, et);
433
434
435
436
437
    }

private:
    const Graph& _g;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
438
    random_t _random;
439
440
};

441
442
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
443
template <class Graph, class EdgeIndexMap>
444
445
446
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
447
448
{
public:
449
450
451
452
453
454
455
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

456
457
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
458
    typedef typename EdgeIndexMap::value_type index_t;
459

460
461
462
    RandomRewireStrategy(const Graph& g, EdgeIndexMap edge_index,
                         rng_t& rng)
        : base_t(g, edge_index, rng)
463
    {
464
465
466
467
        typename graph_traits<Graph>::edge_iterator e_i, e_i_end;
        for (tie(e_i, e_i_end) = edges(g); e_i != e_i_end; ++e_i)
            _all_edges.push_back(edge_index[*e_i]);
        _all_edges2 = _all_edges;
468
    }
469
470
471

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
472
    {
473
        edges_source = &_all_edges;
474
        edges_target = &_all_edges2;
475
    }
476

477
478
private:
    vector<index_t> _all_edges;
479
    vector<index_t> _all_edges2;
480
};
481

482
483
484
485

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
486
487
488
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
489
490
{
public:
491
492
493
494
495
496
497
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

498
499
500
501
502
503
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
                              rng_t& rng)
504
        : base_t(g, edge_index, rng), _g(g)
505
    {
506
507
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
508
        {
509
510
511
512
513
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
514
            {
515
516
                _edges_source_by
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
517
                               out_degree(source(*e_i, _g), _g))]
518
519
520
521
522
                    .push_back(edge_index[*e_i]);
                _edges_target_by
                    [make_pair(in_degreeS()(target_in()(*e_i, _g), _g),
                               out_degree(target_in()(*e_i, _g), _g))]
                    .push_back(edge_index[*e_i]);
523
524
525
            }
        }
    }
526
527
528

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
529
    {
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        pair<size_t, size_t> deg_source =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));
        edges_source = &_edges_source_by[deg_source];

        pair<size_t, size_t> deg_target =
            make_pair(in_degreeS()(target_in()(e, _g), _g),
                      out_degree(target_in()(e, _g), _g));

        // make sure both vectors are always different
        if (deg_target != deg_source)
        {
            edges_target = &_edges_target_by[deg_target];
        }
        else
        {
            temp = _edges_target_by[deg_target];
            edges_target = &temp;
        }
549
    }
550

551
private:
552
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
553
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
554
    edges_by_end_deg_t _edges_source_by, _edges_target_by;
555
    vector<size_t> temp;
556
557
558

protected:
    const Graph& _g;
559
560
561
562
563
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH