__init__.py 56.4 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
51
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
52
   is_DAG
53
   is_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
54
   edge_reciprocity
55
56
57

Contents
++++++++
58

59
60
"""

61
62
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
63
from .. dl_import import dl_import
64
dl_import("from . import libgraph_tool_topology")
65

66
from .. import _prop, Vector_int32_t, _check_prop_writable, \
67
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView
68
import random, sys, numpy
69
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
70
           "max_cardinality_matching", "max_independent_vertex_set",
71
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
72
           "topological_sort", "transitive_closure", "tsp_tour",
73
74
75
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
           "label_out_component", "shortest_distance", "shortest_path",
Tiago Peixoto's avatar
Tiago Peixoto committed
76
77
           "pseudo_diameter", "is_bipartite", "is_DAG", "is_planar",
           "similarity", "edge_reciprocity"]
78
79
80
81
82
83
84
85
86
87


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
88
        Second graph to be compared.
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
    0.03333333333333333
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
140

Tiago Peixoto's avatar
Tiago Peixoto committed
141

142
def isomorphism(g1, g2, isomap=False):
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

161
    """
162
163
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
164
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
165
                             _prop("v", g1, imap))
166
167
168
169
170
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
171

172
def subgraph_isomorphism(sub, g, max_n=0, random=False):
173
    r"""
174
175
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
176

177

Tiago Peixoto's avatar
Tiago Peixoto committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
    max_n : int (optional, default: 0)
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
    random : bool (optional, default: False)
        If `True`, the vertices of `g` are indexed in random order before
        the search.

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.
    edge_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing edge property map objects which indicate different
        isomorphism mappings. The property maps edges in `sub` to the
        corresponding edge index in `g`.

    Notes
    -----
    The algorithm used is described in [ullmann-algorithm-1976]_. It has a
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
208
209
210
211
212
213
214
215

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
216
    >>> print(len(vm))
217
    102
218
    >>> for i in range(len(vm)):
219
220
221
222
223
224
225
226
227
228
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
229
230
231
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
232
    ...               output="subgraph-iso-embed.pdf")
233
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
234
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
235
236
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
237
238
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
239

240

Tiago Peixoto's avatar
Tiago Peixoto committed
241
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
242
243
244

    References
    ----------
245
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
246
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
247
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
248
249
250
251

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
252
253
    vlabels=(None, None)
    elabels=(None, None)
254
255
    vmaps = []
    emaps = []
256
    if random:
257
        seed = numpy.random.randint(0, sys.maxsize)
258
259
    else:
        seed = 42
260
261
262
263
264
265
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
266
                                vmaps, emaps, max_n, seed)
267
    for i in range(len(vmaps)):
268
269
270
271
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
272

273
274
275
276
277
278
279
280
281
282
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
283
    `sub`.
284
    """
285
    if vmask is None:
286
        vmask = g.new_vertex_property("bool")
287
    if emask is None:
288
289
290
291
292
293
294
295
296
297
298
299
300
301
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
302

Tiago Peixoto's avatar
Tiago Peixoto committed
303

304
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
305
306
307
308
309
310
311
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
312
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
313
314
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
315
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
316
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
317
        is used. Otherwise, Kruskal's algorithm is used.
318
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
334
    >>> from numpy.random import seed, random
335
    >>> seed(42)
336
337
338
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
339
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
340
    >>> tree = gt.min_spanning_tree(g, weights=weight)
341
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
342
343
    <...>
    >>> g.set_edge_filter(tree)
344
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
345
346
347
    <...>


348
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
349
        :width: 400px
350
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
351
        :width: 400px
352
353

    *Left:* Original graph, *Right:* The minimum spanning tree.
354
355
356
357
358

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
359
360
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
361
362
363
364
365
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
366
    if tree_map is None:
367
368
369
370
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
386
    return tree_map
387

Tiago Peixoto's avatar
Tiago Peixoto committed
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
428
    >>> gt.graph_draw(g, pos=pos, output="triang_random_span_tree.pdf")
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    <...>


    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
    g = GraphView(g, vfilt=l)

    seed = numpy.random.randint(0, sys.maxsize)
    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
                             _prop("e", g, tree_map), seed)
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
501
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
502
    >>> dom = gt.dominator_tree(g, root[0])
503
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
504
505
506
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
507
508
509

    References
    ----------
510
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
511
512

    """
513
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
514
515
516
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
517
518
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
519
        raise ValueError("dominator tree requires a directed graph.")
520
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
521
522
523
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
524

Tiago Peixoto's avatar
Tiago Peixoto committed
525

526
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
547
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
548
549
    [ 3 20  9 29 15  0 10 23  1  2 21  7  4 12 11  5 26 27  6  8 13 14 22 16 17
     28 18 19 24 25]
Tiago Peixoto's avatar
Tiago Peixoto committed
550
551
552

    References
    ----------
553
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
554
555
556
557
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

558
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
559
560
561
562
563
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
    return topological_order.a.copy()
564

Tiago Peixoto's avatar
Tiago Peixoto committed
565

566
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
587
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
588
589
590
591
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

592
593
594
595
596
597
598
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
599

600
601
def label_components(g, vprop=None, directed=None):
    """
602
    Label the components to which each vertex in the graph belongs. If the
603
604
    graph is directed, it finds the strongly connected components.

605
606
607
    A property map with the component labels is returned, together with an
    histogram of component labels.

608
609
    Parameters
    ----------
610
    g : :class:`~graph_tool.Graph`
611
        Graph to be used.
612
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
613
614
615
616
617
618
619
620
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
621
    comp : :class:`~graph_tool.PropertyMap`
622
        Vertex property map with component labels.
623
624
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
625
626
627
628
629
630

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

631
    The algorithm runs in :math:`O(V + E)` time.
632
633
634

    Examples
    --------
635
636
637
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
638
    >>> comp, hist = gt.label_components(g)
639
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
640
641
642
    [0 0 0 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 0 1 2 0 1 0 0 1 0 2 0 2 1 0 2 0 0 0 0
     0 0 1 0 0 2 2 2 0 0 0 0 0 0 2 0 0 1 1 0 0 2 0 1 0 0 0 2 0 0 2 2 1 2 1 0 0
     2 0 0 1 2 1 2 2 0 0 0 0 0 2 0 0 0 1 1 0 0 0 1 1 2 2]
643
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
644
    [58 18 24]
645
646
    """

647
    if vprop is None:
648
649
650
651
652
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

653
654
    if directed is not None:
        g = GraphView(g, directed=directed)
655

656
657
658
659
660
661
662
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
663
664
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
665
666
667
668
669
670
671
672
673
674
675
676
677
678

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
679
         Boolean vertex property map which labels the largest component.
680
681
682
683
684
685
686
687
688
689
690

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
691
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
692
693
694
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
695
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
696
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
697
    31
698
699
700
701
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
702
703
704
705
706
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
707
    return label
708

Tiago Peixoto's avatar
Tiago Peixoto committed
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(0))
    >>> print(l.a)
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
744
745
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
    ...                            g.vertex(0))
746
747
748
749
750
751
752
753
754
755
756
757
758
    >>> print(l.a)
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


759
def label_biconnected_components(g, eprop=None, vprop=None):
760
761
762
763
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

764
765
766
767
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
812
    >>> seed(43)
813
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
814
    >>> comp, art, hist = gt.label_biconnected_components(g)
815
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
816
817
818
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
     0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
     0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
819
    >>> print(art.a)
820
821
822
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
823
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
824
    [87 13]
825
    """
826

827
    if vprop is None:
828
        vprop = g.new_vertex_property("bool")
829
    if eprop is None:
830
831
832
833
834
835
836
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

837
838
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
839
840
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
841
    return eprop, vprop, hist
842

Tiago Peixoto's avatar
Tiago Peixoto committed
843

844
def shortest_distance(g, source=None, weights=None, max_dist=None,
845
846
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
847
848
849
850
851
852
853
854
855
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
856
        Source vertex of the search. If unspecified, the all pairs shortest
857
858
859
860
861
862
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
863
        are searched. This parameter has no effect if source is None.
864
865
866
867
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
868
869
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
870
871
872
873
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
874
875
876
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
903
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
921
    >>> dist = gt.shortest_distance(g)
922
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
940
941
942
943
944

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
945
946
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
947
948
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
949
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
950
951
952
953
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

954
    if weights is None:
955
956
957
958
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

959
960
    if dist_map is None:
        if source is not None:
961
962
963
964
965
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
966
    if source is not None:
967
968
969
970
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

971
    if max_dist is None:
972
973
        max_dist = 0

974
    if directed is not None:
975
976
977
978
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
979
        if source is not None:
980
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
981
982
983
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
984
                                             _prop("v", g, pmap),
985
986
987
988
989
990
991
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
992
        if directed is not None:
993
            g.pop_filter(directed=True)
994
    if source is not None and pred_map:
995
996
997
998
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
1010
    target : :class:`~graph_tool.Vertex`
1011
1012
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
1013
        The edge weights.
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1041
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1042
    ['10', '222', '246', '0', '50', '257', '12', '242', '11']
1043
    >>> print([str(e) for e in elist])
1044
    ['(10, 222)', '(222, 246)', '(246, 0)', '(0, 50)', '(50, 257)', '(257, 12)', '(12, 242)', '(242, 11)']
1045
1046
1047
1048
1049

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1050
1051
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1052
1053
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1054
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1055
1056
    """

1057
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
1058
1059
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
1060

Tiago Peixoto's avatar
Tiago Peixoto committed
1061
    if pred_map[target] == int(target):  # no path to source
1062
1063
1064
1065
1066
        return [], []

    vlist = [target]
    elist = []

1067
    if weights is not None:
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1081
                if weights is not None:
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1093

Tiago Peixoto's avatar
Tiago Peixoto committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1139
    >>> print(dist)
1140
    9.0
1141
    >>> print(int(ends[0]), int(ends[1]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1142
    (0, 255)
Tiago Peixoto's avatar
Tiago Peixoto committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
        source = g.vertex(0)
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
def is_bipartite(g, partition=False):
    """
    Test if the graph is bipartite.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    partition : bool (optional, default: ``False``)
        If ``True``, return the two partitions in case the graph is bipartite.

    Returns
    -------
    is_bipartite : bool
        Whether or not the graph is bipartite.
    partition : :class:`~graph_tool.PropertyMap` (only if `partition=True`)
        A vertex property map with the graph partitioning (or `None`) if the
        graph is not bipartite.

    Notes
    -----

    An undirected graph is bipartite if one can partition its set of vertices
    into two sets, such that all edges go from one set to the other.

    This algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> is_bi, part = gt.is_bipartite(g, partition=True)
    >>> print(is_bi)
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1199
    >>> gt.graph_draw(g, vertex_fill_color=part, output_size=(300, 300), output="bipartite.pdf")
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    <...>

    .. figure:: bipartite.*
        :align: center

        Bipartition of a 2D lattice.

    References
    ----------
    .. [boost-bipartite] http://www.boost.org/libs/graph/doc/is_bipartite.html
    """

    if partition:
        part = g.new_vertex_property("bool")
    else:
        part = None
    g = GraphView(g, directed=False)
    is_bi = libgraph_tool_topology.is_bipartite(g._Graph__graph,
                                                _prop("v", g, part))
    if partition:
        return is_bi, part
    else:
        return is_bi


1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
1267
    >>> print(p)
1268
    True
1269
    >>> print(list(embed_order[g.vertex(0)]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1270
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1271
1272
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
1273
    >>> print(p)
1274
1275
    False
    >>> g.set_edge_filter(kur, True)
Tiago Peixoto's avatar
Tiago Peixoto committed
1276
    >>> gt.graph_draw(g, output_size=(300, 300), output="kuratowski.pdf")
1277
1278
    <...>

1279
    .. figure:: kuratowski.*
1280
1281
1282
1283
1284
1285
1286
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
1287
1288
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
1313
    if embed is not None:
1314
        ret.append(embed)
1315
    if kur is not None:
1316
1317
1318
1319
1320
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)
1321

Tiago Peixoto's avatar
Tiago Peixoto committed
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
def is_DAG(g):
    """
    Return `True` if the graph is a directed acyclic graph (DAG).

    Notes
    -----
    The time complexity is :math:`O(V + E)`.

    Examples
    --------

    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
Tiago Peixoto's avatar
Tiago Peixoto committed
1336
    >>> print(gt.is_DAG(g))
Tiago Peixoto's avatar
Tiago Peixoto committed
1337
1338
1339
    False
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
1340
    >>> print(gt.is_DAG(g))
Tiago Peixoto's avatar
Tiago Peixoto committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
    True

    References
    ----------
    .. [DAG-wiki] http://en.wikipedia.org/wiki/Directed_acyclic_graph

    """

    topological_order = Vector_int32_t()
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    return is_DAG

1354
1355
1356

def max_cardinality_matching(g, heuristic=False, weight=None, minimize=True,
                             match=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1357
    r"""Find a maximum cardinality matching in the graph.
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    heuristic : bool (optional, default: `False`)
        If true, a random heuristic will be used, which runs in linear time.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the matching will minimize the edge weights (or maximize
        if ``minimize == False``. This option has no effect if
        ``heuristic == False``.
    minimize : bool (optional, default: `True`)
        If `True`, the matching will minimize the weights, otherwise they will
        be maximized. This option has no effect if ``heuristic == False``.
    match : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Edge property map where the matching will be specified.

    Returns
    -------
    match : :class:`~graph_tool.PropertyMap`
        Boolean edge property map where the matching is specified.
    is_maximal : bool
        True if the matching is indeed maximal, or False otherwise. This is only
        returned if ``heuristic == False``.

    Notes
    -----
    A *matching* is a subset of the edges of a graph such that no two edges
    share a common vertex. A *maximum cardinality matching* has maximum size
    over all matchings in the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
1389
1390
1391
1392
    This algorithm runs in time :math:`O(EV\times\alpha(E,V))`, where
    :math:`\alpha(m,n)` is a slow growing function that is at most 4 for any
    feasible input. If `heuristic == True`, the algorithm runs in time :math:`O(V + E)`.

1393
1394
1395
1396
    For a more detailed description, see [boost-max-matching]_.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
1397
    >>> from numpy.random import seed
1398
    >>> seed(43)
Tiago Peixoto's avatar
Tiago Peixoto committed
1399
    >>> g = gt.GraphView(gt.price_network(300), directed=False)
1400
    >>> res = gt.max_cardinality_matching(g)
1401
    >>> print(res[1])
1402
    True
Tiago Peixoto's avatar
Tiago Peixoto committed
1403
1404
1405
1406
    >>> w = res[0].copy("double")
    >>> w.a = 2 * w.a + 2
    >>> gt.graph_draw(g, edge_color=res[0], edge_pen_width=w, vertex_fill_color="grey",
    ...               output="max_card_match.pdf")
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
    <...>

    .. figure:: max_card_match.*
        :align: center

        Edges belonging to the matching are in red.

    References
    ----------
    .. [boost-max-matching] http://www.boost.org/libs/graph/doc/maximum_matching.html
    .. [matching-heuristic] B. Hendrickson and R. Leland. "A Multilevel Algorithm
       for Partitioning Graphs." In S. Karin, editor, Proc. Supercomputing ’95,
       San Diego. ACM Press, New York, 1995, :doi:`10.1145/224170.224228`

    """
    if match is None:
        match = g.new_edge_property("bool")
    _check_prop_scalar(match, "match")
    _check_prop_writable(match, "match")
    if weight is not None:
        _check_prop_scalar(weight, "weight")

1429
    seed = numpy.random.randint(0, sys.maxsize)
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
    u = GraphView(g, directed=False)
    if not heuristic:
        check = libgraph_tool_flow.\
                max_cardinality_matching(u._Graph__graph, _prop("e", u, match))
        return match, check
    else:
        libgraph_tool_topology.\
                random_matching(u._Graph__graph, _prop("e", u, weight),
                                 _prop("e", u, match), minimize, seed)
        return match
1440
1441
1442


def max_independent_vertex_set(g, high_deg=False, mivs=None):
Tiago Peixoto's avatar
Tiago Peixoto committed
1443
    r"""Find a maximal independent vertex set in the graph.
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    high_deg : bool (optional, default: `False`)
        If `True`, vertices with high degree will be included first in the set,
        otherwise they will be included last.
    mivs : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Vertex property map where the vertex set will be specified.

    Returns
    -------
Tiago Peixoto's avatar
Tiago Peixoto committed
1457
1458
    mivs : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map where the set is specified.
1459
1460
1461

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
1462
1463
1464
    A maximal independent vertex set is an independent set such that adding any
    other vertex to the set forces the set to contain an edge between two
    vertices of the set.
1465

Tiago Peixoto's avatar
Tiago Peixoto committed
1466
1467
    This implements the algorithm described in [mivs-luby]_, which runs in time
    :math:`O(V + E)`.
1468
1469
1470

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
1471
    >>> from numpy.random import seed
1472
    >>> seed(43)
Tiago Peixoto's avatar
Tiago Peixoto committed
1473
1474
1475
    >>> g = gt.GraphView(gt.price_network(300), directed=False)
    >>> res = gt.max_independent_vertex_set(g)
    >>> gt.graph_draw(g, vertex_fill_color=res, output="mivs.pdf")
1476
1477
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
1478
    .. figure:: mivs.*
1479
1480
        :align: center

Tiago Peixoto's avatar
Tiago Peixoto committed
1481
        Vertices belonging to the set are in red.
1482
1483
1484

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
1485
1486
1487
1488
    .. [mivs-wikipedia] http://en.wikipedia.org/wiki/Independent_set_%28graph_theory%29
    .. [mivs-luby] Luby, M., "A simple parallel algorithm for the maximal independent set problem",
       Proc. 17th Symposium on Theory of Computing, Association for Computing Machinery, pp. 1–10, (1985)
       :doi:`10.1145/22145.22146`.
1489
1490
1491
1492
1493
1494
1495

    """
    if mivs is None:
        mivs = g.new_vertex_property("bool")
    _check_prop_scalar(mivs, "mivs")
    _check_prop_writable(mivs, "mivs")

1496
    seed = numpy.random.randint(0, sys.maxsize)
1497
1498
1499
1500
1501
1502
    u = GraphView(g, directed=False)
    libgraph_tool_topology.\
        maximal_vertex_set(u._Graph__graph, _prop("v", u, mivs), high_deg,
                           seed)
    mivs = g.own_property(mivs)
    return mivs
Tiago Peixoto's avatar
Tiago Peixoto committed
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547


def edge_reciprocity(g):
    r"""Calculate the edge reciprocity of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used
        edges.

    Returns
    -------
    reciprocity : float
        The reciprocity value.

    Notes
    -----

    The edge [reciprocity]_ is defined as :math:`E^\leftrightarrow/E`, where
    :math:`E^\leftrightarrow` and :math:`E` are the number of bidirectional and
    all edges in the graph, respectively.

    The algorithm runs with complexity :math:`O(E + V)`.

    Examples
    --------