graph_generation.cc 17.6 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
2
// graph-tool -- a general graph modification and manipulation thingy
//
Tiago Peixoto's avatar
Tiago Peixoto committed
3
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
4
5
6
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
Tiago Peixoto's avatar
Tiago Peixoto committed
7
// as published by the Free Software Foundation; either version 3
Tiago Peixoto's avatar
Tiago Peixoto committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.

#include <algorithm>
#include <tr1/unordered_set>
#include <boost/lambda/lambda.hpp>
#include <boost/lambda/bind.hpp>
#include <boost/random.hpp>
#include <iomanip>
#include <map>

#include "graph.hh"
#include "histogram.hh"

using namespace std;
using namespace boost;
using namespace boost::lambda;
using namespace graph_tool;

typedef boost::mt19937 rng_t;

//==============================================================================
// sample_from_distribution
// this will sample a (j,k) pair from a pjk distribution given a ceil function
// and its inverse
//==============================================================================

template <class Distribution, class Ceil, class InvCeil>
struct sample_from_distribution
{
    sample_from_distribution(Distribution &dist, Ceil& ceil, InvCeil &inv_ceil, double bound, rng_t& rng)
47
        : _dist(dist), _ceil(ceil), _inv_ceil(inv_ceil), _bound(bound), _rng(rng), _uniform_p(0.0, 1.0) {}
Tiago Peixoto's avatar
Tiago Peixoto committed
48
49
50
    
    pair<size_t, size_t> operator()()
    {
51
52
53
54
55
56
57
58
59
60
        // sample j,k from ceil
        size_t j,k;
        double u;
        do
        {
            tie(j,k) = _inv_ceil(_uniform_p(_rng), _uniform_p(_rng));
            u = _uniform_p(_rng);
        }
        while (u > _dist(j,k)/(_bound*_ceil(j,k)));
        return make_pair(j,k);
Tiago Peixoto's avatar
Tiago Peixoto committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    }

    Distribution& _dist;
    Ceil& _ceil;
    InvCeil& _inv_ceil;
    double _bound;
    rng_t &_rng;
    boost::uniform_real<double> _uniform_p;
};

// vertex type, with desired j,k values and the index in the real graph

struct vertex_t 
{
    vertex_t() {}
    vertex_t(size_t in, size_t out): in_degree(in), out_degree(out) {}
    vertex_t(const pair<size_t,size_t>& deg): in_degree(deg.first), out_degree(deg.second) {}
    size_t index, in_degree, out_degree;
    bool operator==(const vertex_t& other) const {return other.index == index;}
};

inline std::size_t hash_value(const vertex_t& v)
{
    size_t h = hash_value(v.in_degree);
    hash_combine(h, v.out_degree);
    return h;
}

inline size_t dist(const vertex_t& a, const vertex_t& b)
{
    return int(a.in_degree-b.in_degree)*int(a.in_degree-b.in_degree) + 
92
        int(a.out_degree-b.out_degree)*int(a.out_degree-b.out_degree);
Tiago Peixoto's avatar
Tiago Peixoto committed
93
94
95
96
97
98
}

struct total_deg_comp
{
    bool operator()(const pair<size_t,size_t>& a, const pair<size_t,size_t>& b)
    {
99
        return a.first + a.second < b.first + b.second;
Tiago Peixoto's avatar
Tiago Peixoto committed
100
101
102
103
104
105
106
107
108
    }
};

//==============================================================================
// degree_matrix_t
// this structure will keep the existing (j,k) pairs in the graph in a matrix,
// so that the nearest (j,k) to a given target can be found easily.
//==============================================================================

109
class degree_matrix_t
Tiago Peixoto's avatar
Tiago Peixoto committed
110
{
111
112
public:    
    degree_matrix_t(size_t N, size_t minj, size_t mink, size_t maxj, size_t maxk)
Tiago Peixoto's avatar
Tiago Peixoto committed
113
    {
114
115
116
117
118
119
120
121
122
        _L = max(size_t(pow(2,ceil(log2(sqrt(N))))),size_t(2));
        _minj = minj;
        _mink = mink;
        _maxj = max(maxj,_L);
        _maxk = max(maxk,_L);
        _bins.resize(_L, vector<vector<pair<size_t,size_t> > >(_L));
        _high_bins.resize(size_t(log2(_L)));
        for(size_t i = 0; i < _high_bins.size(); ++i)
            _high_bins[i].resize(_L/(1<<(i+1)), vector<size_t>(_L/(1<<(i+1))));
Tiago Peixoto's avatar
Tiago Peixoto committed
123
    }
124

Tiago Peixoto's avatar
Tiago Peixoto committed
125
126
    void insert(const pair<size_t, size_t>& v)
    {
127
128
129
130
131
132
133
134
135
        size_t j_bin, k_bin;
        tie(j_bin, k_bin) = get_bin(v.first, v.second, 0);
        _bins[j_bin][k_bin].push_back(v);
        for (size_t i = 0; i < _high_bins.size(); ++i)
        {
            size_t hj,hk;
            tie(hj,hk) = get_bin(j_bin,k_bin, i+1);
            _high_bins[i][hj][hk]++;
        }
Tiago Peixoto's avatar
Tiago Peixoto committed
136
    }
137
    
Tiago Peixoto's avatar
Tiago Peixoto committed
138
139
    void erase(const pair<size_t,size_t>& v)
    {
140
141
142
143
144
145
        size_t j_bin, k_bin;
        tie(j_bin, k_bin) = get_bin(v.first, v.second, 0);
        for(size_t i = 0; i < _bins[j_bin][k_bin].size(); ++i)
        {
            if (_bins[j_bin][k_bin][i] == v)
            {
146
147
                _bins[j_bin][k_bin].erase(_bins[j_bin][k_bin].begin()+i);
                break;
148
149
150
151
152
153
154
155
156
157
            }
        }
        
        for (size_t i = 0; i < _high_bins.size(); ++i)
        {
            size_t hj,hk;
            tie(hj,hk) = get_bin(j_bin,k_bin, i+1);
            _high_bins[i][hj][hk]--;
        }
        
Tiago Peixoto's avatar
Tiago Peixoto committed
158
159
    }

160
    pair<size_t,size_t> find_closest(size_t j, size_t k, rng_t& rng)
Tiago Peixoto's avatar
Tiago Peixoto committed
161
    {
162
163
164
165
166
167
168
169
170
171
172
        vector<pair<size_t,size_t> > candidates;

        size_t level;

        // find the appropriate level on which to operate
        for (level = _high_bins.size(); level <= 0; --level)
        {
            size_t hj, hk;
            tie(hj,hk) = get_bin(j,k,level);
            if (get_bin_count(hj,hk,level) == 0)
            {
173
174
175
                if (level < _high_bins.size())
                    level++;
                break;
176
177
178
179
180
181
182
183
            }
        }

        size_t j_bin, k_bin;
        tie(j_bin, k_bin) = get_bin(j, k, level);

        for (size_t hj = ((j_bin>0)?j_bin-1:j_bin); hj < j_bin + 1 && hj <= get_bin(_maxj, _maxk, level).first; ++hj)
            for (size_t hk = ((k_bin>0)?k_bin-1:k_bin); hk < k_bin + 1 && hk <= get_bin(_maxj, _maxk, level).second; ++hk)
184
                search_bin(hj,hk,j,k,level,candidates);
185
186
187
        
        uniform_int<size_t> sample(0, candidates.size() - 1);
        return candidates[sample(rng)];
Tiago Peixoto's avatar
Tiago Peixoto committed
188
189
190
    }

private:
191
192
    
    pair<size_t,size_t> get_bin(size_t j, size_t k, size_t level) 
Tiago Peixoto's avatar
Tiago Peixoto committed
193
    {
194
195
        if (level == 0)
            return make_pair(((j-_minj)*(_L-1))/_maxj, ((k-_mink)*(_L-1))/_maxk);
196

197
198
199
200
        pair<size_t, size_t> bin = get_bin(j,k,0);
        bin.first /=  1 << level;
        bin.second /= 1 << level;
        return bin;
201
202
203
204
    }

    size_t get_bin_count(size_t bin_j, size_t bin_k, size_t level)
    {
205
206
207
208
        if (level == 0)
            return _bins[bin_j][bin_k].size();
        else
            return _high_bins[level-1][bin_j][bin_k];
Tiago Peixoto's avatar
Tiago Peixoto committed
209
    }
210
211

    void search_bin(size_t hj, size_t hk, size_t j, size_t k, size_t level, vector<pair<size_t,size_t> >& candidates)
Tiago Peixoto's avatar
Tiago Peixoto committed
212
    {
213
214
215
216
        size_t w = 1 << level;
        for (size_t j_bin = hj*w; j_bin < (hj+1)*w; ++j_bin)
            for (size_t k_bin = hk*w; k_bin < (hk+1)*w; ++k_bin)
            {
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                for (size_t i = 0; i < _bins[j_bin][k_bin].size(); ++i)
                {
                    pair<size_t, size_t>& v = _bins[j_bin][k_bin][i];
                    if (candidates.empty())
                    {
                        candidates.push_back(v);
                        continue;
                    }
                    if (dist(vertex_t(v), vertex_t(j,k)) < dist(vertex_t(candidates.front()),vertex_t(j,k)))
                    {
                        candidates.clear();
                        candidates.push_back(v);
                    }
                    else if (dist(vertex_t(v), vertex_t(j,k)) == dist(vertex_t(candidates.front()),vertex_t(j,k)))
                    {
                        candidates.push_back(v);
                    }
                }
235
            }
Tiago Peixoto's avatar
Tiago Peixoto committed
236
237
238
    }

    size_t _L;
239
240
241
242
243
244
    vector<vector<vector<pair<size_t,size_t> > > > _bins;
    vector<vector<vector<size_t> > > _high_bins;
    size_t _minj;
    size_t _mink;
    size_t _maxj;
    size_t _maxk;
Tiago Peixoto's avatar
Tiago Peixoto committed
245
246
247
248
249
250
251
};

//==============================================================================
// GenerateCorrelatedConfigurationalModel
// generates a directed graph with given pjk and degree correlation
//==============================================================================
void GraphInterface::GenerateCorrelatedConfigurationalModel(size_t N, pjk_t pjk, pjk_t ceil_pjk, inv_ceil_t inv_ceil_pjk, double ceil_pjk_bound,
252
253
                                                            corr_t corr, corr_t ceil_corr, inv_corr_t inv_ceil_corr, double ceil_corr_bound, 
                                                            bool undirected_corr, size_t seed, bool verbose)
Tiago Peixoto's avatar
Tiago Peixoto committed
254
255
256
{
    _mg.clear();
    _properties = dynamic_properties();
257
    rng_t rng(static_cast<rng_t::result_type>(seed));
Tiago Peixoto's avatar
Tiago Peixoto committed
258
259
260
261
262

    // sample the N (j,k) pairs

    sample_from_distribution<pjk_t, pjk_t, inv_ceil_t> pjk_sample(pjk, ceil_pjk, inv_ceil_pjk, ceil_pjk_bound, rng);
    vector<vertex_t> vertices(N);
263
    size_t sum_j=0, sum_k=0, min_j=0, min_k=0, max_j=0, max_k=0;
Tiago Peixoto's avatar
Tiago Peixoto committed
264
265
    if (verbose)
    {
266
        cout << "adding vertices: " << flush;
Tiago Peixoto's avatar
Tiago Peixoto committed
267
268
269
    }
    for(size_t i = 0; i < N; ++i)
    {
270
271
272
273
        if (verbose)
        {
            static stringstream str;
            for (size_t j = 0; j < str.str().length(); ++j)
274
                cout << "\b";
275
276
277
278
279
280
281
282
283
284
285
286
287
            str.str("");
            str << i+1 << " of " << N << " (" << (i+1)*100/N << "%)";
            cout << str.str() << flush;
        }
        vertex_t& v = vertices[i];
        v.index = _vertex_index[add_vertex(_mg)];
        tie(v.in_degree, v.out_degree) = pjk_sample();
        sum_j += v.in_degree;
        sum_k += v.out_degree;
        min_j = min(v.in_degree,min_j);
        min_k = min(v.out_degree,min_k);
        max_j = max(v.in_degree,max_j);
        max_k = max(v.out_degree,max_k); 
Tiago Peixoto's avatar
Tiago Peixoto committed
288
289
290
    }

    if (verbose)
291
        cout << "\nfixing average degrees: " << flush;
Tiago Peixoto's avatar
Tiago Peixoto committed
292
293
294
295
296

    // <j> and <k> must be the same. Resample random pairs until this holds.
    uniform_int<size_t> vertex_sample(0, N-1);
    while (sum_j != sum_k)
    {
297
298
299
300
301
        vertex_t& v = vertices[vertex_sample(rng)];
        sum_j -= v.in_degree;
        sum_k -= v.out_degree;
        tie(v.in_degree, v.out_degree) = pjk_sample();
        sum_j += v.in_degree;
Tiago Peixoto's avatar
Tiago Peixoto committed
302
        sum_k +=  v.out_degree;
303
304
305
306
307
308
        max_j = max(v.in_degree,max_j);
        max_k = max(v.out_degree,max_k);
        if (verbose)
        {
            static stringstream str;
            for (size_t j = 0; j < str.str().length(); ++j)
309
                cout << "\b";
310
            for (size_t j = 0; j < str.str().length(); ++j)
311
                cout << " ";
312
            for (size_t j = 0; j < str.str().length(); ++j)
313
                cout << "\b";
314
315
316
317
            str.str("");
            str << min(sum_j-sum_k, sum_k-sum_j);
            cout << str.str() << flush;
        }
Tiago Peixoto's avatar
Tiago Peixoto committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    }

    size_t E = sum_k;
 
    vector<vertex_t> sources; // sources of edges
    typedef tr1::unordered_multimap<pair<size_t,size_t>, vertex_t, hash<pair<size_t,size_t> > > targets_t;
    targets_t targets; // vertices with j > 0
    typedef tr1::unordered_set<pair<size_t,size_t>, hash<pair<size_t,size_t> > > target_degrees_t;
    target_degrees_t target_degrees; // existing (j,k) pairs
    
    // fill up sources, targets and target_degrees
    sources.reserve(E);
    for(size_t i = 0; i < N; ++i)
    {
332
333
334
335
336
337
338
        for(size_t k = 0; k < vertices[i].out_degree; ++k)
            sources.push_back(vertices[i]);
        if (vertices[i].in_degree > 0)
        {
            targets.insert(make_pair(make_pair(vertices[i].in_degree, vertices[i].out_degree), vertices[i]));
            target_degrees.insert(make_pair(vertices[i].in_degree, vertices[i].out_degree));
        }
Tiago Peixoto's avatar
Tiago Peixoto committed
339
340
341
342
    }

    typedef multiset<pair<size_t,size_t>, total_deg_comp> ordered_degrees_t;
    ordered_degrees_t ordered_degrees; // (j,k) pairs ordered by (j+k), i.e, total degree
343
    degree_matrix_t degree_matrix(target_degrees.size(), min_j, min_k, max_j, max_k); // (j,k) pairs layed out in a 2 dimensional matrix
Tiago Peixoto's avatar
Tiago Peixoto committed
344
    for(typeof(target_degrees.begin()) iter = target_degrees.begin(); iter != target_degrees.end(); ++iter)
345
346
347
348
        if (undirected_corr)
            ordered_degrees.insert(*iter);
        else
            degree_matrix.insert(*iter);
Tiago Peixoto's avatar
Tiago Peixoto committed
349
350
351
352
    
    // shuffle sources 
    for (size_t i = 0; i < sources.size(); ++i)
    {
353
354
        uniform_int<size_t> source_sample(i, sources.size()-1);
        swap(sources[i], sources[source_sample(rng)]);
Tiago Peixoto's avatar
Tiago Peixoto committed
355
356
357
    }

    if (verbose)
358
        cout << "\nadding edges: " << flush;
Tiago Peixoto's avatar
Tiago Peixoto committed
359
360
361
362
363

    // connect the sources to targets
    uniform_real<double> sample_probability(0.0, 1.0); 
    for (size_t i = 0; i < sources.size(); ++i)
    {
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
        vertex_t source = sources[i], target;
        size_t j = source.in_degree;
        size_t k = source.out_degree;
        
        //choose the target vertex according to correlation
            
        pjk_t prob_func = lambda::bind(corr,lambda::_1,lambda::_2,j,k);
        pjk_t ceil = lambda::bind(ceil_corr,lambda::_1,lambda::_2,j,k);
        inv_ceil_t inv_ceil = lambda::bind(inv_ceil_corr,lambda::_1,lambda::_2,j,k);
        sample_from_distribution<pjk_t, pjk_t, inv_ceil_t> corr_sample(prob_func, ceil, inv_ceil, ceil_corr_bound, rng);
        
        size_t jl,kl;
        tie(jl,kl) = corr_sample(); // target (j,k)
        
        target_degrees_t::iterator iter = target_degrees.find(make_pair(jl,kl));
        if (iter != target_degrees.end())
        {
            target = targets.find(*iter)->second; // if an (jl,kl) pair exists, just use that
        }
        else
384
        {        
385
386
387
            pair<size_t, size_t> deg;
            if (undirected_corr)
            {
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
                // select the (j,k) pair with the closest total degree (j+k)
                ordered_degrees_t::iterator upper;
                upper = ordered_degrees.upper_bound(make_pair(jl,kl));
                if (upper == ordered_degrees.end())
                {
                    --upper;
                    deg = *upper;
                }
                else if (upper == ordered_degrees.begin())
                {
                    deg = *upper;
                }
                else
                {
                    ordered_degrees_t::iterator lower = upper;
                    --lower;
                    if (jl + kl - (lower->first + lower->second) < upper->first + upper->second - (jl + kl))
                        deg = *lower;
                    else if (jl + kl - (lower->first + lower->second) != upper->first + upper->second - (jl + kl))
                        deg = *upper;
                    else
                    {
                        // if equal, choose randomly with equal probability
                        uniform_int<size_t> sample(0, 1);
                        if (sample(rng))
                            deg = *lower;
                        else
                            deg = *upper;
                    }
                }
                target = targets.find(deg)->second;
419
420
421
            }
            else
            {   
422
423
424
425
426
                // select the (j,k) which is the closest in the j,k plane.
                deg = degree_matrix.find_closest(jl, kl, rng);
                target = targets.find(deg)->second;
//                cerr << "wanted: " << jl << ", " << kl
//                     << " got: " << deg.first << ", " << deg.second << "\n";
427
               
428
            }            
429
430
431
432
433
434
435
436
437
438
439
440
        }

        //add edge
        graph_traits<multigraph_t>::edge_descriptor e;
        e = add_edge(vertex(source.index, _mg), vertex(target.index, _mg), _mg).first;
        _edge_index[e] = i;

        // if target received all the edges it should, remove it from target
        if (in_degree(vertex(target.index, _mg), _mg) == target.in_degree)
        {
            targets_t::iterator iter,end;
            for(tie(iter,end) = targets.equal_range(make_pair(target.in_degree, target.out_degree)); iter != end; ++iter)
441
442
443
444
445
                if (iter->second == target)
                {
                    targets.erase(iter);
                    break;
                }
446
447
448
449

            // if there are no more targets with (jl,kl), remove pair from target_degrees, etc.
            if (targets.find(make_pair(target.in_degree, target.out_degree)) == targets.end())
            {
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
                target_degrees.erase(target_degrees.find(make_pair(target.in_degree, target.out_degree)));
                if (target_degrees.bucket_count() > 2*target_degrees.size())
                {
                    target_degrees_t temp;
                    for(target_degrees_t::iterator iter = target_degrees.begin(); iter != target_degrees.end(); ++iter)
                        temp.insert(*iter);
                    target_degrees = temp;
                }
                if (undirected_corr)
                {
                    for(ordered_degrees_t::iterator iter = ordered_degrees.find(make_pair(target.in_degree, target.out_degree)); 
                        iter != ordered_degrees.end(); ++iter)
                        if (*iter == make_pair(target.in_degree, target.out_degree))
                        {
                            ordered_degrees.erase(iter);
                            break;
                        }
                }
                else
                {
                    degree_matrix.erase(make_pair(target.in_degree, target.out_degree));
                }
472
473
474
475
476
477
            }
            
        }

        if (verbose)
        {
478
            static stringstream str;            
479
            for (size_t j = 0; j < str.str().length(); ++j)
480
                cout << "\b";
481
            for (size_t j = 0; j < str.str().length(); ++j)
482
                cout << " ";
483
            for (size_t j = 0; j < str.str().length(); ++j)
484
                cout << "\b";
485
486
487
488
489
            str.str("");
            str << (i+1) << " of " << E << " (" << (i+1)*100/E << "%)";
            cout << str.str() << flush;
        }
        
Tiago Peixoto's avatar
Tiago Peixoto committed
490
491
492
    }
    
    if (verbose)
493
        cout << "\n";
Tiago Peixoto's avatar
Tiago Peixoto committed
494
}