__init__.py 42.2 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4 5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2018 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24 25

This module includes centrality-related algorithms.
26 27 28 29 30 31 32 33 34 35

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
Tiago Peixoto's avatar
Tiago Peixoto committed
36
   closeness
37
   eigenvector
Tiago Peixoto's avatar
Tiago Peixoto committed
38
   katz
39
   hits
40
   eigentrust
41
   trust_transitivity
42 43 44

Contents
++++++++
45 46
"""

47 48
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. dl_import import dl_import
50
dl_import("from . import libgraph_tool_centrality")
Tiago Peixoto's avatar
Tiago Peixoto committed
51

52
from .. import _prop, ungroup_vector_property, Vector_size_t
53
from .. topology import shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
54 55
import sys
import numpy
56
import numpy.linalg
Tiago Peixoto's avatar
Tiago Peixoto committed
57

Tiago Peixoto's avatar
Tiago Peixoto committed
58 59
__all__ = ["pagerank", "betweenness", "central_point_dominance", "closeness",
           "eigentrust", "eigenvector", "katz", "hits", "trust_transitivity"]
Tiago Peixoto's avatar
Tiago Peixoto committed
60

Tiago Peixoto's avatar
Tiago Peixoto committed
61

62 63
def pagerank(g, damping=0.85, pers=None, weight=None, prop=None, epsilon=1e-6,
             max_iter=None, ret_iter=False):
64
    r"""Calculate the PageRank of each vertex.
65 66 67

    Parameters
    ----------
68
    g : :class:`~graph_tool.Graph`
69
        Graph to be used.
70
    damping : float, optional (default: 0.85)
71
        Damping factor.
72 73 74 75 76
    pers : :class:`~graph_tool.PropertyMap`, optional (default: None)
        Personalization vector. If omitted, a constant value of :math:`1/N`
        will be used.
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
        Edge weights. If omitted, a constant value of 1 will be used.
77
    prop : :class:`~graph_tool.PropertyMap`, optional (default: None)
78 79
        Vertex property map to store the PageRank values. If supplied, it will
        be used uninitialized.
Tiago Peixoto's avatar
Tiago Peixoto committed
80
    epsilon : float, optional (default: 1e-6)
81 82 83 84 85 86 87 88 89
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
90 91
    pagerank : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the PageRank values.
92 93 94 95 96

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
97
    eigenvector: eigenvector centrality
98
    hits: authority and hub centralities
99
    trust_transitivity: pervasive trust transitivity
100 101 102

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
103 104
    The value of PageRank [pagerank-wikipedia]_ of vertex v, :math:`PR(v)`, is
    given iteratively by the relation:
105 106

    .. math::
107

108 109
        PR(v) = \frac{1-d}{N} + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}
110

111 112
    where :math:`\Gamma^{-}(v)` are the in-neighbors of v, :math:`d^{+}(u)` is
    the out-degree of u, and d is a damping factor.
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    If a personalization property :math:`p(v)` is given, the definition becomes:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}

    If edge weights are also given, the equation is then generalized to:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u) w_{u\to v}}{d^{+}(u)}

    where :math:`d^{+}(u)=\sum_{y}A_{u,y}w_{u\to y}` is redefined to be the sum
    of the weights of the out-going edges from u.

131 132 133 134
    If a node has out-degree zero, it is assumed to connect to every other node
    with a weight proportional to :math:`p(v)` or a constant if no
    personalization is given.

135
    The implemented algorithm progressively iterates the above equations, until
Tiago Peixoto's avatar
Tiago Peixoto committed
136
    it no longer changes, according to the parameter epsilon. It has a
137 138 139 140 141 142
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
143

Tiago Peixoto's avatar
Tiago Peixoto committed
144 145 146 147
    .. testsetup:: pagerank

       import matplotlib

148 149 150 151 152 153 154
    .. doctest:: pagerank

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> pr = gt.pagerank(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
       ...               vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
155 156
       ...               vorder=pr, vcmap=matplotlib.cm.gist_heat,
       ...               output="polblogs_pr.pdf")
157 158 159 160 161 162 163
       <...>

    .. testcode:: pagerank
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
                     vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
164 165
                     vorder=pr, vcmap=matplotlib.cm.gist_heat,
                     output="polblogs_pr.png")
166 167 168 169 170 171


    .. figure:: polblogs_pr.*
       :align: center

       PageRank values of the a political blogs network of [adamic-polblogs]_.
172 173 174

    Now with a personalization vector, and edge weights:

175 176 177 178 179 180 181 182 183
    .. doctest:: pagerank

       >>> d = g.degree_property_map("total")
       >>> periphery = d.a <= 2
       >>> p = g.new_vertex_property("double")
       >>> p.a[periphery] = 100
       >>> pr = gt.pagerank(g, pers=p)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
       ...               vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
184 185
       ...               vorder=pr, vcmap=matplotlib.cm.gist_heat,
       ...               output="polblogs_pr_pers.pdf")
186 187 188 189 190 191 192
       <...>

    .. testcode:: pagerank
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
                     vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
193
                     vcmap=matplotlib.cm.gist_heat,
194 195 196 197 198 199 200 201 202
                     vorder=pr, output="polblogs_pr_pers.png")


    .. figure:: polblogs_pr_pers.*
       :align: center

       Personalized PageRank values of the a political blogs network of
       [adamic-polblogs]_, where vertices with very low degree are given
       artificially high scores.
203 204 205

    References
    ----------
206 207
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
208
       "The pagerank citation ranking: Bringing order to the web", Technical
209
       report, Stanford University, 1998
210 211 212
    .. [Langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
213 214 215
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
216 217
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
218
    if max_iter is None:
219
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
220
    if prop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
221
        prop = g.new_vertex_property("double")
222 223
        N = len(prop.fa)
        prop.fa = pers.fa[:N] if pers is not None else 1. / g.num_vertices()
Tiago Peixoto's avatar
Tiago Peixoto committed
224
    ic = libgraph_tool_centrality.\
225 226 227
            get_pagerank(g._Graph__graph, _prop("v", g, prop),
                         _prop("v", g, pers), _prop("e", g, weight),
                         damping, epsilon, max_iter)
Tiago Peixoto's avatar
Tiago Peixoto committed
228 229 230 231 232
    if ret_iter:
        return prop, ic
    else:
        return prop

Tiago Peixoto's avatar
Tiago Peixoto committed
233

234 235
def betweenness(g, pivots=None, vprop=None, eprop=None, weight=None, norm=True):
    r"""Calculate the betweenness centrality for each vertex and edge.
236 237 238

    Parameters
    ----------
239
    g : :class:`~graph_tool.Graph`
240
        Graph to be used.
241 242 243 244 245
    pivots : list or :class:`~numpy.ndarray`, optional (default: None)
        If provided, the betweenness will be estimated using the vertices in
        this list as pivots. If the list contains all nodes (the default) the
        algorithm will be exact, and if the vertices are randomly chosen the
        result will be an unbiased estimator.
246
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
247
        Vertex property map to store the vertex betweenness values.
248
    eprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
249
        Edge property map to store the edge betweenness values.
250
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
251 252 253 254 255 256
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
Tiago Peixoto's avatar
Tiago Peixoto committed
257 258
    vertex_betweenness : A vertex property map with the vertex betweenness values.
    edge_betweenness : An edge property map with the edge betweenness values.
259 260 261 262 263 264

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
265
    eigenvector: eigenvector centrality
266
    hits: authority and hub centralities
267
    trust_transitivity: pervasive trust transitivity
268 269 270 271 272

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

273 274
    .. math::

275 276 277
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

278 279 280 281 282
    where :math:`\sigma_{st}` is the number of shortest paths from s to t, and
    :math:`\sigma_{st}(v)` is the number of shortest paths from s to t that pass
    through a vertex :math:`v`. This may be normalised by dividing through the
    number of pairs of vertices not including v, which is :math:`(n-1)(n-2)/2`,
    for undirected graphs, or :math:`(n-1)(n-2)` for directed ones.
283

284
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
285 286 287 288 289 290
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE +
    V(V+E)\log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If the ``pivots`` parameter is given, the complexity will be instead
    :math:`O(PE)` for unweighted graphs and :math:`O(PE + P(V+E)\log V)` for
    weighted graphs, where :math:`P` is the number of pivot vertices.
291 292 293 294 295

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
296

Tiago Peixoto's avatar
Tiago Peixoto committed
297 298 299 300
    .. testsetup:: betweenness

       import matplotlib

301 302 303 304 305 306 307 308
    .. doctest:: betweenness

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> vp, ep = gt.betweenness(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=vp,
       ...               vertex_size=gt.prop_to_size(vp, mi=5, ma=15),
       ...               edge_pen_width=gt.prop_to_size(ep, mi=0.5, ma=5),
Tiago Peixoto's avatar
Tiago Peixoto committed
309
       ...               vcmap=matplotlib.cm.gist_heat,
310 311 312 313 314 315 316 317 318
       ...               vorder=vp, output="polblogs_betweenness.pdf")
       <...>

    .. testcode:: betweenness
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=vp,
                     vertex_size=gt.prop_to_size(vp, mi=5, ma=15),
                     edge_pen_width=gt.prop_to_size(ep, mi=0.5, ma=5),
Tiago Peixoto's avatar
Tiago Peixoto committed
319
                     vcmap=matplotlib.cm.gist_heat,
320 321 322 323 324 325 326
                     vorder=vp, output="polblogs_betweenness.png")


    .. figure:: polblogs_betweenness.*
       :align: center

       Betweenness values of the a political blogs network of [adamic-polblogs]_.
327 328 329

    References
    ----------
330 331
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
Tiago Peixoto's avatar
Tiago Peixoto committed
332
       centrality", Journal of Mathematical Sociology, 2001, :doi:`10.1080/0022250X.2001.9990249`
333 334 335
    .. [brandes-centrality-2007] U. Brandes, C. Pich, "Centrality estimation in
       large networks", Int. J. Bifurcation Chaos 17, 2303 (2007).
       :DOI:`10.1142/S0218127407018403`
336 337 338
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
339

340
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
341
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
342
        vprop = g.new_vertex_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
343
    if eprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
344
        eprop = g.new_edge_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
345
    if weight is not None and weight.value_type() != eprop.value_type():
Tiago Peixoto's avatar
Tiago Peixoto committed
346 347 348
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
349 350 351 352 353 354
    if pivots is not None:
        pivots = numpy.asarray(pivots, dtype="uint64")
    else:
        pivots = g.get_vertices()
    vpivots = Vector_size_t(len(pivots))
    vpivots.a = pivots
Tiago Peixoto's avatar
Tiago Peixoto committed
355
    libgraph_tool_centrality.\
356
            get_betweenness(g._Graph__graph, vpivots, _prop("e", g, weight),
Tiago Peixoto's avatar
Tiago Peixoto committed
357 358 359
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

Tiago Peixoto's avatar
Tiago Peixoto committed
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
def closeness(g, weight=None, source=None, vprop=None, norm=True, harmonic=False):
    r"""
    Calculate the closeness centrality for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
        Edge property map corresponding to the weight value of each edge.
    source : :class:`~graph_tool.Vertex`, optional (default: ``None``)
        If specified, the centrality is computed for this vertex alone.
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map to store the vertex centrality values.
    norm : bool, optional (default: ``True``)
        Whether or not the centrality values should be normalized.
    harmonic : bool, optional (default: ``False``)
        If true, the sum of the inverse of the distances will be computed,
        instead of the inverse of the sum.

    Returns
    -------
    vertex_closeness : :class:`~graph_tool.PropertyMap`
        A vertex property map with the vertex closeness values.

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
    eigenvector: eigenvector centrality
391
    hits: authority and hub centralities
Tiago Peixoto's avatar
Tiago Peixoto committed
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    trust_transitivity: pervasive trust transitivity

    Notes
    -----
    The closeness centrality of a vertex :math:`i` is defined as,

    .. math::

        c_i = \frac{1}{\sum_j d_{ij}}

    where :math:`d_{ij}` is the (possibly directed and/or weighted) distance
    from :math:`i` to :math:`j`. In case there is no path between the two
    vertices, here the distance is taken to be zero.

    If ``harmonic == True``, the definition becomes

    .. math::

        c_i = \sum_j\frac{1}{d_{ij}},

    but now, in case there is no path between the two vertices, we take
    :math:`d_{ij} \to\infty` such that :math:`1/d_{ij}=0`.

    If ``norm == True``, the values of :math:`c_i` are normalized by
    :math:`n_i-1` where :math:`n_i` is the size of the (out-) component of
    :math:`i`. If ``harmonic == True``, they are instead simply normalized by
418
    :math:`V-1`.
Tiago Peixoto's avatar
Tiago Peixoto committed
419

420
    The algorithm complexity of :math:`O(V(V + E))` for unweighted graphs and
Tiago Peixoto's avatar
Tiago Peixoto committed
421
    :math:`O(V(V+E) \log V)` for weighted graphs. If the option ``source`` is
422
    specified, this drops to :math:`O(V + E)` and :math:`O((V+E)\log V)`
Tiago Peixoto's avatar
Tiago Peixoto committed
423 424 425 426 427 428 429
    respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------

Tiago Peixoto's avatar
Tiago Peixoto committed
430 431 432 433
    .. testsetup:: closeness

       import matplotlib

Tiago Peixoto's avatar
Tiago Peixoto committed
434 435 436 437 438 439 440
    .. doctest:: closeness

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> c = gt.closeness(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=c,
       ...               vertex_size=gt.prop_to_size(c, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
441
       ...               vcmap=matplotlib.cm.gist_heat,
Tiago Peixoto's avatar
Tiago Peixoto committed
442 443 444 445 446 447 448 449
       ...               vorder=c, output="polblogs_closeness.pdf")
       <...>

    .. testcode:: closeness
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=c,
                     vertex_size=gt.prop_to_size(c, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
450
                     vcmap=matplotlib.cm.gist_heat,
Tiago Peixoto's avatar
Tiago Peixoto committed
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
                     vorder=c, output="polblogs_closeness.png")


    .. figure:: polblogs_closeness.*
       :align: center

       Closeness values of the a political blogs network of [adamic-polblogs]_.

    References
    ----------
    .. [closeness-wikipedia] https://en.wikipedia.org/wiki/Closeness_centrality
    .. [opsahl-node-2010] Opsahl, T., Agneessens, F., Skvoretz, J., "Node
       centrality in weighted networks: Generalizing degree and shortest
       paths". Social Networks 32, 245-251, 2010 :DOI:`10.1016/j.socnet.2010.03.006`
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`

    """
    if source is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
471
        if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
472 473 474 475 476 477 478
            vprop = g.new_vertex_property("double")
        libgraph_tool_centrality.\
            closeness(g._Graph__graph, _prop("e", g, weight),
                      _prop("v", g, vprop), harmonic, norm)
        return vprop
    else:
        max_dist = g.num_vertices() + 1
479
        dist = shortest_distance(g, source=source, weights=weight,
Tiago Peixoto's avatar
Tiago Peixoto committed
480
                                 max_dist=max_dist)
481
        dists = dist.fa[(dist.fa < max_dist) * (dist.fa > 0)]
Tiago Peixoto's avatar
Tiago Peixoto committed
482 483 484 485 486 487 488
        if harmonic:
            c = (1. / dists).sum()
            if norm:
                c /= g.num_vertices() - 1
        else:
            c = 1. / dists.sum()
            if norm:
489 490
                c *= len(dists)
        return c
Tiago Peixoto's avatar
Tiago Peixoto committed
491

Tiago Peixoto's avatar
Tiago Peixoto committed
492

Tiago Peixoto's avatar
Tiago Peixoto committed
493
def central_point_dominance(g, betweenness):
494 495 496 497 498 499
    r"""
    Calculate the central point dominance of the graph, given the betweenness
    centrality of each vertex.

    Parameters
    ----------
500
    g : :class:`~graph_tool.Graph`
501
        Graph to be used.
502
    betweenness : :class:`~graph_tool.PropertyMap`
503 504 505 506 507
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
508 509
    cp : float
        The central point dominance.
510 511 512 513 514 515 516 517

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
518
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
519 520
    as:

521 522
    .. math::

523 524 525 526 527 528 529 530 531
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
532 533 534 535 536

    >>> g = gt.collection.data["polblogs"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> vp, ep = gt.betweenness(g)
    >>> print(gt.central_point_dominance(g, vp))
537
    0.11610685614...
538 539 540

    References
    ----------
541
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
Tiago Peixoto's avatar
Tiago Peixoto committed
542 543
       Based on Betweenness", Sociometry, Vol. 40, No. 1,  pp. 35-41, 1977,
       `http://www.jstor.org/stable/3033543 <http://www.jstor.org/stable/3033543>`_
544 545
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
546
    return libgraph_tool_centrality.\
547
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
548 549
                                       _prop("v", g, betweenness))

550

551 552 553 554 555 556 557 558 559
def eigenvector(g, weight=None, vprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the eigenvector centrality of each vertex in the graph, as well as
    the largest eigenvalue.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
560
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
561 562
        Edge property map with the edge weights.
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
563 564
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eigenvalue : float
        The largest eigenvalue of the (weighted) adjacency matrix.
    eigenvector : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the eigenvector values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
582
    hits: authority and hub centralities
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The eigenvector centrality :math:`\mathbf{x}` is the eigenvector of the
    (weighted) adjacency matrix with the largest eigenvalue :math:`\lambda`,
    i.e. it is the solution of

    .. math::

        \mathbf{A}\mathbf{x} = \lambda\mathbf{x},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda` is the largest eigenvalue.

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) adjacency matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
610

611 612 613
    .. testsetup:: eigenvector

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
614
       import matplotlib
615 616 617 618 619 620 621 622 623

    .. doctest:: eigenvector

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a)) * 42
       >>> ee, x = gt.eigenvector(g, w)
       >>> print(ee)
624
       724.302745922...
625 626
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
627
       ...               vcmap=matplotlib.cm.gist_heat,
628 629 630 631 632 633 634 635
       ...               vorder=x, output="polblogs_eigenvector.pdf")
       <...>

    .. testcode:: eigenvector
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
                     vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
636
                     vcmap=matplotlib.cm.gist_heat,
637 638 639 640 641 642 643 644
                     vorder=x, output="polblogs_eigenvector.png")


    .. figure:: polblogs_eigenvector.*
       :align: center

       Eigenvector values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.
645 646 647 648 649 650 651 652 653

    References
    ----------

    .. [eigenvector-centrality] http://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
    .. [langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
654 655 656
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
657 658 659

    """

660
    if vprop is None:
661
        vprop = g.new_vertex_property("double")
662
        vprop.fa = 1. / g.num_vertices()
663 664 665 666 667 668 669 670
    if max_iter is None:
        max_iter = 0
    ee = libgraph_tool_centrality.\
         get_eigenvector(g._Graph__graph, _prop("e", g, weight),
                         _prop("v", g, vprop), epsilon, max_iter)
    return ee, vprop


671 672
def katz(g, alpha=0.01, beta=None, weight=None, vprop=None, epsilon=1e-6,
         max_iter=None, norm=True):
Tiago Peixoto's avatar
Tiago Peixoto committed
673
    r"""
Tiago Peixoto's avatar
Tiago Peixoto committed
674
    Calculate the Katz centrality of each vertex in the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
675 676 677 678 679 680 681 682

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map with the edge weights.
    alpha : float, optional (default: ``0.01``)
683 684
        Free parameter :math:`\alpha`. This must be smaller than the inverse of
        the largest eigenvalue of the adjacency matrix.
Tiago Peixoto's avatar
Tiago Peixoto committed
685 686 687 688 689 690 691 692 693 694 695
    beta : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the local personalization values. If not
        provided, the global value of 1 will be used.
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.
696 697
    norm : bool, optional (default: ``True``)
        Whether or not the centrality values should be normalized.
Tiago Peixoto's avatar
Tiago Peixoto committed
698 699 700 701 702 703 704 705 706 707 708

    Returns
    -------
    centrality : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the Katz centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
    eigenvector: eigenvector centrality
709
    hits: authority and hub centralities
Tiago Peixoto's avatar
Tiago Peixoto committed
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Katz centrality :math:`\mathbf{x}` is the solution of the nonhomogeneous
    linear system

    .. math::

        \mathbf{x} = \alpha\mathbf{A}\mathbf{x} + \mathbf{\beta},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\mathbf{\beta}` is the personalization vector (if not supplied,
    :math:`\mathbf{\beta} = \mathbf{1}` is assumed).

    The algorithm uses successive iterations of the equation above, which has a
    topology-dependent convergence complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
734 735 736
    .. testsetup:: katz

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
737
       import matplotlib
738 739 740 741 742 743

    .. doctest:: katz

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
744
       >>> w.a = np.random.random(len(w.a))
745 746 747
       >>> x = gt.katz(g, weight=w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
748
       ...               vcmap=matplotlib.cm.gist_heat,
749 750 751 752 753 754 755 756
       ...               vorder=x, output="polblogs_katz.pdf")
       <...>

    .. testcode:: katz
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
                     vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
757
                     vcmap=matplotlib.cm.gist_heat,
758 759 760 761 762 763 764 765
                     vorder=x, output="polblogs_katz.png")


    .. figure:: polblogs_katz.*
       :align: center

       Katz centrality values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.
Tiago Peixoto's avatar
Tiago Peixoto committed
766 767 768 769 770 771 772

    References
    ----------

    .. [katz-centrality] http://en.wikipedia.org/wiki/Katz_centrality
    .. [katz-new] L. Katz, "A new status index derived from sociometric analysis",
       Psychometrika 18, Number 1, 39-43, 1953, :DOI:`10.1007/BF02289026`
773 774 775
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
Tiago Peixoto's avatar
Tiago Peixoto committed
776 777
    """

778
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
779 780 781
        vprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
782
    libgraph_tool_centrality.\
Tiago Peixoto's avatar
Tiago Peixoto committed
783
         get_katz(g._Graph__graph, _prop("e", g, weight), _prop("v", g, vprop),
784 785 786
                  _prop("v", g, beta), float(alpha), epsilon, max_iter)
    if norm:
        vprop.fa = vprop.fa / numpy.linalg.norm(vprop.fa)
Tiago Peixoto's avatar
Tiago Peixoto committed
787 788 789
    return vprop


790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
def hits(g, weight=None, xprop=None, yprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the authority and hub centralities of each vertex in the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map with the edge weights.
    xprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the authority centrality must be stored.
    yprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the hub centrality must be stored.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eig : `float`
        The largest eigenvalue of the cocitation matrix.
    x : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the authority centrality values.
    y : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the hub centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    eigenvector: eigenvector centrality
    pagerank: PageRank centrality
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Hyperlink-Induced Topic Search (HITS) centrality assigns hub
    (:math:`\mathbf{y}`) and authority (:math:`\mathbf{x}`) centralities to the
    vertices, following:

    .. math::

        \begin{align}
            \mathbf{x} &= \alpha\mathbf{A}\mathbf{y} \\
            \mathbf{y} &= \beta\mathbf{A}^T\mathbf{x}
        \end{align}


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda = 1/(\alpha\beta)` is the largest eigenvalue of the
    cocitation matrix, :math:`\mathbf{A}\mathbf{A}^T`. (Without loss of
    generality, we set :math:`\beta=1` in the algorithm.)

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) cocitation matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
856

Tiago Peixoto's avatar
Tiago Peixoto committed
857 858 859 860
    .. testsetup:: hits

       import matplotlib

861 862 863 864 865 866 867
    .. doctest:: hits

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> ee, x, y = gt.hits(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
868
       ...               vcmap=matplotlib.cm.gist_heat,
869 870 871 872
       ...               vorder=x, output="polblogs_hits_auths.pdf")
       <...>
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=y,
       ...               vertex_size=gt.prop_to_size(y, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
873
       ...               vcmap=matplotlib.cm.gist_heat,
874 875 876 877 878 879 880 881
       ...               vorder=y, output="polblogs_hits_hubs.pdf")
       <...>

    .. testcode:: hits
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
                     vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
882
                     vcmap=matplotlib.cm.gist_heat,
883 884 885
                     vorder=x, output="polblogs_hits_auths.png")
       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=y,
                     vertex_size=gt.prop_to_size(y, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
886
                     vcmap=matplotlib.cm.gist_heat,
887 888 889 890
                     vorder=y, output="polblogs_hits_hubs.png")


    .. figure:: polblogs_hits_auths.*
Tiago Peixoto's avatar
Tiago Peixoto committed
891
       :align: center
892 893 894 895 896

       HITS authority values of the a political blogs network of
       [adamic-polblogs]_.

    .. figure:: polblogs_hits_hubs.*
Tiago Peixoto's avatar
Tiago Peixoto committed
897
       :align: center
898 899

       HITS hub values of the a political blogs network of [adamic-polblogs]_.
900 901 902 903 904 905

    References
    ----------

    .. [hits-algorithm] http://en.wikipedia.org/wiki/HITS_algorithm
    .. [kleinberg-authoritative] J. Kleinberg, "Authoritative sources in a
906
       hyperlinked environment", Journal of the ACM 46 (5): 604-632, 1999,
907 908
       :DOI:`10.1145/324133.324140`.
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
909 910 911
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
912 913 914 915 916 917 918 919 920 921 922 923 924 925
    """

    if xprop is None:
        xprop = g.new_vertex_property("double")
    if yprop is None:
        yprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
    l = libgraph_tool_centrality.\
         get_hits(g._Graph__graph, _prop("e", g, weight), _prop("v", g, xprop),
                  _prop("v", g, yprop), epsilon, max_iter)
    return 1. / l, xprop, yprop


Tiago Peixoto's avatar
Tiago Peixoto committed
926
def eigentrust(g, trust_map, vprop=None, norm=False, epsilon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
927
               ret_iter=False):
928 929 930 931 932
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
933
    g : :class:`~graph_tool.Graph`
934
        Graph to be used.
935
    trust_map : :class:`~graph_tool.PropertyMap`
936
        Edge property map with the values of trust associated with each
937
        edge. The values must lie in the range [0,1].
938
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
939
        Vertex property map where the values of eigentrust must be stored.
940
    norm : bool, optional (default:  ``False``)
941
        Norm eigentrust values so that the total sum equals 1.
942
    epsilon : float, optional (default: ``1e-6``)
943 944
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
945
    max_iter : int, optional (default: ``None``)
946
        If supplied, this will limit the total number of iterations.
947
    ret_iter : bool, optional (default: ``False``)
948 949 950 951
        If true, the total number of iterations is also returned.

    Returns
    -------
952 953
    eigentrust : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the eigentrust values.
954 955 956 957 958

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
959
    trust_transitivity: pervasive trust transitivity
960 961 962

    Notes
    -----
963
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
964 965
    following limit

966 967
    .. math::

968 969 970 971 972
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

973 974
    .. math::

975 976 977 978 979 980 981 982
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
983 984 985 986

    .. testsetup:: eigentrust

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
987
       import matplotlib
988 989 990 991 992 993 994 995 996 997

    .. doctest:: eigentrust

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a)) * 42
       >>> t = gt.eigentrust(g, w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
       ...               vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
998
       ...               vcmap=matplotlib.cm.gist_heat,
999 1000 1001 1002 1003 1004 1005 1006
       ...               vorder=t, output="polblogs_eigentrust.pdf")
       <...>

    .. testcode:: eigentrust
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
                     vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
1007
                     vcmap=matplotlib.cm.gist_heat,
1008 1009 1010 1011 1012 1013 1014 1015 1016
                     vorder=t, output="polblogs_eigentrust.png")


    .. figure:: polblogs_eigentrust.*
       :align: center

       Eigentrust values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.

1017 1018 1019

    References
    ----------
1020
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
1021 1022
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
Tiago Peixoto's avatar
Tiago Peixoto committed
1023
       Pages: 640 - 651, 2003, :doi:`10.1145/775152.775242`
1024 1025 1026
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
1027 1028
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
1029
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
1030
        vprop = g.new_vertex_property("double")
1031 1032
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
Tiago Peixoto's avatar
Tiago Peixoto committed
1033
                          _prop("v", g, vprop), epsilon, max_iter)
1034 1035 1036 1037 1038 1039 1040 1041
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1042

1043
def trust_transitivity(g, trust_map, source=None, target=None, vprop=None):
1044
    r"""
1045 1046
    Calculate the pervasive trust transitivity between chosen (or all) vertices
    in the graph.
1047 1048 1049

    Parameters
    ----------
1050
    g : :class:`~graph_tool.Graph`
1051
        Graph to be used.
1052
    trust_map : :class:`~graph_tool.PropertyMap`
1053 1054
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
Tiago Peixoto's avatar
Tiago Peixoto committed
1055
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1056
        Source vertex. All trust values are computed relative to this vertex.
1057
        If left unspecified, the trust values for all sources are computed.
Tiago Peixoto's avatar
Tiago Peixoto committed
1058
    target : :class:`~graph_tool.Vertex` (optional, default: None)
1059 1060 1061
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
1062 1063
        A vertex property map where the values of transitive trust must be
        stored.
1064 1065 1066

    Returns
    -------
1067 1068 1069 1070 1071 1072 1073 1074
    trust_transitivity : :class:`~graph_tool.PropertyMap` or float
        A vertex vector property map containing, for each source vertex, a
        vector with the trust values for the other vertices. If only one of
        `source` or `target` is specified, this will be a single-valued vertex
        property map containing the trust vector from/to the source/target
        vertex to/from the rest of the network. If both `source` and `target`
        are specified, the result is a single float, with the corresponding
        trust value for the target.
1075

1076 1077 1078 1079 1080 1081 1082 1083
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
1084
    The pervasive trust transitivity between vertices i and j is defined as
1085

1086 1087
    .. math::

1088 1089
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
1090

1091 1092 1093
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
1094

1095 1096
    .. math::

1097
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
1098

1099
    The algorithm measures the transitive trust by finding the paths with
1100
    maximum weight, using Dijkstra's algorithm, to all in-neighbors of a given
1101
    target. This search needs to be performed repeatedly for every target, since
1102
    it needs to be removed from the graph first. For each given source, the
1103 1104 1105
    resulting complexity is therefore :math:`O(V^2\log V)` for all targets, and
    :math:`O(V\log V)` for a single target. For a given target, the complexity
    for obtaining the trust from all given sources is :math:`O(kV\log V)`, where
1106
    :math:`k` is the in-degree of the target. Thus, the complexity for obtaining
1107
    the complete trust matrix is :math:`O(EV\log V)`, where :math:`E` is the
1108
    number of edges in the network.
1109 1110 1111 1112 1113

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
1114 1115 1116
    .. testsetup:: trust_transitivity

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
1117
       import matplotlib
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

    .. doctest:: trust_transitivity

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g = gt.Graph(g, prune=True)
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a))
       >>> g.vp["label"][g.vertex(42)]
       'blogforamerica.com'
       >>> t = gt.trust_transitivity(g, w, source=g.vertex(42))
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
       ...               vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
1131
       ...               vcmap=matplotlib.cm.gist_heat,
1132 1133 1134 1135 1136 1137 1138 1139
       ...               vorder=t, output="polblogs_trust_transitivity.pdf")
       <...>

    .. testcode:: trust_transitivity
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
                     vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
1140
                     vcmap=matplotlib.cm.gist_heat,
1141 1142 1143 1144 1145 1146 1147 1148 1149
                     vorder=t, output="polblogs_trust_transitivity.png")


    .. figure:: polblogs_trust_transitivity.*
       :align: center

       Trust transitivity values from source vertex 42 of the a political blogs
       network of [adamic-polblogs]_, with random weights attributed to the
       edges.
Tiago Peixoto's avatar
Tiago Peixoto committed
1150 1151 1152

    References
    ----------
1153 1154 1155
    .. [richters-trust-2010] Oliver Richters and Tiago P. Peixoto, "Trust
       Transitivity in Social Networks," PLoS ONE 6, no. 4:
       e1838 (2011), :doi:`10.1371/journal.pone.0018384`
1156 1157 1158
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
Tiago Peixoto's avatar
Tiago Peixoto committed
1159

1160
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
1161

Tiago Peixoto's avatar
Tiago Peixoto committed
1162
    if vprop is None:
1163
        vprop = g.new_vertex_property("vector<double>")
1164

Tiago Peixoto's avatar
Tiago Peixoto committed
1165
    if target is None:
1166 1167 1168
        target = -1
    else:
        target = g.vertex_index[target]
1169

Tiago Peixoto's avatar
Tiago Peixoto committed
1170
    if source is None:
1171 1172 1173 1174
        source = -1
    else:
        source = g.vertex_index[source]

1175
    libgraph_tool_centrality.\
1176 1177 1178 1179
            get_trust_transitivity(g._Graph__graph, source, target,
                                   _prop("e", g, trust_map),
                                   _prop("v", g, vprop))
    if target != -1 or source != -1:
1180
        vprop = ungroup_vector_property(vprop, [0])[0]
1181
    if target != -1 and source != -1:
1182
        return vprop.a[target]
1183
    return vprop