blockmodel.py 88.6 KB
Newer Older
1
2
3
4
5
#! /usr/bin/env python
# -*- coding: utf-8 -*-
#
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2014 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import division, absolute_import, print_function
import sys
if sys.version_info < (3,):
    range = xrange

26
27
from .. import _degree, _prop, Graph, GraphView, libcore, _get_rng, PropertyMap
from .. stats import label_self_loops
28
29
import random
from numpy import *
30
import numpy
31
32
from scipy.optimize import fsolve, fminbound
import scipy.special
33
from collections import defaultdict
34
35
import copy
import heapq
36
37
38
39
40

from .. dl_import import dl_import
dl_import("from . import libgraph_tool_community as libcommunity")


41
42
43
44
45
46
47
48
49
50
51
52
def get_block_graph(g, B, b, vcount, ecount):
    cg, br, vcount, ecount = condensation_graph(g, b,
                                                vweight=vcount,
                                                eweight=ecount,
                                                self_loops=True)[:4]
    cg.vp["count"] = vcount
    cg.ep["count"] = ecount
    cg = Graph(cg, vorder=br)

    cg.add_vertex(B - cg.num_vertices())
    return cg

53
54
55
56
57
58
59
60
class BlockState(object):
    r"""This class encapsulates the block state of a given graph.

    This must be instantiated and used by functions such as :func:`mcmc_sweep`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
61
        Graph to be modelled.
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge weights (i.e. multiplicity).
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex weights (i.e. multiplicity).
    b : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Initial block labels on the vertices. If not supplied, it will be
        randomly sampled.
    B : ``int`` (optional, default: ``None``)
        Number of blocks. If not supplied it will be either obtained from the
        parameter ``b``, or set to the maximum possible value according to the
        minimum description length.
    clabel : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        This parameter provides a constraint label, such that vertices with
        different labels will not be allowed to belong to the same block. If not given,
        all labels will be assumed to be the same.
    deg_corr : ``bool`` (optional, default: ``True``)
        If ``True``, the degree-corrected version of the blockmodel ensemble will
        be assumed, otherwise the traditional variant will be used.
80
81
82
83
    max_BE : ``int`` (optional, default: ``1000``)
        If the number of blocks exceeds this number, a sparse representation of
        the block graph is used, which is slightly less efficient, but uses less
        memory,
84
85
    """

86
87
    def __init__(self, g, eweight=None, vweight=None, b=None,
                 B=None, clabel=None, deg_corr=True, max_BE=1000):
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        self.g = g
        if eweight is None:
            eweight = g.new_edge_property("int")
            eweight.a = 1
        elif eweight.value_type() != "int32_t":
            eweight = eweight.copy(value_type="int32_t")
        if vweight is None:
            vweight = g.new_vertex_property("int")
            vweight.a = 1
        elif vweight.value_type() != "int32_t":
            vweight = vweight.copy(value_type="int32_t")
        self.eweight = eweight
        self.vweight = vweight

102
103
        self.E = int(self.eweight.fa.sum())
        self.N = int(self.vweight.fa.sum())
104
105
106
107
108
109

        self.deg_corr = deg_corr

        if b is None:
            if B is None:
                B = get_max_B(self.N, self.E, directed=g.is_directed())
110
111
112
            ba = random.randint(0, B, g.num_vertices())
            ba[:B] = arange(B)        # avoid empty blocks
            random.shuffle(ba)
113
            b = g.new_vertex_property("int")
114
            b.fa = ba
115
116
117
            self.b = b
        else:
            if B is None:
118
                B = int(b.fa.max()) + 1
119
120
            self.b = b = b.copy(value_type="int32_t")

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        if b.fa.max() >= B:
            raise ValueError("Maximum value of b is larger or equal to B!")

        # Construct block-graph
        self.bg = get_block_graph(g, B, b, vweight, eweight)
        self.bg.set_fast_edge_removal()

        self.mrs = self.bg.ep["count"]
        self.wr = self.bg.vp["count"]
        del self.bg.ep["count"]
        del self.bg.vp["count"]

        self.mrp = self.bg.degree_property_map("out", weight=self.mrs)

        if g.is_directed():
            self.mrm = self.bg.degree_property_map("in", weight=self.mrs)
        else:
            self.mrm = self.mrp
139
140
141

        self.vertices = libcommunity.get_vector(B)
        self.vertices.a = arange(B)
142
        self.B = B
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        self.clabel = clabel
        if self.clabel is None:
            self.clabel = self.g.new_vertex_property("int")

        self.bclabel = self.bg.new_vertex_property("int")
        libcommunity.vector_rmap(self.b.a, self.bclabel.a)
        libcommunity.vector_map(self.bclabel.a, self.clabel.a)

        self.emat = None
        if max_BE is None:
            max_BE = 1000
        self.max_BE = max_BE

        # used by mcmc_sweep()
        self.egroups = None
        self.nsampler = None
        self.sweep_vertices = None

        # used by merge_sweep()
        self.bnsampler = None
164
        self.bnnsampler = None
165

166
167
168
        libcommunity.init_safelog(int(2 * max(self.E, self.N)))
        libcommunity.init_xlogx(int(2 * max(self.E, self.N)))
        libcommunity.init_lgamma(int(3 * max(self.E, self.N)))
169

170
171
172
173
    def __get_emat(self):
        if self.emat is None:
            self.__regen_emat()
        return self.emat
174
175

    def __regen_emat(self):
176
177
178
179
        if self.B <= self.max_BE:
            self.emat = libcommunity.create_emat(self.bg._Graph__graph)
        else:
            self.emat = libcommunity.create_ehash(self.bg._Graph__graph)
180

181
    def __build_egroups(self, empty=False):
182
183
184
        self.esrcpos = self.g.new_edge_property("int")
        self.etgtpos = self.g.new_edge_property("int")
        self.is_weighted = True if self.eweight.fa.max() > 1 else False
185
        self.egroups = libcommunity.build_egroups(self.g._Graph__graph,
186
187
188
189
190
                                                  self.bg._Graph__graph,
                                                  _prop("v", self.g, self.b),
                                                  _prop("e", self.g, self.eweight),
                                                  _prop("e", self.g, self.esrcpos),
                                                  _prop("e", self.g, self.etgtpos),
191
                                                  self.is_weighted, empty)
192
193
194

    def __build_nsampler(self):
        self.nsampler = libcommunity.init_neighbour_sampler(self.g._Graph__graph,
195
196
                                                            _prop("e", self.g, self.eweight),
                                                            True)
197
198
    def __build_bnsampler(self):
        self.bnsampler = libcommunity.init_neighbour_sampler(self.bg._Graph__graph,
199
200
201
202
203
                                                             _prop("e", self.bg, self.mrs),
                                                             False)
        self.bnnsampler = libcommunity.init_neighbour_sampler(self.bg._Graph__graph,
                                                              _prop("e", self.bg, self.mrs),
                                                              True)
204
205
206
207
208
209

    def __cleanup_bg(self):
        emask = self.bg.new_edge_property("bool")
        emask.a = self.mrs.a[:len(emask.a)] > 0
        self.bg.set_edge_filter(emask)
        self.bg.purge_edges()
210
211
212
213
214
215
216
217
218
219

    def get_blocks(self):
        r"""Returns the property map which contains the block labels for each vertex."""
        return self.b

    def get_bg(self):
        r"""Returns the block graph."""
        return self.bg

    def get_ers(self):
220
221
        r"""Returns the edge property map of the block graph which contains the :math:`e_{rs}` matrix entries.
        For undirected graphs, the diagonal values (self-loops) contain :math:`e_{rr}/2`."""
222
223
224
225
226
227
228
229
        return self.mrs

    def get_er(self):
        r"""Returns the vertex property map of the block graph which contains the number
        :math:`e_r` of half-edges incident on block :math:`r`. If the graph is
        directed, a pair of property maps is returned, with the number of
        out-edges :math:`e^+_r` and in-edges :math:`e^-_r`, respectively."""
        if self.bg.is_directed():
230
            return self.mrp, self.mrm
231
232
233
234
235
236
237
        else:
            return self.mrp

    def get_nr(self):
        r"""Returns the vertex property map of the block graph which contains the block sizes :math:`n_r`."""
        return self.wr

238
239
    def entropy(self, complete=False, random=False, dl=False, dense=False,
                multigraph=False):
240
241
242
243
244
245
246
247
248
249
250
251
        r"""Calculate the entropy per edge associated with the current block partition.

        Parameters
        ----------
        complete : ``bool`` (optional, default: ``False``)
            If ``True``, the complete entropy will be returned, including constant
            terms not relevant to the block partition.
        random : ``bool`` (optional, default: ``False``)
            If ``True``, the entropy entropy corresponding to an equivalent random
            graph (i.e. no block partition) will be returned.
        dl : ``bool`` (optional, default: ``False``)
            If ``True``, the full description length will be returned.
252
253
254
255
256
        dense : ``bool`` (optional, default: ``False``)
            If ``True``, the "dense" variant of the entropy will be computed.
        multigraph : ``bool`` (optional, default: ``False``)
            If ``True``, the multigraph entropy will be used. Only has an effect
            if ``dense == True``.
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        Notes
        -----

        For the traditional blockmodel (``deg_corr == False``), the entropy is
        given by

        .. math::

          \mathcal{S}_t &\cong E - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
          \mathcal{S}^d_t &\cong E - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

        for undirected and directed graphs, respectively, where :math:`e_{rs}`
        is the number of edges from block :math:`r` to :math:`s` (or the number
        of half-edges for the undirected case when :math:`r=s`), and :math:`n_r`
        is the number of vertices in block :math:`r` .


        For the degree-corrected variant with "hard" degree constraints the
        equivalent expressions are

        .. math::

            \mathcal{S}_c &\cong -E -\sum_kN_k\ln k! - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
            \mathcal{S}^d_c &\cong -E -\sum_{k^+}N_{k^+}\ln k^+!  -\sum_{k^-}N_{k^-}\ln k^-! - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

        where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
        block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
        \sum_se_{sr}` are the number of out- and in-edges adjacent to block
        :math:`r`, respectively.

        If ``complete == False`` only the last term of the equations above will
        be returned. If ``random == True`` it will be assumed that :math:`B=1`
        despite the actual :math:`e_{rs}` matrix.  If ``dl == True``, the
        description length :math:`\mathcal{L}_t` of the model will be returned
        as well, as described in :func:`model_entropy`. Note that for the
        degree-corrected version the description length is

        .. math::

297
            \mathcal{L}_c = \mathcal{L}_t - \sum_rn_r\sum_kp^r_k\ln p^r_k,
298

299
300
        where :math:`p^r_k` is the fraction of nodes in block $r$ with degree :math:`k`. For directed
        graphs we have instead :math:`k \to (k^-, k^+)`.
301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        If the "dense" entropies are requested, they will be computed as

        .. math::

            \mathcal{S}_t  &= \sum_{r>s} \ln{\textstyle {n_rn_s \choose e_{rs}}} + \sum_r \ln{\textstyle {{n_r\choose 2}\choose e_{rr}/2}}\\
            \mathcal{S}^d_t  &= \sum_{rs} \ln{\textstyle {n_rn_s \choose e_{rs}}},

        for simple graphs, and

        .. math::

            \mathcal{S}_m  &= \sum_{r>s} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)} + \sum_r \ln{\textstyle \left(\!\!{\left(\!{n_r\choose 2}\!\right)\choose e_{rr}/2}\!\!\right)}\\
            \mathcal{S}^d_m  &= \sum_{rs} \ln{\textstyle \left(\!\!{n_rn_s \choose e_{rs}}\!\!\right)},

        for multigraphs (i.e. ``multigraph == True``).

        Note that in all cases the value returned corresponds to the entropy `per edge`,
319
320
321
322
323
324
325
        i.e. :math:`(\mathcal{S}_{t/c}\; [\,+\, \mathcal{L}_{t/c}])/ E`.

        """

        E = self.E
        N = self.N

326
327
328
329
330
331
332
333
334
        if dense:
            if random:
                bg = get_block_graph(self.bg, 1,
                                     self.bg.new_vertex_property("int"),
                                     self.wr, self.mrs)
                S = libcommunity.entropy_dense(bg._Graph__graph,
                                               _prop("e", bg, bg.ep["count"]),
                                               _prop("v", bg, bg.vp["count"]),
                                               multigraph)
335
            else:
336
337
338
339
                S = libcommunity.entropy_dense(self.bg._Graph__graph,
                                               _prop("e", self.bg, self.mrs),
                                               _prop("v", self.bg, self.wr),
                                               multigraph)
340
        else:
341
342
343
344
345
346
347
348
            if self.deg_corr:
                if self.g.is_directed():
                    S_rand = E * log(E)
                else:
                    S_rand = E * log(2 * E)
            else:
                ak = E / float(N) if self.g.is_directed() else  2 * E / float(N)
                S_rand = E * log (N / ak)
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
            if random:
                S = S_rand
            else:
                S = libcommunity.entropy(self.bg._Graph__graph,
                                         _prop("e", self.bg, self.mrs),
                                         _prop("v", self.bg, self.mrp),
                                         _prop("v", self.bg, self.mrm),
                                         _prop("v", self.bg, self.wr),
                                         self.deg_corr)

            if complete:
                if self.deg_corr:
                    S -= E
                    for v in self.g.vertices():
                        S -= scipy.special.gammaln(v.out_degree() + 1)
                        if self.g.is_directed():
                            S -= scipy.special.gammaln(v.in_degree() + 1)
                else:
                    S += E
            else:
                S -= S_rand
371

372
373
374
375
376
377
        if dl:
            if random:
                S += model_entropy(1, N, E, directed=self.g.is_directed()) * E
            else:
                S += model_entropy(self.B, N, E, directed=self.g.is_directed(), nr=self.wr.a) * E

378
            if self.deg_corr:
379
380
381
                S_seq = libcommunity.deg_entropy(self.g._Graph__graph,
                                                 _prop("v", self.g, self.b),
                                                 self.B)
382
383
384
385
386
                S += S_seq

        return S / E

    def remove_vertex(self, v):
387
        r"""Remove vertex ``v`` from its current block."""
388
389
390
391
392
393
394
395
        libcommunity.remove_vertex(self.g._Graph__graph,
                                   self.bg._Graph__graph,
                                   int(v),
                                   _prop("e", self.bg, self.mrs),
                                   _prop("v", self.bg, self.mrp),
                                   _prop("v", self.bg, self.mrm),
                                   _prop("v", self.bg, self.wr),
                                   _prop("v", self.g, self.b))
396
397
398
        self.egroups = None
        self.nb_list = None
        self.nb_count = None
399
400
401


    def add_vertex(self, v, r):
402
        r"""Add vertex ``v`` to block ``r``."""
403
404
405
406
407
408
409
410
        libcommunity.add_vertex(v.get_graph()._Graph__graph,
                                self.bg._Graph__graph,
                                int(v), int(r),
                                _prop("e", self.bg, self.mrs),
                                _prop("v", self.bg, self.mrp),
                                _prop("v", self.bg, self.mrm),
                                _prop("v", self.bg, self.wr),
                                _prop("v", self.g, self.b))
411
412
413
        self.egroups = None
        self.nb_list = None
        self.nb_count = None
414
415

    def move_vertex(self, v, nr):
416
        r"""Move vertex ``v`` to block ``nr``, and return the entropy difference."""
417
418
        dS = libcommunity.move_vertex(self.g._Graph__graph,
                                      self.bg._Graph__graph,
419
                                      self.__get_emat(),
420
421
422
423
424
425
426
427
428
                                      int(v), int(nr),
                                      _prop("e", self.bg, self.mrs),
                                      _prop("v", self.bg, self.mrp),
                                      _prop("v", self.bg, self.mrm),
                                      _prop("v", self.bg, self.wr),
                                      _prop("v", self.g, self.b),
                                      self.deg_corr,
                                      _prop("e", self.bg, self.eweight),
                                      _prop("v", self.bg, self.vweight))
429
430
431
        self.egroups = None
        self.nb_list = None
        self.nb_count = None
432
433
        return dS / float(self.E)

434
    def get_matrix(self, reorder=False, niter=0, ret_order=False):
435
436
        r"""Returns the block matrix, which contains the number of edges between
        each block pair.
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

        Parameters
        ----------
        reorder : ``bool`` (optional, default: ``False``)
            If ``True``, the matrix is reordered so that blocks which are
            'similar' are close together.
        niter : ``int`` (optional, default: `0`)
            Number of iterations performed to obtain the best ordering. If
            ``niter == 0`` it will automatically determined. Only has effect
            if ``reorder == True``.
        ret_order : ``bool`` (optional, default: ``False``)
            If ``True``, the vertex ordering is returned. Only has effect if
            ``reorder == True``.

        Examples
        --------

        .. testsetup:: get_matrix

           gt.seed_rng(42)
           np.random.seed(42)
           from pylab import *

        .. doctest:: get_matrix

           >>> g = gt.collection.data["polbooks"]
           >>> state = gt.BlockState(g, B=5, deg_corr=True)
           >>> for i in range(1000):
           ...     ds, nmoves = gt.mcmc_sweep(state)
           >>> m = state.get_matrix(reorder=True)
           >>> figure()
           <...>
           >>> matshow(m)
           <...>
           >>> savefig("bloc_mat.pdf")

        .. testcleanup:: get_matrix

           savefig("bloc_mat.png")

        .. figure:: bloc_mat.*
           :align: center

           A  5x5 block matrix.

       """
483
        B = self.B
484
485
486
487
488
489
        vmap = {}
        for r in range(len(self.vertices)):
            vmap[self.vertices[r]] = r

        if reorder:
            if niter == 0:
490
                niter = 10
491
492
493
494
495

            states = []

            label = None
            states = [self]
496
            Bi = self.B // 2
497
498

            while Bi > 1:
499
500
501
502
503

                state = BlockState(states[-1].bg,
                                   b=states[-1].bg.vertex_index.copy("int"),
                                   B=states[-1].bg.num_vertices(),
                                   clabel=states[-1].bclabel,
504
                                   vweight=states[-1].wr,
505
506
507
508
509
510
                                   eweight=states[-1].mrs,
                                   deg_corr=states[-1].deg_corr,
                                   max_BE=states[-1].max_BE)

                state = greedy_shrink(state, B=Bi, nsweeps=niter,
                                      epsilon=1e-3, c=0,
511
                                      nmerge_sweeps=niter)
512
513

                for i in range(niter):
514
                    mcmc_sweep(state, c=0, beta=float("inf"))
515
516
517

                states.append(state)

518
                Bi //= 2
519

520
                if Bi < self.bclabel.a.max() + 1:
521
522
                    break

523
            vorder = list(range(len(states[-1].vertices)))
524
            for state in reversed(states[1:]):
525
                norder = [[] for i in range(state.B)]
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
                for v in state.g.vertices():
                    pos = vorder.index(state.b[v])
                    norder[pos].append(int(v))
                vorder = [item for sublist in norder for item in sublist]
        else:
            vorder = self.vertices

        order_map = zeros(B, dtype="int")
        for i, v in enumerate(vorder):
            order_map[vmap[v]] = i

        m = zeros((B, B))
        rmap = {}
        for e in self.bg.edges():
            r, s = vmap[int(e.source())], vmap[int(e.target())]
            r = order_map[r]
            s = order_map[s]
            rmap[r] = int(e.source())
            rmap[s] = int(e.target())
            m[r, s] = self.mrs[e]
            if not self.bg.is_directed():
                m[s, r] = m[r, s]

549
550
551
552
        for r in range(B):
            if r not in rmap:
                rmap[r] = r

553
554
555
556
557
558
        if ret_order:
            return m, rmap
        else:
            return m


559
def model_entropy(B, N, E, directed=False, nr=None):
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    r"""Computes the amount of information necessary for the parameters of the traditional blockmodel ensemble, for ``B`` blocks, ``N`` vertices, ``E`` edges, and either a directed or undirected graph.

    A traditional blockmodel is defined as a set of :math:`N` vertices which can
    belong to one of :math:`B` blocks, and the matrix :math:`e_{rs}` describes
    the number of edges from block :math:`r` to :math:`s` (or twice that number
    if :math:`r=s` and the graph is undirected).

    For an undirected graph, the number of distinct :math:`e_{rs}` matrices is given by,

    .. math::

       \Omega_m = \left(\!\!{\left(\!{B \choose 2}\!\right) \choose E}\!\!\right)

    and for a directed graph,

    .. math::
       \Omega_m = \left(\!\!{B^2 \choose E}\!\!\right)


    where :math:`\left(\!{n \choose k}\!\right) = {n+k-1\choose k}` is the
    number of :math:`k` combinations with repetitions from a set of size :math:`n`.

    The total information necessary to describe the model is then,

    .. math::

586
587
       \mathcal{L}_t = \ln\Omega_m + \ln\left(\!\!{B \choose N}\!\!\right) + \ln N! - \sum_r \ln n_r!,

588

589
590
    where the remaining term is the information necessary to describe the
    block partition, where :math:`n_r` is the number of nodes in block :math:`r`.
591

592
593
594
595
    If ``nr`` is ``None``, it is assumed :math:`n_r=N/B`.

    The value returned corresponds to the information per edge, i.e.
    :math:`\mathcal{L}_t/E`.
596
597
598
599

    References
    ----------

Tiago Peixoto's avatar
Tiago Peixoto committed
600
601
602
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
    .. [peixoto-hierarchical-2013] Tiago P. Peixoto, "Hierarchical block structures and high-resolution
603
       model selection in large networks ", :arxiv:`1310.4377`.
604
605
606

    """

607
608
609
610
611
612
    if directed:
        x = (B * B);
    else:
        x = (B * (B + 1)) / 2;
    L = lbinom(x + E - 1, E) + partition_entropy(B, N, nr)
    return L / E
613
614
615
616

def Sdl(B, S, N, E, directed=False):
    return S + model_entropy(B, N, E, directed)

617
618
619
620
621
622
623
def lbinom(n, k):
    return scipy.special.gammaln(n + 1) - scipy.special.gammaln(n - k + 1) - scipy.special.gammaln(k + 1)

def partition_entropy(B, N, nr=None):
    if nr is None:
        S = N * log(B) + log1p(-(1 - 1./B) ** N)
    else:
624
        S = lbinom(B + N - 1, N) + scipy.special.gammaln(N + 1) - scipy.special.gammaln(nr + 1).sum()
625
    return S
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645

def get_max_B(N, E, directed=False):
    r"""Return the maximum detectable number of blocks, obtained by minimizing:

    .. math::

        \mathcal{L}_t(B, N, E) - E\ln B

    where :math:`\mathcal{L}_t(B, N, E)` is the information necessary to
    describe a traditional blockmodel with `B` blocks, `N` nodes and `E`
    edges (see :func:`model_entropy`).

    Examples
    --------

    >>> gt.get_max_B(N=1e6, E=5e6)
    1572

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
646
647
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
648
649
650
651
652
653
654
655
656
657
658


    """

    B = fminbound(lambda B: Sdl(B, -log(B), N, E, directed), 1, E,
                  xtol=1e-6, maxfun=1500, disp=0)
    if isnan(B):
        B = 1
    return max(int(ceil(B)), 2)

def get_akc(B, I, N=float("inf"), directed=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
659
    r"""Return the minimum value of the average degree of the network, so that some block structure with :math:`B` blocks can be detected, according to the minimum description length criterion.
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692

    This is obtained by solving

    .. math::

       \Sigma_b = \mathcal{L}_t(B, N, E) - E\mathcal{I}_{t/c} = 0,

    where :math:`\mathcal{L}_{t}` is the necessary information to describe the
    blockmodel parameters (see :func:`model_entropy`), and
    :math:`\mathcal{I}_{t/c}` characterizes the planted block structure, and is
    given by

    .. math::

        \mathcal{I}_t &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{w_rw_s}\right),\\
        \mathcal{I}_c &= \sum_{rs}m_{rs}\ln\left(\frac{m_{rs}}{m_rm_s}\right),

    where :math:`m_{rs} = e_{rs}/2E` (or :math:`m_{rs} = e_{rs}/E` for directed
    graphs) and :math:`w_r=n_r/N`. We note that :math:`\mathcal{I}_{t/c}\in[0,
    \ln B]`. In the case where :math:`E \gg B^2`, this simplifies to

    .. math::

       \left<k\right>_c &= \frac{2\ln B}{\mathcal{I}_{t/c}},\\
       \left<k^{-/+}\right>_c &= \frac{\ln B}{\mathcal{I}_{t/c}},

    for undirected and directed graphs, respectively. This limit is assumed if
    ``N == inf``.

    Examples
    --------

    >>> gt.get_akc(10, log(10) / 100, N=100)
693
    2.414413200430159
694
695
696

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
697
698
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

    """
    if N != float("inf"):
        if directed:
            get_dl = lambda ak: model_entropy(B, N, N * ak, directed) - N * ak * I
        else:
            get_dl = lambda ak: model_entropy(B, N, N * ak / 2., directed) - N * ak * I / 2.
        ak = fsolve(lambda ak: get_dl(ak), 10)
        ak = float(ak)
    else:
        ak = 2 * log(B) / S
        if directed:
            ak /= 2
    return ak

714
715
def mcmc_sweep(state, beta=1., c=1., dense=False, multigraph=False,
               sequential=True, vertices=None, verbose=False):
716
    r"""Performs a Markov chain Monte Carlo sweep on the network, to sample the block partition according to a probability :math:`\propto e^{-\beta \mathcal{S}_{t/c}}`, where :math:`\mathcal{S}_{t/c}` is the blockmodel entropy.
717
718
719
720
721

    Parameters
    ----------
    state : :class:`~graph_tool.community.BlockState`
        The block state.
722
    beta : ``float`` (optional, default: `1.0`)
723
        The inverse temperature parameter :math:`\beta`.
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    c : ``float`` (optional, default: ``1.0``)
        This parameter specifies how often fully random moves are attempted,
        instead of more likely moves based on the inferred block partition.
        For ``c == 0``, no fully random moves are attempted, and for ``c == inf``
        they are always attempted.
    dense : ``bool`` (optional, default: ``False``)
        If ``True``, the "dense" variant of the entropy will be computed.
    multigraph : ``bool`` (optional, default: ``False``)
        If ``True``, the multigraph entropy will be used. Only has an effect
        if ``dense == True``.
    sequential : ``bool`` (optional, default: ``True``)
        If ``True``, the move attempts on the vertices are done in sequential
        random order. Otherwise a total of `N` moves attempts are made, where
        `N` is the number of vertices, where each vertex can be selected with
        equal probability.
Tiago Peixoto's avatar
Tiago Peixoto committed
739
    vertices : ``list of ints`` (optional, default: ``None``)
740
741
        A list of vertices which will be attempted to be moved. If ``None``, all
        vertices will be attempted.
742
743
744
745
746
747
    verbose : ``bool`` (optional, default: ``False``)
        If ``True``, verbose information is displayed.

    Returns
    -------

748
    dS : ``float``
749
750
751
752
753
754
755
756
       The entropy difference (per edge) after a full sweep.
    nmoves : ``int``
       The number of accepted block membership moves.


    Notes
    -----

757
    This algorithm performs a Markov chain Monte Carlo sweep on the network,
758
759
    where the block memberships are randomly moved, and either accepted or
    rejected, so that after sufficiently many sweeps the partitions are sampled
760
    with probability proportional to :math:`e^{-\beta\mathcal{S}_{t/c}}`, where
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
    :math:`\mathcal{S}_{t/c}` is the blockmodel entropy, given by

    .. math::

      \mathcal{S}_t &\cong - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right), \\
      \mathcal{S}^d_t &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{n_rn_s}\right),

    for undirected and directed traditional blockmodels (``deg_corr == False``),
    respectively, where :math:`e_{rs}` is the number of edges from block
    :math:`r` to :math:`s` (or the number of half-edges for the undirected case
    when :math:`r=s`), and :math:`n_r` is the number of vertices in block
    :math:`r`, and constant terms which are independent of the block partition
    were dropped (see :meth:`BlockState.entropy` for the complete entropy). For
    the degree-corrected variant with "hard" degree constraints the equivalent
    expressions are

    .. math::

       \mathcal{S}_c &\cong  - \frac{1}{2} \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e_re_s}\right), \\
       \mathcal{S}^d_c &\cong - \sum_{rs}e_{rs}\ln\left(\frac{e_{rs}}{e^+_re^-_s}\right),

    where :math:`e_r = \sum_se_{rs}` is the number of half-edges incident on
    block :math:`r`, and :math:`e^+_r = \sum_se_{rs}` and :math:`e^-_r =
    \sum_se_{sr}` are the number of out- and in-edges adjacent to block
    :math:`r`, respectively.

    The Monte Carlo algorithm employed attempts to improve the mixing time of
788
789
    the Markov chain by proposing membership moves :math:`r\to s` with
    probability :math:`p(r\to s|t) \propto e_{ts} + c`, where :math:`t` is the
790
    block label of a random neighbour of the vertex being moved. See
791
    [peixoto-efficient-2014]_ for more details.
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832

    This algorithm has a complexity of :math:`O(E)`, where :math:`E` is the
    number of edges in the network.

    Examples
    --------
    .. testsetup:: mcmc

       gt.seed_rng(42)
       np.random.seed(42)

    .. doctest:: mcmc

       >>> g = gt.collection.data["polbooks"]
       >>> state = gt.BlockState(g, B=3, deg_corr=True)
       >>> pv = None
       >>> for i in range(1000):        # remove part of the transient
       ...     ds, nmoves = gt.mcmc_sweep(state)
       >>> for i in range(1000):
       ...     ds, nmoves = gt.mcmc_sweep(state)
       ...     pv = gt.collect_vertex_marginals(state, pv)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.pdf")
       <...>

    .. testcleanup:: mcmc

       gt.graph_draw(g, pos=g.vp["pos"], vertex_shape="pie", vertex_pie_fractions=pv, output="polbooks_blocks_soft.png")

    .. figure:: polbooks_blocks_soft.*
       :align: center

       "Soft" block partition of a political books network with :math:`B=3`.

     References
    ----------

    .. [holland-stochastic-1983] Paul W. Holland, Kathryn Blackmond Laskey,
       Samuel Leinhardt, "Stochastic blockmodels: First steps",
       Carnegie-Mellon University, Pittsburgh, PA 15213, U.S.A., :doi:`10.1016/0378-8733(83)90021-7`
    .. [faust-blockmodels-1992] Katherine Faust, and Stanley
       Wasserman. "Blockmodels: Interpretation and Evaluation." Social Networks
833
       14, no. 1-2 (1992): 5-61. :doi:`10.1016/0378-8733(92)90013-W`
834
835
836
837
838
839
    .. [karrer-stochastic-2011] Brian Karrer, and M. E. J. Newman. "Stochastic
       Blockmodels and Community Structure in Networks." Physical Review E 83,
       no. 1 (2011): 016107. :doi:`10.1103/PhysRevE.83.016107`.
    .. [peixoto-entropy-2012] Tiago P. Peixoto "Entropy of Stochastic Blockmodel
       Ensembles." Physical Review E 85, no. 5 (2012): 056122. :doi:`10.1103/PhysRevE.85.056122`,
       :arxiv:`1112.6028`.
Tiago Peixoto's avatar
Tiago Peixoto committed
840
841
    .. [peixoto-parsimonious-2013] Tiago P. Peixoto, "Parsimonious module inference in large networks",
       Phys. Rev. Lett. 110, 148701 (2013), :doi:`10.1103/PhysRevLett.110.148701`, :arxiv:`1212.4794`.
842
843
844
    .. [peixoto-efficient-2014] Tiago P. Peixoto, "Efficient Monte Carlo and greedy
       heuristic for the inference of stochastic block models", Phys. Rev. E 89, 012804 (2014),
       :doi:`10.1103/PhysRevE.89.012804`, :arxiv:`1310.4378`.
845
846
    """

847
    if state.B == 1:
848
849
        return 0., 0

850
    if vertices is not None:
851
852
853
        vlist = libcommunity.get_vector(len(vertices))
        vlist.a = vertices
        vertices = vlist
854
        state.sweep_vertices = vertices
855

856
857
858
859
860
    if state.sweep_vertices is None:
        vertices = libcommunity.get_vector(state.g.num_vertices())
        vertices.a = state.g.vertex_index.copy("int").fa
        state.sweep_vertices = vertices

861
862
    random_move = c == float("inf")

863
864
865
866
867
868
869
870
871
    if random_move:
        state._BlockState__build_egroups(empty=True)
    elif state.egroups is None:
        state._BlockState__build_egroups(empty=False)

    if state.nsampler is None:
        state._BlockState__build_nsampler()

    state.bnsampler = None
872
    state.bnnsampler = None
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

    try:
        dS, nmoves = libcommunity.move_sweep(state.g._Graph__graph,
                                             state.bg._Graph__graph,
                                             state._BlockState__get_emat(),
                                             state.nsampler,
                                             _prop("e", state.bg, state.mrs),
                                             _prop("v", state.bg, state.mrp),
                                             _prop("v", state.bg, state.mrm),
                                             _prop("v", state.bg, state.wr),
                                             _prop("v", state.g, state.b),
                                             _prop("v", state.bg, state.bclabel),
                                             state.sweep_vertices,
                                             state.deg_corr, dense, multigraph,
                                             _prop("e", state.g, state.eweight),
                                             _prop("v", state.g, state.vweight),
                                             state.egroups,
                                             _prop("e", state.g, state.esrcpos),
                                             _prop("e", state.g, state.etgtpos),
                                             float(beta), sequential, random_move,
893
894
                                             c, state.is_weighted, verbose,
                                             _get_rng())
895
896
897
    finally:
        if random_move:
            state.egroups = None
898
899
900
    return dS / state.E, nmoves


901
902
def merge_sweep(state, bm, nmerges, nsweeps=10, dense=False, multigraph=False,
                random_moves=False, verbose=False):
903

904
905
    if state.B == 1:
        return 0., 0
906

907
    if state.bnsampler is None or state.bnnsampler is None:
908
909
910
911
912
913
914
915
        state._BlockState__build_bnsampler()

    state.egroups = None
    state.nsampler = None

    dS, nmoves = libcommunity.merge_sweep(state.bg._Graph__graph,
                                          state._BlockState__get_emat(),
                                          state.bnsampler,
916
                                          state.bnnsampler,
917
918
919
920
921
922
923
924
925
                                          _prop("e", state.bg, state.mrs),
                                          _prop("v", state.bg, state.mrp),
                                          _prop("v", state.bg, state.mrm),
                                          _prop("v", state.bg, state.wr),
                                          _prop("v", state.bg, bm),
                                          _prop("v", state.bg, state.bclabel),
                                          state.deg_corr, dense, multigraph,
                                          nsweeps, nmerges, random_moves,
                                          verbose, _get_rng())
926

927
    return dS / state.E, nmoves
928

929

930
931
932
933
934
935
def greedy_shrink(state, B, nsweeps=10, adaptive_sweeps=True, nmerge_sweeps=None,
                  epsilon=0, r=2, greedy=True, anneal=(1, 1), c=1, dense=False,
                  multigraph=False, random_move=False, verbose=False,
                  sequential=True):
    if B > state.B:
        raise ValueError("Cannot shrink to a larger size!")
936

937
938
    if nmerge_sweeps is None:
        nmerge_sweeps = max((2 * state.g.num_edges()) // state.g.num_vertices(), 1)
939

940
    nmerged = 0
941

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    state = BlockState(state.g, b=state.b, B=state.B,
                       clabel=state.clabel, vweight=state.vweight,
                       eweight=state.eweight, deg_corr=state.deg_corr,
                       max_BE=state.max_BE)

    cg = state.bg.copy()
    cg_vweight = cg.own_property(state.wr.copy())
    cg_eweight = cg.own_property(state.mrs.copy())
    cg_clabel = cg.own_property(state.bclabel.copy())

    # merge according to indirect neighbourhood
    bm = state.bg.vertex_index.copy("int")
    random = random_move
    while nmerged < state.B - B:
        dS, nmoves = merge_sweep(state, bm, nmerges=state.B - B - nmerged,
                                 nsweeps=nmerge_sweeps, random_moves=random)
        nmerged += nmoves
959
        if verbose:
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
            print("merging", dS, nmoves, nmerged)
        if nmoves == 0:
            random = True
            if verbose:
                print("can't merge... switching to random")

    # Merged block-level state
    bmap = -ones(len(bm.a), dtype=bm.a.dtype)
    libcommunity.vector_map(bm.a, bmap)

    bm = cg.own_property(bm)
    bg_state = BlockState(cg, b=bm, B=B, clabel=cg_clabel,
                          vweight=cg_vweight, eweight=cg_eweight,
                          deg_corr=state.deg_corr, max_BE=state.max_BE)

    if bg_state.g.num_vertices() != state.g.num_vertices() and nsweeps > 0:
        # Perform block-level moves
        if verbose:
            print("Performing block-level moves...")
        multilevel_minimize(bg_state, B=B, nsweeps=nsweeps,
                            adaptive_sweeps=adaptive_sweeps,
                            epsilon=epsilon, r=r, greedy=greedy,
                            anneal=anneal, c=c, dense=dense,
983
984
                            multigraph=multigraph, sequential=sequential,
                            verbose=verbose)
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    bm = bg_state.b
    libcommunity.vector_map(state.b.a, bm.a)

    state = BlockState(state.g, b=state.b, B=B, clabel=state.clabel,
                       vweight=state.vweight, eweight=state.eweight,
                       deg_corr=state.deg_corr, max_BE=state.max_BE)
    return state


class MinimizeState(object):
    r"""This object stores information regarding the current entropy minimization
    state, so that the algorithms can resume previously started runs.
    This object can be saved to disk via the  :mod:`pickle` interface."""

    def __init__(self):