__init__.py 29.8 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
6
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@forked.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.generation`` - Random graph generation
23
---------------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35

Summary
+++++++

.. autosummary::
   :nosignatures:

   random_graph
   random_rewire
   predecessor_tree
   line_graph
   graph_union
36
   triangulation
37
38
   lattice
   geometric_graph
39
40
41

Contents
++++++++
42
43
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
44
45
from .. dl_import import dl_import
dl_import("import libgraph_tool_generation")
46

47
from .. core import Graph, _check_prop_scalar, _prop, _limit_args
Tiago Peixoto's avatar
Tiago Peixoto committed
48
from .. stats import label_parallel_edges, label_self_loops
49
import sys, numpy, numpy.random
50

Tiago Peixoto's avatar
Tiago Peixoto committed
51
__all__ = ["random_graph", "random_rewire", "predecessor_tree", "line_graph",
52
           "graph_union", "triangulation", "lattice", "geometric_graph"]
53

Tiago Peixoto's avatar
Tiago Peixoto committed
54

55
def random_graph(N, deg_sampler, deg_corr=None, directed=True,
Tiago Peixoto's avatar
Tiago Peixoto committed
56
57
                 parallel_edges=False, self_loops=False, random=True,
                 verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    r"""
    Generate a random graph, with a given degree distribution and correlation.

    Parameters
    ----------
    N : int
        Number of vertices in the graph.
    deg_sampler : function
        A degree sampler function which is called without arguments, and returns
        a tuple of ints representing the in and out-degree of a given vertex (or
        a single int for undirected graphs, representing the out-degree). This
        function is called once per vertex, but may be called more times, if the
        degree sequence cannot be used to build a graph.
    deg_corr : function (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
72
        A function which gives the degree correlation of the graph. It should be
Tiago Peixoto's avatar
Tiago Peixoto committed
73
74
75
76
77
78
79
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph.
    directed : bool (optional, default: True)
        Whether the generated graph should be directed.
80
    parallel_edges : bool (optional, default: False)
Tiago Peixoto's avatar
Tiago Peixoto committed
81
82
83
        If True, parallel edges are allowed.
    self_loops : bool (optional, default: False)
        If True, self-loops are allowed.
Tiago Peixoto's avatar
Tiago Peixoto committed
84
85
    random : bool (optional, default: True)
        If True, the returned graph is randomized.
86
87
    verbose : bool (optional, default: False)
        If True, verbose information is displayed.
Tiago Peixoto's avatar
Tiago Peixoto committed
88
89
90

    Returns
    -------
91
    random_graph : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
92
93
94
95
96
97
98
99
        The generated graph.

    See Also
    --------
    random_rewire: in place graph shuffling

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
100
101
102
103
104
105
    The algorithm makes sure the degree sequence is graphical (i.e. realizable)
    and keeps re-sampling the degrees if is not. With a valid degree sequence,
    the edges are placed deterministically, and later the graph is shuffled with
    the :func:`~graph_tool.generation.random_rewire` function.

    The complexity is :math:`O(V+E)` if parallel edges are allowed, and
Tiago Peixoto's avatar
Tiago Peixoto committed
106
107
    :math:`O(V+E\log N_k)` if parallel edges are not allowed, where :math:`N_k <
    V` is the number of different degrees sampled (or in,out-degree pairs).
Tiago Peixoto's avatar
Tiago Peixoto committed
108

Tiago Peixoto's avatar
Tiago Peixoto committed
109
110
111
    References
    ----------
    [deg-sequence] http://en.wikipedia.org/wiki/Degree_%28graph_theory%29#Degree_sequence
Tiago Peixoto's avatar
Tiago Peixoto committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

    Examples
    --------

    >>> from numpy.random import randint, random, seed, poisson
    >>> from pylab import *
    >>> seed(42)

    This is a degree sampler which uses rejection sampling to sample from the
    distribution :math:`P(k)\propto 1/k`, up to a maximum.

    >>> def sample_k(max):
    ...     accept = False
    ...     while not accept:
    ...         k = randint(1,max+1)
    ...         accept = random() < 1.0/k
    ...     return k
    ...

    The following generates a random undirected graph with degree distribution
    :math:`P(k)\propto 1/k` (with k_max=40) and an *assortative* degree
    correlation of the form:

    .. math::

        P(i,k) \propto \frac{1}{1+|i-k|}

    >>> g = gt.random_graph(1000, lambda: sample_k(40),
    ...                     lambda i,k: 1.0/(1+abs(i-k)), directed=False)
    >>> gt.scalar_assortativity(g, "out")
Tiago Peixoto's avatar
Tiago Peixoto committed
142
    (0.62986894481988553, 0.011101504846821255)
Tiago Peixoto's avatar
Tiago Peixoto committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

    The following samples an in,out-degree pair from the joint distribution:

    .. math::

        p(j,k) = \frac{1}{2}\frac{e^{-m_1}m_1^j}{j!}\frac{e^{-m_1}m_1^k}{k!} +
                 \frac{1}{2}\frac{e^{-m_2}m_2^j}{j!}\frac{e^{-m_2}m_2^k}{k!}

    with :math:`m_1 = 4` and :math:`m_2 = 20`.

    >>> def deg_sample():
    ...    if random() > 0.5:
    ...        return poisson(4), poisson(4)
    ...    else:
    ...        return poisson(20), poisson(20)
    ...

    The following generates a random directed graph with this distribution, and
    plots the combined degree correlation.

    >>> g = gt.random_graph(20000, deg_sample)
    >>>
    >>> hist = gt.combined_corr_hist(g, "in", "out")
    >>> imshow(hist[0], interpolation="nearest")
    <...>
    >>> colorbar()
    <...>
170
    >>> xlabel("in-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
171
    <...>
172
    >>> ylabel("out-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    <...>
    >>> savefig("combined-deg-hist.png")

    .. figure:: combined-deg-hist.png
        :align: center

        Combined degree histogram.

    A correlated directed graph can be build as follows. Consider the following
    degree correlation:

    .. math::

         P(j',k'|j,k)=\frac{e^{-k}k^{j'}}{j'!}
         \frac{e^{-(20-j)}(20-j)^{k'}}{k'!}

    i.e., the in->out correlation is "disassortative", the out->in correlation
    is "assortative", and everything else is uncorrelated.
    We will use a flat degree distribution in the range [1,20).

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
    ...                                     lambda a,b: (p.pmf(a[0],b[1])*
    ...                                                  p.pmf(a[1],20-b[0])))

    Lets plot the average degree correlations to check.

200
201
202
203
    >>> figure(figsize=(6,3))
    <...>
    >>> axes([0.1,0.15,0.63,0.8])
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
204
    >>> corr = gt.avg_neighbour_corr(g, "in", "in")
205
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
206
    ...         label=r"$\left<\text{in}\right>$ vs in")
Tiago Peixoto's avatar
Tiago Peixoto committed
207
208
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
209
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
210
    ...         label=r"$\left<\text{out}\right>$ vs in")
Tiago Peixoto's avatar
Tiago Peixoto committed
211
212
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
213
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
214
    ...          label=r"$\left<\text{in}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
215
216
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
217
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
218
    ...          label=r"$\left<\text{out}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
219
    (...)
220
    >>> legend(loc=(1.05,0.5))
Tiago Peixoto's avatar
Tiago Peixoto committed
221
222
223
224
225
226
227
228
229
230
231
232
    <...>
    >>> xlabel("source degree")
    <...>
    >>> ylabel("average target degree")
    <...>
    >>> savefig("deg-corr-dir.png")

    .. figure:: deg-corr-dir.png
        :align: center

        Average nearest neighbour correlations.
    """
233
    seed = numpy.random.randint(0, sys.maxint)
234
235
236
237
238
    g = Graph()
    if deg_corr == None:
        uncorrelated = True
    else:
        uncorrelated = False
239
240
    libgraph_tool_generation.gen_random_graph(g._Graph__graph, N, deg_sampler,
                                              uncorrelated, not parallel_edges,
241
                                              not self_loops, not directed,
242
                                              seed, verbose, True)
243
    g.set_directed(directed)
Tiago Peixoto's avatar
Tiago Peixoto committed
244
    if random:
Tiago Peixoto's avatar
Tiago Peixoto committed
245
246
        random_rewire(g, parallel_edges=parallel_edges,
                      self_loops=self_loops, verbose=verbose)
Tiago Peixoto's avatar
Tiago Peixoto committed
247
        if deg_corr != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
248
249
250
            random_rewire(g, strat="probabilistic",
                          parallel_edges=parallel_edges, deg_corr=deg_corr,
                          self_loops=self_loops, verbose=verbose)
251
    return g
252

Tiago Peixoto's avatar
Tiago Peixoto committed
253

Tiago Peixoto's avatar
Tiago Peixoto committed
254
255
256
@_limit_args({"strat": ["erdos", "correlated", "uncorrelated", "probabilistic"]})
def random_rewire(g, strat="uncorrelated", parallel_edges=False,
                  self_loops=False, deg_corr=None, verbose=False):
257
    r"""
258
259
    Shuffle the graph in-place. If `strat` != "erdos", the degrees (either in or
    out) of each vertex are always the same, but otherwise the edges are
260
    randomly placed. If `strat` = "correlated", the degree correlations are
261
    also maintained: The new source and target of each edge both have the same
Tiago Peixoto's avatar
Tiago Peixoto committed
262
263
    in and out-degree. If `strat` = "probabilistic", than edges are rewired
    according to the degree correlation given by the parameter `deg_corr`.
264
265
266

    Parameters
    ----------
267
    g : :class:`~graph_tool.Graph`
268
269
        Graph to be shuffled. The graph will be modified.
    strat : string (optional, default: "uncorrelated")
Tiago Peixoto's avatar
Tiago Peixoto committed
270
271
272
        If `strat` = "erdos", the resulting graph will be entirely random. If
        `strat` = "uncorrelated" only the degrees of the vertices will be
        maintained, nothing else. If `strat` = "correlated", additionally the
273
        new source and target of each edge both have the same in and out-degree.
Tiago Peixoto's avatar
Tiago Peixoto committed
274
        If `strat` = "probabilistic", than edges are rewired according to the
275
        degree correlation given by the parameter `deg_corr`.
276
277
278
279
    parallel : bool (optional, default: False)
        If True, parallel edges are allowed.
    self_loops : bool (optional, default: False)
        If True, self-loops are allowed.
280
281
282
283
284
285
286
287
288
289
    deg_corr : function (optional, default: None)
        A function which gives the degree correlation of the graph. It should be
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph. This parameter is ignored,
        unless `strat` = "probabilistic".
    verbose : bool (optional, default: False)
        If True, verbose information is displayed.
290
291
292
293
294
295
296

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
297
    This algorithm iterates through all the edges in the network and tries to
298
    swap its target or source with the target or source of another edge.
Tiago Peixoto's avatar
Tiago Peixoto committed
299
300
301
302
303
304
305

    .. note::
        If `parallel_edges` = False, parallel edges are not placed during
        rewiring. In this case, for some special graphs it may be necessary to
        call the function more than once to obtain a graph which corresponds to
        a uniform sample from the ensemble. But typically, if the graph is
        sufficiently large, a single call should be enough.
306
307

    Each edge gets swapped at least once, so the overall complexity is
Tiago Peixoto's avatar
Tiago Peixoto committed
308
309
310
311
    :math:`O(E)`. If `strat` = "probabilistic" the complexity is
    :math:`O(E\log N_k)`,  where :math:`N_k < V` is the number of different
    degrees (or in,out-degree pairs).

312
313
314
315
316
317

    Examples
    --------

    Some small graphs for visualization.

318
    >>> from numpy.random import random, seed
319
320
    >>> from pylab import *
    >>> seed(42)
321
    >>> g, pos = gt.triangulation(random((1000,2)))
322
    >>> gt.graph_draw(g, layout="arf", output="rewire_orig.png", size=(6,6))
323
    <...>
324
    >>> gt.random_rewire(g, "correlated")
325
    >>> gt.graph_draw(g, layout="arf", output="rewire_corr.png", size=(6,6))
326
    <...>
327
    >>> gt.random_rewire(g)
328
    >>> gt.graph_draw(g, layout="arf", output="rewire_uncorr.png", size=(6,6))
329
    <...>
330
331
332
    >>> gt.random_rewire(g, "erdos")
    >>> gt.graph_draw(g, layout="arf", output="rewire_erdos.png", size=(6,6))
    <...>
333

334
    Some `ridiculograms <http://www.youtube.com/watch?v=YS-asmU3p_4>`_ :
335

336
337
338
    .. image:: rewire_orig.png
    .. image:: rewire_corr.png
    .. image:: rewire_uncorr.png
339
    .. image:: rewire_erdos.png
340

341
342
343
    *From left to right:* Original graph; Shuffled graph, with degree
    correlations; Shuffled graph, without degree correlations; Shuffled graph,
    with random degrees.
344
345
346

    We can try some larger graphs to get better statistics.

347
348
    >>> figure()
    <...>
349
    >>> g = gt.random_graph(30000, lambda: sample_k(20),
350
351
    ...                     lambda i,j: exp(abs(i-j)), directed=False)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
352
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="original")
353
354
355
    (...)
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
356
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="*", label="correlated")
357
358
359
    (...)
    >>> gt.random_rewire(g)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
360
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="uncorrelated")
361
    (...)
362
363
    >>> gt.random_rewire(g, "erdos")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
364
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Erdos")
365
    (...)
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    >>> xlabel("$k$")
    <...>
    >>> ylabel(r"$\left<k_{nn}\right>$")
    <...>
    >>> legend(loc="best")
    <...>
    >>> savefig("shuffled-stats.png")

    .. figure:: shuffled-stats.png
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        graphs. The shuffled graph with correlations displays exactly the same
        correlation as the original graph.

    Now let's do it for a directed graph. See
    :func:`~graph_tool.generation.random_graph` for more details.

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
Tiago Peixoto's avatar
Tiago Peixoto committed
386
    ...                     lambda a,b: (p.pmf(a[0],b[1])*p.pmf(a[1],20-b[0])))
387
388
389
390
    >>> figure(figsize=(6,3))
    <...>
    >>> axes([0.1,0.15,0.6,0.8])
    <...>
391
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
392
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
393
    ...          label=r"$\left<\text{o}\right>$ vs i")
394
395
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
396
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
397
    ...          label=r"$\left<\text{i}\right>$ vs o")
398
399
400
    (...)
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
401
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
402
    ...          label=r"$\left<\text{o}\right>$ vs i, corr.")
403
404
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
405
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
406
    ...          label=r"$\left<\text{i}\right>$ vs o, corr.")
407
408
409
    (...)
    >>> gt.random_rewire(g, "uncorrelated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
410
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
411
    ...          label=r"$\left<\text{o}\right>$ vs i, uncorr.")
412
413
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
414
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
415
    ...          label=r"$\left<\text{i}\right>$ vs o, uncorr.")
416
    (...)
417
    >>> legend(loc=(1.05,0.45))
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    <...>
    >>> xlabel("source degree")
    <...>
    >>> ylabel("average target degree")
    <...>
    >>> savefig("shuffled-deg-corr-dir.png")

    .. figure:: shuffled-deg-corr-dir.png
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        directed graphs. The shuffled graph with correlations displays exactly
        the same correlation as the original graph.
    """

433
    seed = numpy.random.randint(0, sys.maxint)
434

Tiago Peixoto's avatar
Tiago Peixoto committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    if not parallel_edges:
        p = label_parallel_edges(g)
        if p.a.max() != 0:
            raise ValueError("Parallel edge detected. Can't rewire " +
                             "graph without parallel edges if it " +
                             "already contains parallel edges!")
    if not self_loops:
        l = label_self_loops(g)
        if l.a.max() != 0:
            raise ValueError("Self-loop detected. Can't rewire graph " +
                             "without self-loops if it already contains" +
                             " self-loops!")

    if deg_corr != None and  not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
449
        corr = lambda i, j: deg_corr(i[1], j[1])
450
451
452
    else:
        corr = deg_corr

Tiago Peixoto's avatar
Tiago Peixoto committed
453
454
    if corr == None:
        g.stash_filter(reversed=True)
455
456
    try:
        libgraph_tool_generation.random_rewire(g._Graph__graph, strat,
457
458
                                               self_loops, parallel_edges,
                                               corr, seed, verbose)
459
    finally:
Tiago Peixoto's avatar
Tiago Peixoto committed
460
461
        if corr == None:
            g.pop_filter(reversed=True)
Tiago Peixoto's avatar
Tiago Peixoto committed
462

Tiago Peixoto's avatar
Tiago Peixoto committed
463

Tiago Peixoto's avatar
Tiago Peixoto committed
464
465
466
467
468
469
470
471
472
473
def predecessor_tree(g, pred_map):
    """Return a graph from a list of predecessors given by
    the 'pred_map' vertex property."""

    _check_prop_scalar(pred_map, "pred_map")
    pg = Graph()
    libgraph_tool_generation.predecessor_graph(g._Graph__graph,
                                               pg._Graph__graph,
                                               _prop("v", g, pred_map))
    return pg
474

Tiago Peixoto's avatar
Tiago Peixoto committed
475

476
def line_graph(g):
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    """Return the line graph of the given graph `g`.

    Notes
    -----
    Given an undirected graph G, its line graph L(G) is a graph such that

        * each vertex of L(G) represents an edge of G; and
        * two vertices of L(G) are adjacent if and only if their corresponding
          edges share a common endpoint ("are adjacent") in G.

    For a directed graph, the second criterion becomes:

       * Two vertices representing directed edges from u to v and from w to x in
         G are connected by an edge from uv to wx in the line digraph when v =
         w.

    References
    ----------
    .. [line-wiki] http://en.wikipedia.org/wiki/Line_graph
    """
497
498
499
500
501
502
503
504
    lg = Graph(directed=g.is_directed())

    vertex_map = lg.new_vertex_property("int64_t")

    libgraph_tool_generation.line_graph(g._Graph__graph,
                                        lg._Graph__graph,
                                        _prop("v", lg, vertex_map))
    return lg, vertex_map
Tiago Peixoto's avatar
Tiago Peixoto committed
505

Tiago Peixoto's avatar
Tiago Peixoto committed
506
507

def graph_union(g1, g2, props=None, include=False):
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    """Return the union of graphs g1 and g2, composed of all edges and vertices
    of g1 and g2, without overlap.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
       First graph in the union.
    g2 : :class:`~graph_tool.Graph`
       Second graph in the union.
    props : list of tuples of :class:`~graph_tool.PropertyMap` (optional, default: [])
       Each element in this list must be a tuple of two PropertyMap objects. The
       first element must be a property of `g1`, and the second of `g2`. The
       values of the property maps are propagated into the union graph, and
       returned.
    include : bool (optional, default: False)
       If true, graph `g2` is inserted into `g1` which is modified. If false, a
       new graph is created, and both graphs remain unmodified.

    Returns
    -------
    ug : :class:`~graph_tool.Graph`
        The union graph
    props : list of :class:`~graph_tool.PropertyMap` objects
        List of propagated properties.  This is only returned if `props` is not
        empty.
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

    Examples
    --------

    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.triangulation(random((300,2)))[0]
    >>> ug = gt.graph_union(g, g)
    >>> uug = gt.graph_union(g, ug)
    >>> gt.graph_draw(g, layout="arf", size=(8,8), output="graph_original.png")
    <...>
    >>> gt.graph_draw(ug, layout="arf", size=(8,8), output="graph_union.png")
    <...>
    >>> gt.graph_draw(uug, layout="arf", size=(8,8), output="graph_union2.png")
    <...>

    .. image:: graph_original.png
    .. image:: graph_union.png
    .. image:: graph_union2.png

553
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
554
555
    if props == None:
        props = []
Tiago Peixoto's avatar
Tiago Peixoto committed
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    if not include:
        g1 = Graph(g1)
    g1.stash_filter(directed=True)
    g1.set_directed(True)
    g2.stash_filter(directed=True)
    g2.set_directed(True)
    n_props = []

    try:
        vmap, emap = libgraph_tool_generation.graph_union(g1._Graph__graph,
                                                          g2._Graph__graph)
        for p in props:
            p1, p2 = p
            if not include:
                p1 = g1.copy_property(p1)
            if p2.value_type() != p1.value_type():
                p2 = g2.copy_property(p2, value_type=p1.value_type())
            if p1.key_type() == 'v':
                libgraph_tool_generation.\
                      vertex_property_union(g1._Graph__graph, g2._Graph__graph,
                                            vmap, emap,
                                            _prop(p1.key_type(), g1, p1),
                                            _prop(p2.key_type(), g2, p2))
            else:
                libgraph_tool_generation.\
                      edge_property_union(g1._Graph__graph, g2._Graph__graph,
                                          vmap, emap,
                                          _prop(p1.key_type(), g1, p1),
                                          _prop(p2.key_type(), g2, p2))
            n_props.append(p1)
    finally:
        g1.pop_filter(directed=True)
        g2.pop_filter(directed=True)

    if len(n_props) > 0:
        return g1, n_props
    else:
        return g1
594

Tiago Peixoto's avatar
Tiago Peixoto committed
595
596

@_limit_args({"type": ["simple", "delaunay"]})
597
def triangulation(points, type="simple", periodic=False):
598
599
600
601
602
603
604
605
606
607
    r"""
    Generate a 2D or 3D triangulation graph from a given point set.

    Parameters
    ----------
    points : :class:`~numpy.ndarray`
        Point set for the triangulation. It may be either a N x d array, where N
        is the number of points, and d is the space dimension (either 2 or 3).
    type : string (optional, default: 'simple')
        Type of triangulation. May be either 'simple' or 'delaunay'.
608
609
610
    periodic : bool (optional, default: False)
        If True, periodic boundary conditions will be used. This is parameter is
        valid only for type="delaunay", and is otherwise ignored.
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625

    Returns
    -------
    triangulation_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        Vertex property map with the Cartesian coordinates.

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----

Tiago Peixoto's avatar
Tiago Peixoto committed
626
    A triangulation [cgal-triang]_ is a division of the convex hull of a point
627
    set into triangles, using only that set as triangle vertices.
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

    In simple triangulations (`type="simple"`), the insertion of a point is done
    by locating a face that contains the point, and splitting this face into
    three new faces (the order of insertion is therefore important). If the
    point falls outside the convex hull, the triangulation is restored by
    flips. Apart from the location, insertion takes a time O(1). This bound is
    only an amortized bound for points located outside the convex hull.

    Delaunay triangulations (`type="delaunay"`) have the specific empty sphere
    property, that is, the circumscribing sphere of each cell of such a
    triangulation does not contain any other vertex of the triangulation in its
    interior. These triangulations are uniquely defined except in degenerate
    cases where five points are co-spherical. Note however that the CGAL
    implementation computes a unique triangulation even in these cases.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
647
    >>> points = random((500, 2)) * 4
648
    >>> g, pos = gt.triangulation(points)
649
650
651
652
653
654
655
656
657
    >>> weight = g.new_edge_property("double") # Edge weights corresponding to
    ...                                        # Euclidean distances
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 100
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), vsize=0.07, vcolor=b[0],
    ...               eprops={"penwidth":b[1]}, output="triang.png")
658
659
    <...>
    >>> g, pos = gt.triangulation(points, type="delaunay")
660
661
662
663
664
665
666
667
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 120
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), vsize=0.07, vcolor=b[0],
    ...               eprops={"penwidth":b[1]}, output="triang-delaunay.png")
668
669
670
671
672
673
674
    <...>

    2D triangulation of random points:

    .. image:: triang.png
    .. image:: triang-delaunay.png

675
676
677
    *Left:* Simple triangulation. *Right:* Delaunay triangulation. The vertex
    colors and the edge thickness correspond to the weighted betweenness
    centrality.
678
679
680

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
681
    .. [cgal-triang] http://www.cgal.org/Manual/last/doc_html/cgal_manual/Triangulation_3/Chapter_main.html
682
683
684

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
685
    if points.shape[1] not in [2, 3]:
686
687
688
689
690
691
692
693
694
695
        raise ValueError("points array must have shape N x d, with d either 2 or 3.")
    # copy points to ensure continuity and correct data type
    points = numpy.array(points, dtype='float64')
    if points.shape[1] == 2:
        npoints = numpy.zeros((points.shape[0], 3))
        npoints[:,:2] = points
        points = npoints
    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    libgraph_tool_generation.triangulation(g._Graph__graph, points,
696
                                           _prop("v", g, pos), type, periodic)
697
    return g, pos
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832


def lattice(shape, periodic=False):
    r"""
    Generate a N-dimensional square lattice.

    Parameters
    ----------
    shape : list or :class:`~numpy.ndarray`
        List of sizes in each dimension.
    periodic : bool (optional, default: False)
        If ``True``, periodic boundary conditions will be used.

    Returns
    -------
    lattice_graph : :class:`~graph_tool.Graph`
        The generated graph.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation

    Examples
    --------
    >>> g = gt.lattice([10,10])
    >>> gt.graph_draw(g, size=(8,8), output="lattice.png")
    <...>
    >>> g = gt.lattice([10,20], periodic=True)
    >>> gt.graph_draw(g, size=(8,8), output="lattice_periodic.png")
    <...>
    >>> g = gt.lattice([10,10,10])
    >>> gt.graph_draw(g, size=(8,8), output="lattice_3d.png")
    <...>

    .. image:: lattice.png
    .. image:: lattice_periodic.png
    .. image:: lattice_3d.png

    *Left:* 10x10 2D lattice. *Middle:* 10x20 2D periodic lattice (torus).
    *Right:* 10x10x10 3D lattice.

    References
    ----------
    .. [lattice] http://en.wikipedia.org/wiki/Square_lattice

    """

    g = Graph(directed=False)
    libgraph_tool_generation.lattice(g._Graph__graph, shape, periodic)
    return g


def geometric_graph(points, radius, ranges=None):
    r"""
    Generate a geometric network form a set of N-dimensional points.

    Parameters
    ----------
    points : list or :class:`~numpy.ndarray`
        List of points. This must be a two-dimensional array, where the rows are
        coordinates in a N-dimensional space.
    radius : float
        Pairs of points with an euclidean distance lower than this parameters
        will be connected.
    ranges : list or :class:`~numpy.ndarray` (optional, default: None)
        If provided, periodic boundary conditions will be assumed, and the
        values of this parameter it will be used as the ranges in all
        dimensions. It must be a two-dimensional array, where each row will
        cointain the lower and upper bound of each dimension.

    Returns
    -------
    geometric_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        A vertex property map with the position of each vertex.

    Notes
    -----
    A geometric graph [geometric-graph]_ is generated by connecting points
    embedded in a N-dimensional euclidean space which are at a distance equal to
    or smaller than a given radius.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation
    lattice : N-dimensional square lattice

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> points = random((500, 2)) * 4
    >>> g, pos = gt.geometric_graph(points, 0.3)
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), output="geometric.png")
    <...>
    >>> g, pos = gt.geometric_graph(points, 0.3, [(0,4), (0,4)])
    >>> gt.graph_draw(g, size=(8,8), output="geometric_periodic.png")
    <...>

    .. image:: geometric.png
    .. image:: geometric_periodic.png

    *Left:* Geometric network with random points. *Right:* Same network, but
     with periodic boundary conditions.

    References
    ----------
    .. [geometric-graph] Jesper Dall and Michael Christensen, "Random geometric
       graphs", Phys. Rev. E 66, 016121 (2002), DOI: 10.1103/PhysRevE.66.016121

    """

    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    if type(points) != numpy.ndarray:
        points = numpy.array(points)
    if len(points.shape) < 2:
        raise ValueError("points list must be a two-dimensional array!")
    if ranges is not None:
        periodic = True
        if type(ranges) != numpy.ndarray:
            ranges = numpy.array(ranges, dtype="float")
        else:
            ranges = array(ranges, dtype="float")
    else:
        periodic = False
        ranges = ()

    libgraph_tool_generation.geometric(g._Graph__graph, points, float(radius),
                                       ranges, periodic,
                                       _prop("v", g, pos))
    return g, pos