graph_rewiring.hh 20.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
22
#include <tr1/random>
23
24
25
26
#include <boost/functional/hash.hpp>

#include "graph.hh"
#include "graph_filtering.hh"
27
#include "graph_util.hh"
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

namespace graph_tool
{
using namespace std;
using namespace boost;


// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
76
77
            nt = target(te, g),        // new target
            te_s = source(te, g),      // target edge source
78
79
80
81
82
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
83
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
84
85
86
87
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
88
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
89
            return true; // e would clash with an existing (new) edge
90
        if (edge_is_new[te] && is_adjacent_in_new(te_s, t, edge_is_new, g))
91
            return true; // te would clash with an existing (new) edge
92
        if (edge_is_new[se] && is_adjacent_in_new(s, se_t, edge_is_new, g))
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
108
            if (edge_is_new[*e] && target(*e,g) == v)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
134
            ne = add_edge(source(se, g), target(te, g), g).first;
135
136
137
138
139
140
141
142
143
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
144
                nte = add_edge(source(te, g), target(e, g), g).first;
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
171
    void operator()(Graph& g, EdgeIndexMap edge_index, rng_t& rng,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
Tiago Peixoto's avatar
Tiago Peixoto committed
193
                throw ValueException("Self-loop detected. Can't rewire graph "
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
Tiago Peixoto's avatar
Tiago Peixoto committed
223
                throw ValueException("Parallel edge detected. Can't rewire "
224
225
226
227
228
229
230
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
231
232
233
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
234
        {
235
236
237
238
239
240
241
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
242
243
244
        }

        // for each edge simultaneously rewire its source and target
245
        for (size_t i = 0; i < edges.size(); ++i)
246
        {
247
248
            if (!is_edge[i])
                continue;
249
250
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
251
            tie(se, te) = rewire(e, edges, is_edge, self_loops, parallel_edges);
252
253
254
255
256
257
258
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
259
260
template <class RandomAccessIterator, class RNG,
          class RandomDist = tr1::uniform_int<size_t> >
261
262
class random_permutation_iterator : public
    std::iterator<input_iterator_tag, typename RandomAccessIterator::value_type>
263
264
{
public:
265
266
267
    random_permutation_iterator(RandomAccessIterator begin,
                                RandomAccessIterator end, RNG& rng)
        : _i(begin), _end(end), _rng(&rng)
268
    {
269
270
271
272
273
        if(_i != _end)
        {
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
        }
274
    }
275

276
277
278
279
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
280

281
282
283
    random_permutation_iterator& operator++()
    {
        ++_i;
284
        if(_i != _end)
285
        {
286
287
            RandomDist random(0,  _end - _i - 1);
            std::iter_swap(_i, _i + random(*_rng));
288
        }
289
290
        return *this;
    }
291

292
    bool operator==(const random_permutation_iterator& ri)
293
    {
294
        return _i == ri._i;
295
    }
296

297
    bool operator!=(const random_permutation_iterator& ri)
298
    {
299
        return _i != ri._i;
300
    }
301
302
303
304
305
306

    size_t operator-(const random_permutation_iterator& ri)
    {
        return _i - ri._i;
    }

307
private:
308
309
    RandomAccessIterator _i, _end;
    RNG* _rng;
310
311
};

312
313
314
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
315
316
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
317
318
319
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
320
321
    typedef typename EdgeIndexMap::value_type index_t;

322
    RewireStrategyBase(const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
323
        : _g(g), _edge_is_new(edge_index), _rng(rng) {}
324
325

    template<class EdgesType>
326
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
327
                                    vector<bool>& is_edge,
328
                                    bool self_loops, bool parallel_edges)
329
    {
330
        // where should we sample the edges from
331
332
333
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
334
335
336
337

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
338
        edge_t es = e, et = e;
339
        typedef random_permutation_iterator
340
            <typename vector<index_t>::iterator, rng_t> random_edge_iter;
341

342
343
344
345
346
        random_edge_iter esi(edges_source->begin(), edges_source->end(),
                             _rng),
                         esi_end(edges_source->end(), edges_source->end(),
                             _rng);
        for (; esi != esi_end && !found; ++esi)
347
        {
348
349
            if (!is_edge[*esi])
                continue;
350
            es = edges[*esi];
351
352
            static_cast<RewireStrategy*>(this)->check_source_edge(es, e);

353
354
            if(!self_loops) // reject self-loops if not allowed
            {
355
                if((source(e, _g) == target(es, _g)))
356
357
358
                    continue;
            }

359
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
360
361
                                 _rng),
                             eti_end(edges_target->end(), edges_target->end(),
362
                                 _rng);
363
            for (; eti != eti_end && !found; ++eti)
364
            {
365
366
                if (!is_edge[*eti])
                    continue;
367
                et = edges[*eti];
368
369
                static_cast<RewireStrategy*>(this)->check_target_edge(et, e);

370
371
                if (!self_loops) // reject self-loops if not allowed
                {
372
373
                    if ((source(es, _g) == target(et, _g)) ||
                        (source(et, _g) == target(e, _g)))
374
375
376
377
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
378
379
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new,
                                                        _g))
380
381
382
383
384
385
386
387
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
388
        _edge_is_new[e] = true;
389
        return make_pair(es, et);
390
391
392
393
394
    }

private:
    const Graph& _g;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
395
    rng_t& _rng;
396
397
};

398
399
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
400
template <class Graph, class EdgeIndexMap>
401
402
403
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
404
405
{
public:
406
407
408
409
410
411
412
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

413
414
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
415
    typedef typename EdgeIndexMap::value_type index_t;
416

417
418
419
    RandomRewireStrategy(const Graph& g, EdgeIndexMap edge_index,
                         rng_t& rng)
        : base_t(g, edge_index, rng)
420
    {
421
422
423
424
        typename graph_traits<Graph>::edge_iterator e_i, e_i_end;
        for (tie(e_i, e_i_end) = edges(g); e_i != e_i_end; ++e_i)
            _all_edges.push_back(edge_index[*e_i]);
        _all_edges2 = _all_edges;
425
    }
426
427
428

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
429
    {
430
        edges_source = &_all_edges;
431
        edges_target = &_all_edges2;
432
    }
433

434
435
436
    void check_source_edge(edge_t& se, const edge_t& e) {}
    void check_target_edge(edge_t& te, const edge_t& e) {}

437
438
private:
    vector<index_t> _all_edges;
439
    vector<index_t> _all_edges2;
440
};
441

442
443
444
445

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
446
447
448
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
449
450
{
public:
451
452
453
454
455
456
457
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

458
459
460
461
462
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
463
                              rng_t& rng) : base_t(g, edge_index, rng), _g(g)
464
    {
465
466
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
467
        {
468
469
470
471
472
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
473
            {
474
475
476
477
478
                // For undirected graphs, there is no difference between source
                // and target, and each edge will appear _twice_ on the lists
                // below, once for each different ordering of source and target.

                _edges_by_source
479
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
480
                               out_degree(source(*e_i, _g), _g))]
481
                    .push_back(edge_index[*e_i]);
482
483
484
485

                _edges_by_target
                    [make_pair(in_degreeS()(target(*e_i, _g), _g),
                               out_degree(target(*e_i, _g), _g))]
486
                    .push_back(edge_index[*e_i]);
487
488
489
            }
        }
    }
490
491
492

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
493
    {
494
495
496
        pair<size_t, size_t> deg_source =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));
497
498
        edges_source = &_edges_by_source[deg_source];

499
500

        pair<size_t, size_t> deg_target =
501
502
            make_pair(in_degreeS()(target(e, _g), _g),
                      out_degree(target(e, _g), _g));
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        edges_target = &_edges_by_target[deg_target];
    }


    void check_source_edge(edge_t& se, const edge_t& e)
    {
        check_source_edge_if_undirected
            (se, e, typename is_directed::apply<Graph>::type());
    }
    void check_target_edge(edge_t& te, const edge_t& e)
    {
        check_target_edge_if_undirected
            (te, e, typename is_directed::apply<Graph>::type());
    }

    void check_source_edge_if_undirected(edge_t& se, const edge_t& e,
                                         boost::true_type) {}
    void check_target_edge_if_undirected(edge_t& te, const edge_t& e,
                                         boost::true_type) {}

    void check_source_edge_if_undirected(edge_t& se, const edge_t& e,
                                         boost::false_type)
    {
        // check if the edge direction is correct, otherwise invert it.
        pair<size_t, size_t> deg_source1 =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));

        pair<size_t, size_t> deg_source2 =
            make_pair(in_degreeS()(source(se, _g), _g),
                      out_degree(source(se, _g), _g));

        if (deg_source1 != deg_source2)
            se = edge_t(se, !se.IsInverted());
    }

    void check_target_edge_if_undirected(edge_t& te, const edge_t& e,
                                         boost::false_type)
    {
        // check if the edge direction is correct, otherwise invert it.
        pair<size_t, size_t> deg_target1 =
            make_pair(in_degreeS()(target(e, _g), _g),
                      out_degree(target(e, _g), _g));

        pair<size_t, size_t> deg_target2 =
            make_pair(in_degreeS()(target(te, _g), _g),
                      out_degree(target(te, _g), _g));

        if (deg_target1 != deg_target2)
            te = edge_t(te, !te.IsInverted());
554
    }
555

556
private:
557
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
558
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
559
560
    edges_by_end_deg_t _edges_by_source, _edges_by_target;
    vector<index_t> _temp;
561
562
563

protected:
    const Graph& _g;
564
565
566
567
568
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH