graph_rewiring.hh 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
22
#include <tr1/random>
23
#include <boost/functional/hash.hpp>
24
#include <boost/vector_property_map.hpp>
25
26
27

#include "graph.hh"
#include "graph_filtering.hh"
28
#include "graph_util.hh"
29
30
31
32
33
34
35
36
37
38
39
40
41
42

namespace graph_tool
{
using namespace std;
using namespace boost;

// this will get the source of an edge for directed graphs and the target for
// undirected graphs, i.e. "the source of an in-edge"
struct source_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
43
        return get_source(e, g, typename is_directed::apply<Graph>::type());
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return source(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return target(e, g);
    }
};

// this will get the target of an edge for directed graphs and the source for
// undirected graphs, i.e. "the target of an in-edge"
struct target_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
71
        return get_target(e, g, typename is_directed::apply<Graph>::type());
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return target(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return source(e, g);
    }
};

// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
            nt = target_in()(te, g),   // new target
            te_s = source_in()(te, g), // target edge source
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
139
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
140
141
142
143
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
144
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
145
            return true; // e would clash with an existing (new) edge
146
        if (edge_is_new[te] && is_adjacent_in_new(te_s, t, edge_is_new, g))
147
            return true; // te would clash with an existing (new) edge
148
        if (edge_is_new[se] && is_adjacent_in_new(s, se_t, edge_is_new, g))
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
164
            if (edge_is_new[*e] && target(*e,g) == v)
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
            ne = add_edge(source(se, g), target_in()(te, g), g).first;
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
                nte = add_edge(source_in()(te, g), target(e, g), g).first;
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
227
    void operator()(Graph& g, EdgeIndexMap edge_index, rng_t& rng,
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
                throw GraphException("Self-loop detected. Can't rewire graph "
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
                throw GraphException("Parallel edge detected. Can't rewire "
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
287
288
289
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
290
        {
291
292
293
294
295
296
297
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
298
299
300
        }

        // for each edge simultaneously rewire its source and target
301
        for (size_t i = 0; i < int(edges.size()); ++i)
302
        {
303
304
            if (!is_edge[i])
                continue;
305
306
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
307
            tie(se, te) = rewire(e, edges, is_edge, self_loops, parallel_edges);
308
309
310
311
312
313
314
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
315
316
template <class RandomAccessIterator, class RNG,
          class RandomDist = tr1::uniform_int<size_t> >
317
318
319
320
class random_permutation_iterator
{
public:
    random_permutation_iterator(RandomAccessIterator first,
321
                                RandomAccessIterator last, RNG& rng)
322
323
        : _i(first), _last(last), _rng(rng)
    {
324
325
        RandomDist random(0,  _last - _i - 1);
        std::iter_swap(_i, _i + random(_rng));
326
327
328
329
330
    }
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
331

332
333
334
335
    random_permutation_iterator& operator++()
    {
        ++_i;
        if(_i != _last)
336
337
338
339
        {
            RandomDist random(0,  _last - _i - 1);
            std::iter_swap(_i, _i + random(_rng));
        }
340
341
        return *this;
    }
342

343
344
345
346
    bool operator==(const RandomAccessIterator& i)
    {
        return _i == i;
    }
347

348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    bool operator!=(const RandomAccessIterator& i)
    {
        return _i != i;
    }
private:
    RandomAccessIterator _i, _last;
    RNG& _rng;
};

// utility function for random_permutation_iterator
template <class RandomAccessIterator, class RNG>
inline random_permutation_iterator<RandomAccessIterator,RNG>
make_random_permutation_iterator(RandomAccessIterator first,
                                 RandomAccessIterator last, RNG& rng)
{
    return random_permutation_iterator<RandomAccessIterator,RNG>(first, last,
                                                                 rng);
}

367
368
369
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
370
371
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
372
373
374
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
375
    typedef typename EdgeIndexMap::value_type index_t;
376
    typedef tr1::uniform_int<size_t> random_t;
377

378
    RewireStrategyBase(const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
379
        : _g(g), _edge_is_new(edge_index), _rng(rng) {}
380
381

    template<class EdgesType>
382
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
383
                                    vector<bool>& is_edge,
384
                                    bool self_loops, bool parallel_edges)
385
    {
386
        // where should we sample the edges from
387
388
389
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
390
391
392
393

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
394
395
        edge_t es, et;
        typedef random_permutation_iterator
396
            <typename vector<index_t>::iterator, rng_t> random_edge_iter;
397

398
        random_edge_iter esi(edges_source->begin(), edges_source->end(), _rng);
399
        for (; esi != edges_source->end() && !found; ++esi)
400
        {
401
402
            if (!is_edge[*esi])
                continue;
403
            es = edges[*esi];
404
405
            if(!self_loops) // reject self-loops if not allowed
            {
406
                if((source(e, _g) == target(es, _g)))
407
408
409
                    continue;
            }

410
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
411
                                 _rng);
412
            for (; eti != edges_target->end() && !found; ++eti)
413
            {
414
415
                if (!is_edge[*eti])
                    continue;
416
                et = edges[*eti];
417
418
                if (!self_loops) // reject self-loops if not allowed
                {
419
420
                    if ((source(es, _g) == target_in()(et, _g)) ||
                        (source_in()(et, _g) == target(e, _g)))
421
422
423
424
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
425
426
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new,
                                                        _g))
427
428
429
430
431
432
433
434
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
435
        _edge_is_new[e] = true;
436
        return make_pair(es, et);
437
438
439
440
441
    }

private:
    const Graph& _g;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
442
    rng_t& _rng;
443
444
};

445
446
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
447
template <class Graph, class EdgeIndexMap>
448
449
450
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
451
452
{
public:
453
454
455
456
457
458
459
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

460
461
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
462
    typedef typename EdgeIndexMap::value_type index_t;
463

464
465
466
    RandomRewireStrategy(const Graph& g, EdgeIndexMap edge_index,
                         rng_t& rng)
        : base_t(g, edge_index, rng)
467
    {
468
469
470
471
        typename graph_traits<Graph>::edge_iterator e_i, e_i_end;
        for (tie(e_i, e_i_end) = edges(g); e_i != e_i_end; ++e_i)
            _all_edges.push_back(edge_index[*e_i]);
        _all_edges2 = _all_edges;
472
    }
473
474
475

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
476
    {
477
        edges_source = &_all_edges;
478
        edges_target = &_all_edges2;
479
    }
480

481
482
private:
    vector<index_t> _all_edges;
483
    vector<index_t> _all_edges2;
484
};
485

486
487
488
489

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
490
491
492
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
493
494
{
public:
495
496
497
498
499
500
501
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

502
503
504
505
506
507
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
                              rng_t& rng)
508
        : base_t(g, edge_index, rng), _g(g)
509
    {
510
511
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
512
        {
513
514
515
516
517
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
518
            {
519
520
                _edges_source_by
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
521
                               out_degree(source(*e_i, _g), _g))]
522
523
524
525
526
                    .push_back(edge_index[*e_i]);
                _edges_target_by
                    [make_pair(in_degreeS()(target_in()(*e_i, _g), _g),
                               out_degree(target_in()(*e_i, _g), _g))]
                    .push_back(edge_index[*e_i]);
527
528
529
            }
        }
    }
530
531
532

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
533
    {
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
        pair<size_t, size_t> deg_source =
            make_pair(in_degreeS()(source(e, _g), _g),
                      out_degree(source(e, _g), _g));
        edges_source = &_edges_source_by[deg_source];

        pair<size_t, size_t> deg_target =
            make_pair(in_degreeS()(target_in()(e, _g), _g),
                      out_degree(target_in()(e, _g), _g));

        // make sure both vectors are always different
        if (deg_target != deg_source)
        {
            edges_target = &_edges_target_by[deg_target];
        }
        else
        {
            temp = _edges_target_by[deg_target];
            edges_target = &temp;
        }
553
    }
554

555
private:
556
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
557
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
558
    edges_by_end_deg_t _edges_source_by, _edges_target_by;
559
    vector<size_t> temp;
560
561
562

protected:
    const Graph& _g;
563
564
565
566
567
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH