__init__.py 21 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.draw`` - Graph drawing and layout
----------------------------------------------
24
25
26
27

Summary
+++++++

28
29
30
Layout algorithms
=================

31
32
33
.. autosummary::
   :nosignatures:

Tiago Peixoto's avatar
Tiago Peixoto committed
34
   sfdp_layout
35
   fruchterman_reingold_layout
36
37
   arf_layout
   random_layout
38
39
40
41
42
43
44
45
46


Graph drawing
=============

.. autosummary::
   :nosignatures:

   graph_draw
Tiago Peixoto's avatar
Tiago Peixoto committed
47
   graphviz_draw
48

49
50
51
52
53
54
55
56
57
58
59
60

Low-level graph drawing
^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:

   cairo_draw
   interactive_window
   GraphWidget
   GraphWindow

61
62
Contents
++++++++
63
64
"""

65
66
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
67
68
69
70
71
72
73
74
from .. import GraphView, _check_prop_vector, group_vector_property, \
     ungroup_vector_property, infect_vertex_property, _prop
from .. topology import max_cardinality_matching, max_independent_vertex_set, \
    label_components,  pseudo_diameter
from .. community import condensation_graph
from .. stats import label_parallel_edges
import numpy.random
from numpy import sqrt
75
import sys
76
77

from .. dl_import import dl_import
78
dl_import("from . import libgraph_tool_layout")
79

80

81
82
__all__ = ["graph_draw", "graphviz_draw",
           "fruchterman_reingold_layout",
Tiago Peixoto's avatar
Tiago Peixoto committed
83
           "arf_layout", "sfdp_layout", "random_layout",
84
           "cairo_draw"]
85

Tiago Peixoto's avatar
Tiago Peixoto committed
86

87
def random_layout(g, shape=None, pos=None, dim=2):
88
89
90
91
    r"""Performs a random layout of the graph.

    Parameters
    ----------
92
    g : :class:`~graph_tool.Graph`
93
        Graph to be used.
94
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
95
96
97
98
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
99
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
100
        Vector vertex property maps where the coordinates should be stored.
101
    dim : int (optional, default: ``2``)
102
103
104
105
        Number of coordinates per vertex.

    Returns
    -------
106
107
108
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
109
110
111
112

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
113
114
115
116
117
118
119
120
121
122
123

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
    array([ 86.59969709,   1.31435598,   0.64651486])

124
125
    """

126
    if pos == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
127
128
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
129

130
    pos = ungroup_vector_property(pos, list(range(0, dim)))
131
132

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
133
        shape = [sqrt(g.num_vertices())] * dim
134

135
    for i in range(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
136
137
138
139
140
141
142
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
143
144
145
146

        # deal with filtering
        p = pos[i].ma
        p[:] = numpy.random.random(len(p)) * d + r[0]
147

Tiago Peixoto's avatar
Tiago Peixoto committed
148
    pos = group_vector_property(pos)
149
150
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
151

152
153
154
155
156
157
158
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
159
    g : :class:`~graph_tool.Graph`
160
        Graph to be used.
161
    weight : :class:`PropertyMap` (optional, default: ``None``)
162
163
164
165
166
167
168
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
169
170
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
171
        will be a square.
172
173
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
174
        the same site on a grid. Otherwise they will act on all vertex pairs.
175
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
176
177
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
178
    n_iter : int (optional, default: ``100``)
179
        Total number of iterations.
180
    pos : :class:`PropertyMap` (optional, default: ``None``)
181
182
183
184
185
186
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
187
188
189
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
190
191
192
193

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
194
195
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
196
197
198
199
200
201
202

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
203
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-fr.pdf")
204
205
    <...>

206
    .. figure:: graph-draw-fr.*
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
       "Graph Drawing by Force-Directed Placement". Software – Practice & Experience
       (Wiley) 21 (11): 1129–1164. (1991) :doi:`10.1002/spe.4380211102`
    """

    if pos == None:
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
242
               max_iter=1000, pos=None, dim=2):
243
244
    r"""Calculate the ARF spring-block layout of the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
245
246
247
248
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
Tiago Peixoto's avatar
Tiago Peixoto committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        An edge property map with the respective weights.
    d : float (optional, default: ``0.5``)
        Opposing force between vertices.
    a : float (optional, default: ``10``)
        Attracting force between adjacent vertices.
    dt : float (optional, default: ``0.001``)
        Iteration step size.
    epsilon : float (optional, default: ``1e-6``)
        Convergence criterion.
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
        convergence.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: ``2``)
        Number of coordinates per vertex.
Tiago Peixoto's avatar
Tiago Peixoto committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm is defined in [geipel-self-organization-2007]_, and has
    complexity :math:`O(V^2)`.

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
284
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-arf.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    <...>

    .. figure:: graph-draw-arf.*
        :align: center

        ARF layout of a Price network.

    References
    ----------
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

    if pos is None:
302
        pos = random_layout(g, dim=dim)
Tiago Peixoto's avatar
Tiago Peixoto committed
303
304
305
306
307
308
309
310
311
    _check_prop_vector(pos, name="pos", floating=True)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    return pos


Tiago Peixoto's avatar
Tiago Peixoto committed
312
313
314
315
316
317
318
319
def _coarse_graph(g, vweight, eweight, mivs=False):
    if mivs:
        mivs = max_independent_vertex_set(g, high_deg=True)
        u = GraphView(g, vfilt=mivs, directed=False)
        c = label_components(u)[0]
        c.fa += 1
        u = GraphView(g, directed=False)
        infect_vertex_property(u, c,
320
                               list(range(1, c.fa.max() + 1)))
Tiago Peixoto's avatar
Tiago Peixoto committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        c = g.own_property(c)
    else:
        mivs = None
        m = max_cardinality_matching(GraphView(g, directed=False),
                                     heuristic=True, weight=eweight,
                                     minimize=False)
        u = GraphView(g, efilt=m, directed=False)
        c = label_components(u)[0]
        c = g.own_property(c)
        u = GraphView(g, directed=False)
    cg, cc, vcount, ecount = condensation_graph(u, c, vweight, eweight)
    return cg, cc, vcount, ecount, c, mivs


def _propagate_pos(g, cg, c, cc, cpos, delta, mivs):
336
    seed = numpy.random.randint(sys.maxsize)
Tiago Peixoto's avatar
Tiago Peixoto committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    pos = g.new_vertex_property(cpos.value_type())

    if mivs is not None:
        g = GraphView(g, vfilt=mivs)
    libgraph_tool_layout.propagate_pos(g._Graph__graph,
                                       cg._Graph__graph,
                                       _prop("v", g, c),
                                       _prop("v", cg, cc),
                                       _prop("v", g, pos),
                                       _prop("v", cg, cpos),
                                       delta if mivs is None else 0,
                                       seed)
    if mivs is not None:
        g = g.base
        u = GraphView(g, directed=False)
        try:
            libgraph_tool_layout.propagate_pos_mivs(u._Graph__graph,
                                                    _prop("v", u, mivs),
                                                    _prop("v", u, pos),
                                                    delta, seed)
        except ValueError:
            graph_draw(u, mivs, vertex_fillcolor=mivs)
    return pos


def _avg_edge_distance(g, pos):
363
364
365
366
    ad = libgraph_tool_layout.avg_dist(g._Graph__graph, _prop("v", g, pos))
    if numpy.isnan(ad):
        ad = 1.
    return ad
Tiago Peixoto's avatar
Tiago Peixoto committed
367
368
369


def coarse_graphs(g, method="hybrid", mivs_thres=0.9, ec_thres=0.75,
370
371
                  weighted_coarse=False, eweight=None, vweight=None,
                  verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
372
    cg = [[g, None, None, None, None, None]]
373
374
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
Tiago Peixoto's avatar
Tiago Peixoto committed
375
376
377
    mivs = not (method in ["hybrid", "ec"])
    while True:
        u = _coarse_graph(cg[-1][0], cg[-1][2], cg[-1][3], mivs)
378
379
380
        thres = mivs_thres if mivs else ec_thres
        if u[0].num_vertices() >= thres * cg[-1][0].num_vertices():
            if method == "hybrid" and not mivs:
Tiago Peixoto's avatar
Tiago Peixoto committed
381
382
383
384
385
386
387
                mivs = True
            else:
                break
        if u[0].num_vertices() <= 2:
            break
        cg.append(u)
        if verbose:
388
389
390
            print("Coarse level (%s):" % ("MIVS" if mivs else "EC"), end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u[0].num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
391
392
393
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
394
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
395
396
397
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
398
399
            if K == 0:
                K = 1.
Tiago Peixoto's avatar
Tiago Peixoto committed
400
401
402
403
404
405
406
407
408
409
410
411
412
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

413
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
414
415
416
417
        u, cc, vcount, ecount, c, mivs = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
418
            print("avg edge distance:", _avg_edge_distance(u, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
419
420
421

        if i < len(cg) - 1:
            if verbose:
422
423
                print("propagating...", end=' ')
                print(mivs.a.sum() if mivs is not None else "")
Tiago Peixoto's avatar
Tiago Peixoto committed
424
            pos = _propagate_pos(cg[i + 1][0], u, c, cc, pos,
425
                                 Ks[i] / 1000., mivs)
Tiago Peixoto's avatar
Tiago Peixoto committed
426
427
428


def sfdp_layout(g, vweight=None, eweight=None, pin=None, C=0.2, K=None, p=2.,
429
430
431
432
433
434
                theta=0.6, max_level=11, gamma=1., init_step=None,
                cooling_step=0.9, adaptive_cooling=True, epsilon=1e-1,
                max_iter=0, pos=None, multilevel=None, coarse_method="hybrid",
                mivs_thres=0.9, ec_thres=0.75, weighted_coarse=False,
                verbose=False):
    r"""Obtain the SFDP spring-block layout of the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
435

436
437
    Parameters
    ----------
438
    g : :class:`~graph_tool.Graph`
439
        Graph to be used.
440
441
442
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with the respective weights.
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
443
        An edge property map with the respective weights.
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    pin : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with with boolean values, which, if given,
        specifies the vertices which will not have their positions modified.
    C : float (optional, default: ``0.2``)
        Relative strength of repulsive forces.
    K : float (optional, default: ``None``)
        Optimal edge length. If not provided, it will be taken to be the average
        edge distance in the initial layout.
    p : float (optional, default: ``2``)
        Repulsive force exponent.
    theta : float (optional, default: ``0.6``)
        Quadtree opening parameter, a.k.a. Barnes–Hut opening criterion.
    max_level : int (optional, default: ``11``)
        Maximum quadtree level.
    gamma : float (optional, default: ``1.0``)
        Strength of the attractive force between connected components.
    init_step : float (optional, default: ``None``)
        Initial update step. If not provided, it will be chosen automatically.
    cooling_step : float (optional, default: ``0.9``)
        Cooling update step.
    adaptive_cooling : bool (optional, default: ``True``)
        Use an adaptive cooling scheme.
    epsilon : float (optional, default: ``0.1``)
        Relative convergence criterion.
    max_iter : int (optional, default: ``0``)
469
        Maximum number of iterations. If this value is ``0``, it runs until
470
        convergence.
471
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
        Initial vertex layout. If not provided, it will be randomly chosen.
    multilevel : bool (optional, default: ``None``)
        Use a multilevel layout algorithm. If ``None`` is given, it will be
        activated based on the size of the graph.
    coarse_method : str (optional, default: ``"hybrid"``)
        Coarsening method used if ``multilevel == True``. Allowed methods are
        ``"hybrid"``, ``"mivs"`` and ``"ec"``.
    mivs_thres : float (optional, default: ``0.9``)
        If the relative size of the MIVS coarse graph is above this value, the
        coarsening stops.
    ec_thres : float (optional, default: ``0.75``)
        If the relative size of the EC coarse graph is above this value, the
        coarsening stops.
    weighted_coarse : bool (optional, default: ``False``)
        Use weighted coarse graphs.
    verbose : bool (optional, default: ``False``)
        Provide verbose information.
489
490
491

    Returns
    -------
492
493
494
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
495
496
497

    Notes
    -----
498
499
    This algorithm is defined in [hu-multilevel-2005]_, and has
    complexity :math:`O(V\log V)`.
500
501
502
503
504

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
505
506
507
    >>> g = gt.price_network(3000)
    >>> pos = gt.sfdp_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.pdf")
508
509
    <...>

510
    .. figure:: graph-draw-sfdp.*
511
512
        :align: center

513
        SFDP layout of a Price network.
514
515
516

    References
    ----------
517
518
519
    .. [hu-multilevel-2005] Yifan Hu, "Efficient and High Quality Force-Directed
       Graph", Mathematica Journal, vol. 10, Issue 1, pp. 37-71, (2005)
       http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
520
521
    """

522
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
523
        pos = random_layout(g, dim=2)
524
525
    _check_prop_vector(pos, name="pos", floating=True)

Tiago Peixoto's avatar
Tiago Peixoto committed
526
527
    g = GraphView(g, directed=False)

Tiago Peixoto's avatar
Tiago Peixoto committed
528
529
530
531
    if pin is not None and pin.value_type() != "bool":
        raise ValueError("'pin' property must be of type 'bool'.")

    if K is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
532
        K = _avg_edge_distance(g, pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
533
534

    if init_step is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
535
536
537
538
539
540
        init_step = 10 * max(_avg_edge_distance(g, pos), K)

    if multilevel is None:
        multilevel = g.num_vertices() > 1000

    if multilevel:
541
542
        if eweight is not None or vweight is not None:
            weighted_coarse = True
Tiago Peixoto's avatar
Tiago Peixoto committed
543
544
545
546
        cgs = coarse_graphs(g, method=coarse_method,
                            mivs_thres=mivs_thres,
                            ec_thres=ec_thres,
                            weighted_coarse=weighted_coarse,
547
548
                            eweight=eweight,
                            vweight=vweight,
Tiago Peixoto's avatar
Tiago Peixoto committed
549
550
551
552
                            verbose=verbose)
        count = 0
        for u, pos, K, vcount, ecount in cgs:
            if verbose:
553
554
                print("Positioning level:", count, u.num_vertices(), end=' ')
                print("with K =", K, "...")
Tiago Peixoto's avatar
Tiago Peixoto committed
555
556
557
558
559
560
                count += 1
            #graph_draw(u, pos)
            pos = sfdp_layout(u, pos=pos,
                              vweight=vcount if weighted_coarse else None,
                              eweight=ecount if weighted_coarse else None,
                              C=C, K=K, p=p,
561
                              theta=theta, gamma=gamma, epsilon=epsilon,
Tiago Peixoto's avatar
Tiago Peixoto committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
                              max_iter=max_iter,
                              cooling_step=cooling_step,
                              adaptive_cooling=False,
                              init_step=max(2 * K,
                                            _avg_edge_distance(u, pos) / 10),
                              multilevel=False,
                              verbose=False)
            #graph_draw(u, pos)
        return pos

    if g.num_vertices() <= 1:
        return pos
    if g.num_vertices() == 2:
        vs = [g.vertex(0, False), g.vertex(1, False)]
        pos[vs[0]] = [0, 0]
        pos[vs[1]] = [1, 1]
        return pos
    if g.num_vertices() <= 50:
        max_level = 0
581
    groups = label_components(g)[0]
Tiago Peixoto's avatar
Tiago Peixoto committed
582
583
584
    libgraph_tool_layout.sfdp_layout(g._Graph__graph, _prop("v", g, pos),
                                     _prop("v", g, vweight),
                                     _prop("e", g, eweight),
585
586
587
                                     _prop("v", g, pin),
                                     (C, K, p, gamma, _prop("v", g, groups)),
                                     theta, init_step, cooling_step, max_level,
Tiago Peixoto's avatar
Tiago Peixoto committed
588
589
                                     epsilon, max_iter, not adaptive_cooling,
                                     verbose)
590
    return pos
Tiago Peixoto's avatar
Tiago Peixoto committed
591

592
593
594
595
try:
    from .cairo_draw import graph_draw, cairo_draw
except ImportError:
    pass
596
597

try:
598
    from .cairo_draw import GraphWidget, GraphWindow, \
599
600
601
602
        interactive_window
    __all__ += ["interactive_window", "GraphWidget", "GraphWindow"]
except ImportError:
    pass
Tiago Peixoto's avatar
Tiago Peixoto committed
603

604
605
606
607
try:
   from .graphviz_draw import graphviz_draw
except ImportError:
   pass