__init__.py 38.6 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.generation`` - Random graph generation
23
---------------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35

Summary
+++++++

.. autosummary::
   :nosignatures:

   random_graph
   random_rewire
   predecessor_tree
   line_graph
   graph_union
36
   triangulation
37
38
   lattice
   geometric_graph
39
   price_network
40
41
42

Contents
++++++++
43
44
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
45
46
from .. dl_import import dl_import
dl_import("import libgraph_tool_generation")
47

48
from .. import Graph, GraphView, _check_prop_scalar, _prop, _limit_args
Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. stats import label_parallel_edges, label_self_loops
50
import sys, numpy, numpy.random
51

Tiago Peixoto's avatar
Tiago Peixoto committed
52
__all__ = ["random_graph", "random_rewire", "predecessor_tree", "line_graph",
53
54
           "graph_union", "triangulation", "lattice", "geometric_graph",
           "price_network"]
55

Tiago Peixoto's avatar
Tiago Peixoto committed
56

57
def random_graph(N, deg_sampler, deg_corr=None, directed=True,
Tiago Peixoto's avatar
Tiago Peixoto committed
58
                 parallel_edges=False, self_loops=False, random=True,
59
                 mix_time=10, verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    r"""
    Generate a random graph, with a given degree distribution and correlation.

    Parameters
    ----------
    N : int
        Number of vertices in the graph.
    deg_sampler : function
        A degree sampler function which is called without arguments, and returns
        a tuple of ints representing the in and out-degree of a given vertex (or
        a single int for undirected graphs, representing the out-degree). This
        function is called once per vertex, but may be called more times, if the
        degree sequence cannot be used to build a graph.
    deg_corr : function (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
74
        A function which gives the degree correlation of the graph. It should be
Tiago Peixoto's avatar
Tiago Peixoto committed
75
76
77
78
79
80
81
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph.
    directed : bool (optional, default: True)
        Whether the generated graph should be directed.
82
    parallel_edges : bool (optional, default: False)
Tiago Peixoto's avatar
Tiago Peixoto committed
83
84
85
        If True, parallel edges are allowed.
    self_loops : bool (optional, default: False)
        If True, self-loops are allowed.
Tiago Peixoto's avatar
Tiago Peixoto committed
86
87
    random : bool (optional, default: True)
        If True, the returned graph is randomized.
88
89
90
91
    mix_time : int (optional, default: 10)
        Number of edge sweeps to perform in order to mix the graph. This value
        is ignored if ``parallel_edges == self_loops == True`` and
        ``strat != "probabilistic"``.
92
93
    verbose : bool (optional, default: False)
        If True, verbose information is displayed.
Tiago Peixoto's avatar
Tiago Peixoto committed
94
95
96

    Returns
    -------
97
    random_graph : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
98
99
100
101
102
103
104
105
        The generated graph.

    See Also
    --------
    random_rewire: in place graph shuffling

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
106
107
108
    The algorithm makes sure the degree sequence is graphical (i.e. realizable)
    and keeps re-sampling the degrees if is not. With a valid degree sequence,
    the edges are placed deterministically, and later the graph is shuffled with
109
110
    the :func:`~graph_tool.generation.random_rewire` function, with the
    ``mix_time`` parameter passed as ``n_iter``.
Tiago Peixoto's avatar
Tiago Peixoto committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    The complexity is :math:`O(V + E)` if parallel edges are allowed, and
    :math:`O(V + E \times\text{mix_time})` if parallel edges are not allowed.


    .. note ::

        If ``parallel_edges == False`` this algorithm only guarantees that the
        returned graph will be a random sample from the desired ensemble if
        ``mix_time`` is sufficiently large. The algorithm implements an
        efficient Markov chain based on edge swaps, with a mixing time which
        depends on the degree distribution and correlations desired. If degree
        correlations are provided, the mixing time tends to be larger.

        If ``strat == "probabilistic"``, the Markov chain still needs to be
        mixed, even if parallel edges and self-loops are allowed. In this case
        the Markov chain is implemented using a mixture of the alias method
        [ripley-stochastic-1987]_ for direct sampling of target degrees, and
        Metropolis-Hastings [metropolis-equations-1953]_
        [hastings-monte-carlo-1970]_ acceptance/rejection sampling of edge
        swaps.
Tiago Peixoto's avatar
Tiago Peixoto committed
132

Tiago Peixoto's avatar
Tiago Peixoto committed
133
134
    References
    ----------
135
136
137
138
139
140
141
142
143
144
145
    .. [deg-sequence] http://en.wikipedia.org/wiki/Degree_%28graph_theory%29#Degree_sequence
    .. [metropolis-equations-1953]  Metropolis, N.; Rosenbluth, A.W.;
       Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State
       Calculations by Fast Computing Machines". Journal of Chemical Physics 21
       (6): 1087–1092 (1953). :doi:`10.1063/1.1699114`
    .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods
       Using Markov Chains and Their Applications". Biometrika 57 (1): 97–109 (1970).
       :doi:`10.1093/biomet/57.1.97`
    .. [ripley-stochastic-1987]  B. D Ripley, Stochastic simulation, vol. 183
       (Wiley Online  Library, 1987). :doi:`10.1002/9780470316726.fmatter`

Tiago Peixoto's avatar
Tiago Peixoto committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

    Examples
    --------

    >>> from numpy.random import randint, random, seed, poisson
    >>> from pylab import *
    >>> seed(42)

    This is a degree sampler which uses rejection sampling to sample from the
    distribution :math:`P(k)\propto 1/k`, up to a maximum.

    >>> def sample_k(max):
    ...     accept = False
    ...     while not accept:
    ...         k = randint(1,max+1)
    ...         accept = random() < 1.0/k
    ...     return k
    ...

    The following generates a random undirected graph with degree distribution
    :math:`P(k)\propto 1/k` (with k_max=40) and an *assortative* degree
    correlation of the form:

    .. math::

        P(i,k) \propto \frac{1}{1+|i-k|}

    >>> g = gt.random_graph(1000, lambda: sample_k(40),
174
175
    ...                     lambda i, k: 1.0 / (1 + abs(i - k)), directed=False,
    ...                     mix_time=100)
Tiago Peixoto's avatar
Tiago Peixoto committed
176
    >>> gt.scalar_assortativity(g, "out")
177
    (0.5149626775363764, 0.01291310404121864)
Tiago Peixoto's avatar
Tiago Peixoto committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    The following samples an in,out-degree pair from the joint distribution:

    .. math::

        p(j,k) = \frac{1}{2}\frac{e^{-m_1}m_1^j}{j!}\frac{e^{-m_1}m_1^k}{k!} +
                 \frac{1}{2}\frac{e^{-m_2}m_2^j}{j!}\frac{e^{-m_2}m_2^k}{k!}

    with :math:`m_1 = 4` and :math:`m_2 = 20`.

    >>> def deg_sample():
    ...    if random() > 0.5:
    ...        return poisson(4), poisson(4)
    ...    else:
    ...        return poisson(20), poisson(20)
    ...

    The following generates a random directed graph with this distribution, and
    plots the combined degree correlation.

    >>> g = gt.random_graph(20000, deg_sample)
    >>>
    >>> hist = gt.combined_corr_hist(g, "in", "out")
    >>> imshow(hist[0], interpolation="nearest")
    <...>
    >>> colorbar()
    <...>
205
    >>> xlabel("in-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
206
    <...>
207
    >>> ylabel("out-degree")
Tiago Peixoto's avatar
Tiago Peixoto committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    <...>
    >>> savefig("combined-deg-hist.png")

    .. figure:: combined-deg-hist.png
        :align: center

        Combined degree histogram.

    A correlated directed graph can be build as follows. Consider the following
    degree correlation:

    .. math::

         P(j',k'|j,k)=\frac{e^{-k}k^{j'}}{j'!}
         \frac{e^{-(20-j)}(20-j)^{k'}}{k'!}

    i.e., the in->out correlation is "disassortative", the out->in correlation
    is "assortative", and everything else is uncorrelated.
    We will use a flat degree distribution in the range [1,20).

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
230
231
232
    ...                     lambda a,b: (p.pmf(a[0], b[1]) *
    ...                                  p.pmf(a[1], 20 - b[0])),
    ...                     mix_time=100)
Tiago Peixoto's avatar
Tiago Peixoto committed
233
234
235

    Lets plot the average degree correlations to check.

236
237
238
239
    >>> figure(figsize=(6,3))
    <...>
    >>> axes([0.1,0.15,0.63,0.8])
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
240
    >>> corr = gt.avg_neighbour_corr(g, "in", "in")
241
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
242
    ...         label=r"$\left<\text{in}\right>$ vs in")
Tiago Peixoto's avatar
Tiago Peixoto committed
243
244
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
245
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
246
    ...         label=r"$\left<\text{out}\right>$ vs in")
Tiago Peixoto's avatar
Tiago Peixoto committed
247
248
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
249
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
250
    ...          label=r"$\left<\text{in}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
251
252
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
253
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
254
    ...          label=r"$\left<\text{out}\right>$ vs out")
Tiago Peixoto's avatar
Tiago Peixoto committed
255
    (...)
256
    >>> legend(loc=(1.05,0.5))
Tiago Peixoto's avatar
Tiago Peixoto committed
257
258
259
260
261
262
263
264
265
266
267
268
    <...>
    >>> xlabel("source degree")
    <...>
    >>> ylabel("average target degree")
    <...>
    >>> savefig("deg-corr-dir.png")

    .. figure:: deg-corr-dir.png
        :align: center

        Average nearest neighbour correlations.
    """
269

270
    seed = numpy.random.randint(0, sys.maxint)
271
272
273
274
275
    g = Graph()
    if deg_corr == None:
        uncorrelated = True
    else:
        uncorrelated = False
276
277
278
279
280
281
282
    libgraph_tool_generation.gen_graph(g._Graph__graph, N, deg_sampler,
                                       uncorrelated, not parallel_edges,
                                       not self_loops, not directed,
                                       seed, verbose, True)

    if parallel_edges and self_loops and strat != "probabilistic":
        mix_time = 1
283
    g.set_directed(directed)
Tiago Peixoto's avatar
Tiago Peixoto committed
284
    if random:
285
286
        if deg_corr is not None:
            random_rewire(g, strat="probabilistic", n_iter=mix_time,
Tiago Peixoto's avatar
Tiago Peixoto committed
287
288
                          parallel_edges=parallel_edges, deg_corr=deg_corr,
                          self_loops=self_loops, verbose=verbose)
289
290
291
292
        else:
            random_rewire(g, parallel_edges=parallel_edges, n_iter=mix_time,
                          self_loops=self_loops, verbose=verbose)

293
    return g
294

Tiago Peixoto's avatar
Tiago Peixoto committed
295

Tiago Peixoto's avatar
Tiago Peixoto committed
296
@_limit_args({"strat": ["erdos", "correlated", "uncorrelated", "probabilistic"]})
297
298
299
def random_rewire(g, strat="uncorrelated", n_iter=1, edge_sweep=True,
                  parallel_edges=False, self_loops=False, deg_corr=None,
                  ret_fail=False, verbose=False):
300
    r"""
301
302
303
304
305
306
307
308
    Shuffle the graph in-place.

    If ``strat != "erdos"``, the degrees (either in or out) of each vertex are
    always the same, but otherwise the edges are randomly placed. If
    ``strat == "correlated"``, the degree correlations are also maintained: The
    new source and target of each edge both have the same in and out-degree. If
    ``strat == "probabilistic"``, then edges are rewired according to the degree
    correlation given by the parameter ``deg_corr``.
309
310
311

    Parameters
    ----------
312
    g : :class:`~graph_tool.Graph`
313
        Graph to be shuffled. The graph will be modified.
314
315
316
317
    strat : string (optional, default: ``"uncorrelated"``)
        If ``strat == "erdos"``, the resulting graph will be entirely random. If
        ``strat == "uncorrelated"`` only the degrees of the vertices will be
        maintained, nothing else. If ``strat == "correlated"``, additionally the
318
        new source and target of each edge both have the same in and out-degree.
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        If ``strat == "probabilistic"``, than edges are rewired according to the
        degree correlation given by the parameter ``deg_corr``.
    n_iter : int (optional, default: ``1``)
        Number of iterations. If ``edge_sweep == True``, each iteration
        corresponds to an entire "sweep" over all edges. Otherwise this
        corresponds to the total number of edges which are randomly chosen for a
        swap attempt (which may repeat).
    edge_sweep : bool (optional, default: ``True``)
        If ``True``, each iteration will perform an entire "sweep" over the
        edges, where each edge is visited once in random order, and a edge swap
        is attempted.
    parallel : bool (optional, default: ``False``)
        If ``True``, parallel edges are allowed.
    self_loops : bool (optional, default: ``False``)
        If ``True``, self-loops are allowed.
    deg_corr : function (optional, default: ``None``)
335
336
337
338
339
340
        A function which gives the degree correlation of the graph. It should be
        callable with two parameters: the in,out-degree pair of the source
        vertex an edge, and the in,out-degree pair of the target of the same
        edge (for undirected graphs, both parameters are single values). The
        function should return a number proportional to the probability of such
        an edge existing in the generated graph. This parameter is ignored,
341
342
343
344
345
346
347
348
349
350
351
352
        unless ``strat == "probabilistic"``.
    ret_fail : bool (optional, default: ``False``)
        If ``True``, the number of failed edge moves (due to parallel edges or
        self-loops) is returned.
    verbose : bool (optional, default: ``False``)
        If ``True``, verbose information is displayed.


    Returns
    -------
    fail_count : int
        Number of failed edge moves (due to parallel edges or self-loops).
353
354
355
356
357
358
359

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
360
    This algorithm iterates through all the edges in the network and tries to
361
    swap its target or source with the target or source of another edge.
Tiago Peixoto's avatar
Tiago Peixoto committed
362
363

    .. note::
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        If ``parallel_edges = False``, parallel edges are not placed during
        rewiring. In this case, the returned graph will be a uncorrelated sample
        from the desired ensemble only if ``n_iter`` is sufficiently large. The
        algorithm implements an efficient Markov chain based on edge swaps, with
        a mixing time which depends on the degree distribution and correlations
        desired. If degree probabilistic correlations are provided, the mixing
        time tends to be larger.

        If ``strat == "probabilistic"``, the Markov chain still needs to be
        mixed, even if parallel edges and self-loops are allowed. In this case
        the Markov chain is implemented using a mixture of the alias method
        [ripley-stochastic-1987]_ for direct sampling of target degrees, and
        Metropolis-Hastings [metropolis-equations-1953]_
        [hastings-monte-carlo-1970]_ acceptance/rejection sampling of edge
        swaps.

Tiago Peixoto's avatar
Tiago Peixoto committed
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    Each edge is tentatively swapped once per iteration, so the overall
    complexity is :math:`O(V + E \times \text{n_iter})`. If ``edge_sweep ==
    False``, the complexity becomes :math:`O(V + E + \text{n_iter})`.

    References
    ----------
    .. [metropolis-equations-1953]  Metropolis, N.; Rosenbluth, A.W.;
       Rosenbluth, M.N.; Teller, A.H.; Teller, E. "Equations of State
       Calculations by Fast Computing Machines". Journal of Chemical Physics 21
       (6): 1087–1092 (1953). :doi:`10.1063/1.1699114`
    .. [hastings-monte-carlo-1970] Hastings, W.K. "Monte Carlo Sampling Methods
       Using Markov Chains and Their Applications". Biometrika 57 (1): 97–109 (1970).
       :doi:`10.1093/biomet/57.1.97`
    .. [ripley-stochastic-1987]  B. D Ripley, Stochastic simulation, vol. 183
       (Wiley Online  Library, 1987). :doi:`10.1002/9780470316726.fmatter`
397
398
399
400
401
402

    Examples
    --------

    Some small graphs for visualization.

403
    >>> from numpy.random import random, seed
404
405
    >>> from pylab import *
    >>> seed(42)
406
    >>> g, pos = gt.triangulation(random((1000,2)))
407
    >>> gt.graph_draw(g, layout="arf", output="rewire_orig.png", size=(6,6))
408
    <...>
409
    >>> gt.random_rewire(g, "correlated")
410
    >>> gt.graph_draw(g, layout="arf", output="rewire_corr.png", size=(6,6))
411
    <...>
412
    >>> gt.random_rewire(g)
413
    >>> gt.graph_draw(g, layout="arf", output="rewire_uncorr.png", size=(6,6))
414
    <...>
415
416
417
    >>> gt.random_rewire(g, "erdos")
    >>> gt.graph_draw(g, layout="arf", output="rewire_erdos.png", size=(6,6))
    <...>
418

419
    Some `ridiculograms <http://www.youtube.com/watch?v=YS-asmU3p_4>`_ :
420

421
422
423
    .. image:: rewire_orig.png
    .. image:: rewire_corr.png
    .. image:: rewire_uncorr.png
424
    .. image:: rewire_erdos.png
425

426
427
    *From left to right:* Original graph --- Shuffled graph, with degree
    correlations --- Shuffled graph, without degree correlations --- Shuffled graph,
428
    with random degrees.
429
430
431

    We can try some larger graphs to get better statistics.

432
433
    >>> figure()
    <...>
434
    >>> g = gt.random_graph(30000, lambda: sample_k(20),
435
436
    ...                     lambda i, j: exp(abs(i-j)), directed=False,
    ...                     mix_time=100)
437
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
438
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="original")
439
440
441
    (...)
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
442
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="*", label="correlated")
443
444
445
    (...)
    >>> gt.random_rewire(g)
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
446
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="uncorrelated")
447
    (...)
448
449
    >>> gt.random_rewire(g, "erdos")
    >>> corr = gt.avg_neighbour_corr(g, "out", "out")
450
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-", label="Erdos")
451
    (...)
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    >>> xlabel("$k$")
    <...>
    >>> ylabel(r"$\left<k_{nn}\right>$")
    <...>
    >>> legend(loc="best")
    <...>
    >>> savefig("shuffled-stats.png")

    .. figure:: shuffled-stats.png
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        graphs. The shuffled graph with correlations displays exactly the same
        correlation as the original graph.

    Now let's do it for a directed graph. See
    :func:`~graph_tool.generation.random_graph` for more details.

    >>> p = scipy.stats.poisson
    >>> g = gt.random_graph(20000, lambda: (sample_k(19), sample_k(19)),
472
473
    ...                     lambda a, b: (p.pmf(a[0], b[1]) * p.pmf(a[1], 20 - b[0])),
    ...                     mix_time=100)
474
475
476
477
    >>> figure(figsize=(6,3))
    <...>
    >>> axes([0.1,0.15,0.6,0.8])
    <...>
478
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
479
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
480
    ...          label=r"$\left<\text{o}\right>$ vs i")
481
482
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
483
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
484
    ...          label=r"$\left<\text{i}\right>$ vs o")
485
486
487
    (...)
    >>> gt.random_rewire(g, "correlated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
488
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
489
    ...          label=r"$\left<\text{o}\right>$ vs i, corr.")
490
491
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
492
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
493
    ...          label=r"$\left<\text{i}\right>$ vs o, corr.")
494
495
496
    (...)
    >>> gt.random_rewire(g, "uncorrelated")
    >>> corr = gt.avg_neighbour_corr(g, "in", "out")
497
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
498
    ...          label=r"$\left<\text{o}\right>$ vs i, uncorr.")
499
500
    (...)
    >>> corr = gt.avg_neighbour_corr(g, "out", "in")
501
    >>> errorbar(corr[2][:-1], corr[0], yerr=corr[1], fmt="o-",
502
    ...          label=r"$\left<\text{i}\right>$ vs o, uncorr.")
503
    (...)
504
    >>> legend(loc=(1.05,0.45))
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    <...>
    >>> xlabel("source degree")
    <...>
    >>> ylabel("average target degree")
    <...>
    >>> savefig("shuffled-deg-corr-dir.png")

    .. figure:: shuffled-deg-corr-dir.png
        :align: center

        Average degree correlations for the different shuffled and non-shuffled
        directed graphs. The shuffled graph with correlations displays exactly
        the same correlation as the original graph.
    """

520
    seed = numpy.random.randint(0, sys.maxint)
521

Tiago Peixoto's avatar
Tiago Peixoto committed
522
523
524
525
526
527
528
529
530
531
532
533
534
    if not parallel_edges:
        p = label_parallel_edges(g)
        if p.a.max() != 0:
            raise ValueError("Parallel edge detected. Can't rewire " +
                             "graph without parallel edges if it " +
                             "already contains parallel edges!")
    if not self_loops:
        l = label_self_loops(g)
        if l.a.max() != 0:
            raise ValueError("Self-loop detected. Can't rewire graph " +
                             "without self-loops if it already contains" +
                             " self-loops!")

535
    if deg_corr is not None and not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
536
        corr = lambda i, j: deg_corr(i[1], j[1])
537
538
539
    else:
        corr = deg_corr

540
541
542
543
544
545
546
547
    if strat != "probabilistic":
        g = GraphView(g, reversed=False)
    pcount = libgraph_tool_generation.random_rewire(g._Graph__graph, strat,
                                                    n_iter, not edge_sweep,
                                                    self_loops, parallel_edges,
                                                    corr, seed, verbose)
    if ret_fail:
        return pcount
Tiago Peixoto's avatar
Tiago Peixoto committed
548

Tiago Peixoto's avatar
Tiago Peixoto committed
549

Tiago Peixoto's avatar
Tiago Peixoto committed
550
def predecessor_tree(g, pred_map):
Tiago Peixoto's avatar
Tiago Peixoto committed
551
    """Return a graph from a list of predecessors given by the ``pred_map`` vertex property."""
Tiago Peixoto's avatar
Tiago Peixoto committed
552
553
554
555
556
557
558

    _check_prop_scalar(pred_map, "pred_map")
    pg = Graph()
    libgraph_tool_generation.predecessor_graph(g._Graph__graph,
                                               pg._Graph__graph,
                                               _prop("v", g, pred_map))
    return pg
559

Tiago Peixoto's avatar
Tiago Peixoto committed
560

561
def line_graph(g):
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    """Return the line graph of the given graph `g`.

    Notes
    -----
    Given an undirected graph G, its line graph L(G) is a graph such that

        * each vertex of L(G) represents an edge of G; and
        * two vertices of L(G) are adjacent if and only if their corresponding
          edges share a common endpoint ("are adjacent") in G.

    For a directed graph, the second criterion becomes:

       * Two vertices representing directed edges from u to v and from w to x in
         G are connected by an edge from uv to wx in the line digraph when v =
         w.

    References
    ----------
    .. [line-wiki] http://en.wikipedia.org/wiki/Line_graph
    """
582
583
584
585
586
587
588
589
    lg = Graph(directed=g.is_directed())

    vertex_map = lg.new_vertex_property("int64_t")

    libgraph_tool_generation.line_graph(g._Graph__graph,
                                        lg._Graph__graph,
                                        _prop("v", lg, vertex_map))
    return lg, vertex_map
Tiago Peixoto's avatar
Tiago Peixoto committed
590

Tiago Peixoto's avatar
Tiago Peixoto committed
591
592

def graph_union(g1, g2, props=None, include=False):
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
    """Return the union of graphs g1 and g2, composed of all edges and vertices
    of g1 and g2, without overlap.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
       First graph in the union.
    g2 : :class:`~graph_tool.Graph`
       Second graph in the union.
    props : list of tuples of :class:`~graph_tool.PropertyMap` (optional, default: [])
       Each element in this list must be a tuple of two PropertyMap objects. The
       first element must be a property of `g1`, and the second of `g2`. The
       values of the property maps are propagated into the union graph, and
       returned.
    include : bool (optional, default: False)
       If true, graph `g2` is inserted into `g1` which is modified. If false, a
       new graph is created, and both graphs remain unmodified.

    Returns
    -------
    ug : :class:`~graph_tool.Graph`
        The union graph
    props : list of :class:`~graph_tool.PropertyMap` objects
        List of propagated properties.  This is only returned if `props` is not
        empty.
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

    Examples
    --------

    >>> from numpy.random import random, seed
    >>> seed(42)
    >>> g = gt.triangulation(random((300,2)))[0]
    >>> ug = gt.graph_union(g, g)
    >>> uug = gt.graph_union(g, ug)
    >>> gt.graph_draw(g, layout="arf", size=(8,8), output="graph_original.png")
    <...>
    >>> gt.graph_draw(ug, layout="arf", size=(8,8), output="graph_union.png")
    <...>
    >>> gt.graph_draw(uug, layout="arf", size=(8,8), output="graph_union2.png")
    <...>

    .. image:: graph_original.png
    .. image:: graph_union.png
    .. image:: graph_union2.png

638
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
639
640
    if props == None:
        props = []
Tiago Peixoto's avatar
Tiago Peixoto committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    if not include:
        g1 = Graph(g1)
    g1.stash_filter(directed=True)
    g1.set_directed(True)
    g2.stash_filter(directed=True)
    g2.set_directed(True)
    n_props = []

    try:
        vmap, emap = libgraph_tool_generation.graph_union(g1._Graph__graph,
                                                          g2._Graph__graph)
        for p in props:
            p1, p2 = p
            if not include:
                p1 = g1.copy_property(p1)
            if p2.value_type() != p1.value_type():
                p2 = g2.copy_property(p2, value_type=p1.value_type())
            if p1.key_type() == 'v':
                libgraph_tool_generation.\
                      vertex_property_union(g1._Graph__graph, g2._Graph__graph,
                                            vmap, emap,
                                            _prop(p1.key_type(), g1, p1),
                                            _prop(p2.key_type(), g2, p2))
            else:
                libgraph_tool_generation.\
                      edge_property_union(g1._Graph__graph, g2._Graph__graph,
                                          vmap, emap,
                                          _prop(p1.key_type(), g1, p1),
                                          _prop(p2.key_type(), g2, p2))
            n_props.append(p1)
    finally:
        g1.pop_filter(directed=True)
        g2.pop_filter(directed=True)

    if len(n_props) > 0:
        return g1, n_props
    else:
        return g1
679

Tiago Peixoto's avatar
Tiago Peixoto committed
680
681

@_limit_args({"type": ["simple", "delaunay"]})
682
def triangulation(points, type="simple", periodic=False):
683
684
685
686
687
688
689
690
691
692
    r"""
    Generate a 2D or 3D triangulation graph from a given point set.

    Parameters
    ----------
    points : :class:`~numpy.ndarray`
        Point set for the triangulation. It may be either a N x d array, where N
        is the number of points, and d is the space dimension (either 2 or 3).
    type : string (optional, default: 'simple')
        Type of triangulation. May be either 'simple' or 'delaunay'.
693
694
695
    periodic : bool (optional, default: False)
        If True, periodic boundary conditions will be used. This is parameter is
        valid only for type="delaunay", and is otherwise ignored.
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

    Returns
    -------
    triangulation_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        Vertex property map with the Cartesian coordinates.

    See Also
    --------
    random_graph: random graph generation

    Notes
    -----

Tiago Peixoto's avatar
Tiago Peixoto committed
711
    A triangulation [cgal-triang]_ is a division of the convex hull of a point
712
    set into triangles, using only that set as triangle vertices.
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

    In simple triangulations (`type="simple"`), the insertion of a point is done
    by locating a face that contains the point, and splitting this face into
    three new faces (the order of insertion is therefore important). If the
    point falls outside the convex hull, the triangulation is restored by
    flips. Apart from the location, insertion takes a time O(1). This bound is
    only an amortized bound for points located outside the convex hull.

    Delaunay triangulations (`type="delaunay"`) have the specific empty sphere
    property, that is, the circumscribing sphere of each cell of such a
    triangulation does not contain any other vertex of the triangulation in its
    interior. These triangulations are uniquely defined except in degenerate
    cases where five points are co-spherical. Note however that the CGAL
    implementation computes a unique triangulation even in these cases.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
732
    >>> points = random((500, 2)) * 4
733
    >>> g, pos = gt.triangulation(points)
734
735
736
737
738
739
740
741
742
    >>> weight = g.new_edge_property("double") # Edge weights corresponding to
    ...                                        # Euclidean distances
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 100
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), vsize=0.07, vcolor=b[0],
    ...               eprops={"penwidth":b[1]}, output="triang.png")
743
744
    <...>
    >>> g, pos = gt.triangulation(points, type="delaunay")
745
746
747
748
749
750
751
752
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = sqrt(sum((array(pos[e.source()]) -
    ...                          array(pos[e.target()]))**2))
    >>> b = gt.betweenness(g, weight=weight)
    >>> b[1].a *= 120
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), vsize=0.07, vcolor=b[0],
    ...               eprops={"penwidth":b[1]}, output="triang-delaunay.png")
753
754
755
756
757
758
759
    <...>

    2D triangulation of random points:

    .. image:: triang.png
    .. image:: triang-delaunay.png

760
761
762
    *Left:* Simple triangulation. *Right:* Delaunay triangulation. The vertex
    colors and the edge thickness correspond to the weighted betweenness
    centrality.
763
764
765

    References
    ----------
Tiago Peixoto's avatar
Tiago Peixoto committed
766
    .. [cgal-triang] http://www.cgal.org/Manual/last/doc_html/cgal_manual/Triangulation_3/Chapter_main.html
767
768
769

    """

Tiago Peixoto's avatar
Tiago Peixoto committed
770
    if points.shape[1] not in [2, 3]:
771
772
773
774
775
776
777
778
779
780
        raise ValueError("points array must have shape N x d, with d either 2 or 3.")
    # copy points to ensure continuity and correct data type
    points = numpy.array(points, dtype='float64')
    if points.shape[1] == 2:
        npoints = numpy.zeros((points.shape[0], 3))
        npoints[:,:2] = points
        points = npoints
    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    libgraph_tool_generation.triangulation(g._Graph__graph, points,
781
                                           _prop("v", g, pos), type, periodic)
782
    return g, pos
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893


def lattice(shape, periodic=False):
    r"""
    Generate a N-dimensional square lattice.

    Parameters
    ----------
    shape : list or :class:`~numpy.ndarray`
        List of sizes in each dimension.
    periodic : bool (optional, default: False)
        If ``True``, periodic boundary conditions will be used.

    Returns
    -------
    lattice_graph : :class:`~graph_tool.Graph`
        The generated graph.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation

    Examples
    --------
    >>> g = gt.lattice([10,10])
    >>> gt.graph_draw(g, size=(8,8), output="lattice.png")
    <...>
    >>> g = gt.lattice([10,20], periodic=True)
    >>> gt.graph_draw(g, size=(8,8), output="lattice_periodic.png")
    <...>
    >>> g = gt.lattice([10,10,10])
    >>> gt.graph_draw(g, size=(8,8), output="lattice_3d.png")
    <...>

    .. image:: lattice.png
    .. image:: lattice_periodic.png
    .. image:: lattice_3d.png

    *Left:* 10x10 2D lattice. *Middle:* 10x20 2D periodic lattice (torus).
    *Right:* 10x10x10 3D lattice.

    References
    ----------
    .. [lattice] http://en.wikipedia.org/wiki/Square_lattice

    """

    g = Graph(directed=False)
    libgraph_tool_generation.lattice(g._Graph__graph, shape, periodic)
    return g


def geometric_graph(points, radius, ranges=None):
    r"""
    Generate a geometric network form a set of N-dimensional points.

    Parameters
    ----------
    points : list or :class:`~numpy.ndarray`
        List of points. This must be a two-dimensional array, where the rows are
        coordinates in a N-dimensional space.
    radius : float
        Pairs of points with an euclidean distance lower than this parameters
        will be connected.
    ranges : list or :class:`~numpy.ndarray` (optional, default: None)
        If provided, periodic boundary conditions will be assumed, and the
        values of this parameter it will be used as the ranges in all
        dimensions. It must be a two-dimensional array, where each row will
        cointain the lower and upper bound of each dimension.

    Returns
    -------
    geometric_graph : :class:`~graph_tool.Graph`
        The generated graph.
    pos : :class:`~graph_tool.PropertyMap`
        A vertex property map with the position of each vertex.

    Notes
    -----
    A geometric graph [geometric-graph]_ is generated by connecting points
    embedded in a N-dimensional euclidean space which are at a distance equal to
    or smaller than a given radius.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation
    lattice : N-dimensional square lattice

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> points = random((500, 2)) * 4
    >>> g, pos = gt.geometric_graph(points, 0.3)
    >>> gt.graph_draw(g, pos=pos, pin=True, size=(8,8), output="geometric.png")
    <...>
    >>> g, pos = gt.geometric_graph(points, 0.3, [(0,4), (0,4)])
    >>> gt.graph_draw(g, size=(8,8), output="geometric_periodic.png")
    <...>

    .. image:: geometric.png
    .. image:: geometric_periodic.png

    *Left:* Geometric network with random points. *Right:* Same network, but
     with periodic boundary conditions.

    References
    ----------
    .. [geometric-graph] Jesper Dall and Michael Christensen, "Random geometric
Tiago Peixoto's avatar
Tiago Peixoto committed
894
       graphs", Phys. Rev. E 66, 016121 (2002), :doi:`10.1103/PhysRevE.66.016121`
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

    """

    g = Graph(directed=False)
    pos = g.new_vertex_property("vector<double>")
    if type(points) != numpy.ndarray:
        points = numpy.array(points)
    if len(points.shape) < 2:
        raise ValueError("points list must be a two-dimensional array!")
    if ranges is not None:
        periodic = True
        if type(ranges) != numpy.ndarray:
            ranges = numpy.array(ranges, dtype="float")
        else:
            ranges = array(ranges, dtype="float")
    else:
        periodic = False
        ranges = ()

    libgraph_tool_generation.geometric(g._Graph__graph, points, float(radius),
                                       ranges, periodic,
                                       _prop("v", g, pos))
    return g, pos
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951


def price_network(N, m=1, c=None, gamma=1, directed=True, seed_graph=None):
    r"""A generalized version of Price's -- or Barabási-Albert if undirected -- preferential attachment network model.

    Parameters
    ----------
    N : int
        Size of the network.
    m : int (optional, default: 1)
        Out-degree of newly added vertices.
    c : float (optional, default: 1 if ``directed==True`` else 0)
        Constant factor added to the probability of a vertex receiving an edge
        (see notes below).
    gamma : float (optional, default: 1)
        Preferential attachment power (see notes below).
    directed : bool (optional, default: True)
        If ``True``, a Price network is generated. If ``False``, a
        Barabási-Albert network is generated.
    seed_graph : :class:`~graph_tool.Graph` (optional, default: None)
        If provided, this graph will be used as the starting point of the
        algorithm.

    Returns
    -------
    price_graph : :class:`~graph_tool.Graph`
        The generated graph.

    Notes
    -----

    The (generalized) [price]_ network is either a directed or undirected graph
    (the latter is called a Barabási-Albert network), generated dynamically by
    at each step adding a new vertex, and connecting it to :math:`m` other
952
    vertices, chosen with probability :math:`\pi` defined as:
953
954
955

    .. math::

956
        \pi \propto k^\gamma + c
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

    where :math:`k` is the in-degree of the vertex (or simply the degree in the
    undirected case). If :math:`\gamma=1`, the tail of resulting in-degree
    distribution of the directed case is given by

    .. math::

        P_{k_\text{in}} \sim k_\text{in}^{-(2 + c/m)},

    or for the undirected case

    .. math::

        P_{k} \sim k^{-(3 + c/m)}.

    However, if :math:`\gamma \ne 1`, the in-degree distribution is not
    scale-free (see [dorogovtsev-evolution]_ for details).

975
976
977
978
979
980
981
    Note that if `seed_graph` is not given, the algorithm will *always* start
    with one node if :math:`c > 0`, or with two nodes with a link between them
    otherwise. If :math:`m > 1`, the degree of the newly added vertices will be
    vary dynamically as :math:`m'(t) = \min(m, N(t))`, where :math:`N(t)` is the
    number of vertices added so far. If this behaviour is undesired, a proper
    seed graph with :math:`N \ge m` vertices must be provided.

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    This algorithm runs in :math:`O(N\log N)` time.

    See Also
    --------
    triangulation: 2D or 3D triangulation
    random_graph: random graph generation
    lattice : N-dimensional square lattice
    geometric_graph : N-dimensional geometric network

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.price_network(100000)
    >>> gt.graph_draw(g, layout="sfdp", size=(12,12), vcolor=g.vertex_index,
    ...               output="price-network.png")
    <...>
    >>> g = gt.price_network(100000, c=0.1)
    >>> gt.graph_draw(g, layout="sfdp", size=(12,12), vcolor=g.vertex_index,
    ...               output="price-network-broader.png")
    <...>

    .. image:: price-network.png
    .. image:: price-network-broader.png

    Price networks with :math:`N=10^5` nodes. **Left:** :math:`c=1`, **Right:**
    :math:`c=0.1`. The colors represent the order in which vertices were
    added.

    References
    ----------

    .. [yule] Yule, G. U. "A Mathematical Theory of Evolution, based on the
       Conclusions of Dr. J. C. Willis, F.R.S.". Philosophical Transactions of
       the Royal Society of London, Ser. B 213: 21–87, 1925,
Tiago Peixoto's avatar
Tiago Peixoto committed
1017
       :doi:`10.1098/rstb.1925.0002`
1018
1019
1020
    .. [price] Derek De Solla Price, "A general theory of bibliometric and other
       cumulative advantage processes", Journal of the American Society for
       Information Science, Volume 27, Issue 5, pages 292–306, September 1976,
Tiago Peixoto's avatar
Tiago Peixoto committed
1021
       :doi:`10.1002/asi.4630270505`
1022
    .. [barabasi-albert] Barabási, A.-L., and Albert, R., "Emergence of
Tiago Peixoto's avatar
Tiago Peixoto committed
1023
1024
       scaling in random networks", Science, 286, 509, 1999,
       :doi:`10.1126/science.286.5439.509`
1025
1026
    .. [dorogovtsev-evolution] S. N. Dorogovtsev and J. F. F. Mendes, "Evolution
       of networks", Advances in Physics, 2002, Vol. 51, No. 4, 1079-1187,
Tiago Peixoto's avatar
Tiago Peixoto committed
1027
       :doi:`10.1080/00018730110112519`
1028
1029
1030
1031
1032
1033
    """

    if c is None:
        c = 1 if directed else 0

    if seed_graph is None:
1034
1035
1036
        g = Graph(directed=directed)
        if c > 0:
            g.add_vertex()
1037
        else:
1038
1039
            g.add_vertex(2)
            g.add_edge(g.vertex(1), g.vertex(0))
1040
1041
1042
1043
1044
1045
        N -= g.num_vertices()
    else:
        g = seed_graph
    seed = numpy.random.randint(0, sys.maxint)
    libgraph_tool_generation.price(g._Graph__graph, N, gamma, c, m, seed)
    return g