__init__.py 70.5 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2015 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   kcore_decomposition
52
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
53
   is_DAG
54
   is_planar
55
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
56
   edge_reciprocity
57
58
59

Contents
++++++++
60

61
62
"""

63
64
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
65
from .. dl_import import dl_import
66
dl_import("from . import libgraph_tool_topology")
67

68
from .. import _prop, Vector_int32_t, _check_prop_writable, \
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
70
     libcore, _get_rng, _degree, perfect_prop_hash
71
from .. stats import label_self_loops
72
import random, sys, numpy, collections
73

74
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
75
           "max_cardinality_matching", "max_independent_vertex_set",
76
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
77
           "topological_sort", "transitive_closure", "tsp_tour",
78
79
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
Tiago Peixoto's avatar
Tiago Peixoto committed
80
81
82
           "label_out_component", "kcore_decomposition", "shortest_distance",
           "shortest_path", "pseudo_diameter", "is_bipartite", "is_DAG",
           "is_planar", "make_maximal_planar", "similarity", "edge_reciprocity"]
83
84
85
86
87
88
89
90
91
92


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
93
        Second graph to be compared.
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
120
121
122
123
124
125
126
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

127
128
129
130
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
Tiago Peixoto's avatar
Tiago Peixoto committed
131
    >>> gt.random_rewire(u)
132
    24
133
    >>> gt.similarity(u, g)
134
    0.04666666666666667
135
136
137
138
139
140
141
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
142
143
144
145
        try:
            label2 = label2.copy(label1.value_type())
        except ValueError:
            label1 = label1.copy(label2.value_type())
Tiago Peixoto's avatar
Tiago Peixoto committed
146
    if label1.is_writable() or label2.is_writable():
147
148
149
        s = libgraph_tool_topology.\
               similarity(g1._Graph__graph, g2._Graph__graph,
                          _prop("v", g1, label1), _prop("v", g2, label2))
Tiago Peixoto's avatar
Tiago Peixoto committed
150
151
152
153
    else:
        s = libgraph_tool_topology.\
               similarity_fast(g1._Graph__graph, g2._Graph__graph,
                               _prop("v", g1, label1), _prop("v", g2, label2))
154
155
156
157
158
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
159

Tiago Peixoto's avatar
Tiago Peixoto committed
160

161
def isomorphism(g1, g2, vertex_inv1=None, vertex_inv2=None, isomap=False):
162
163
    r"""Check whether two graphs are isomorphic.

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph.
    g2 : :class:`~graph_tool.Graph`
        Second graph.
    vertex_inv1 : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Vertex invariant of the first graph. Only vertices with with the same
        invariants are considered in the isomorphism.
    vertex_inv2 : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        Vertex invariant of the second graph. Only vertices with with the same
        invariants are considered in the isomorphism.
    isomap : ``bool`` (optional, default: ``False``)
        If ``True``, a vertex :class:`~graph_tool.PropertyMap` with the
        isomorphism mapping is returned as well.

    Returns
    -------
    is_isomorphism : ``bool``
        ``True`` if both graphs are isomorphic, otherwise ``False``.
    isomap : :class:`~graph_tool.PropertyMap`
         Isomorphism mapping corresponding to a property map belonging to the
         first graph which maps its vertices to their corresponding vertices of
         the second graph.
188
189
190

    Examples
    --------
191
192
193
194
195
196
197
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

198
199
200
201
202
203
204
205
206
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

207
    """
208
    imap = g1.new_vertex_property("int32_t")
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    if vertex_inv1 is None:
        vertex_inv1 = g1.degree_property_map("total").copy("int64_t")
    else:
        vertex_inv1 = vertex_inv1.copy("int64_t")
        d = g1.degree_property_map("total")
        vertex_inv1.fa += (vertex_inv1.fa.max() + 1) * d.a
    if vertex_inv2 is None:
        vertex_inv2 = g2.degree_property_map("total").copy("int64_t")
    else:
        vertex_inv2 = vertex_inv2.copy("int64_t")
        d = g2.degree_property_map("total")
        vertex_inv2.fa += (vertex_inv2.fa.max() + 1) * d.a

    inv_max = max(vertex_inv1.fa.max(),vertex_inv2.fa.max()) + 1

    l1 = label_self_loops(g1, mark_only=True)
    if l1.fa.max() > 0:
        g1 = GraphView(g1, efilt=1 - l1.fa)

    l2 = label_self_loops(g2, mark_only=True)
    if l2.fa.max() > 0:
        g2 = GraphView(g2, efilt=1 - l2.fa)

232
    iso = libgraph_tool_topology.\
233
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
234
235
236
                             _prop("v", g1, vertex_inv1),
                             _prop("v", g2, vertex_inv2),
                             inv_max,
Tiago Peixoto's avatar
Tiago Peixoto committed
237
                             _prop("v", g1, imap))
238
239
240
241
242
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
243

244
def subgraph_isomorphism(sub, g, max_n=0, vertex_label=None, edge_label=None,
245
                         induced=False, subgraph=True):
246
    r"""Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n` subgraphs, if `max_n > 0`).
247

248

Tiago Peixoto's avatar
Tiago Peixoto committed
249
250
251
252
253
254
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
255
    max_n : int (optional, default: `0`)
Tiago Peixoto's avatar
Tiago Peixoto committed
256
257
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
258
259
260
261
262
263
264
265
    vertex_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify vertex labels
        which should match, in addition to the topological isomorphism.
    edge_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify edge labels
        which should match, in addition to the topological isomorphism.
266
267
268
269
270
    induced : bool (optional, default: False)
        If `True`, only node-induced subgraphs are found.
    subgraph : bool (optional, default: True)
        If `False`, all non-subgraph isomorphisms between `sub` and `g` are
        found.
Tiago Peixoto's avatar
Tiago Peixoto committed
271
272
273
274
275
276
277
278
279
280

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.

    Notes
    -----
281
282
283
284
285
    The implementation is based on the VF2 algorithm, introduced by Cordella et al.
    [cordella-improved-2001]_ [cordella-subgraph-2004]_. The spatial complexity
    is of order :math:`O(V)`, where :math:`V` is the (maximum) number of vertices
    of the two graphs. Time complexity is :math:`O(V^2)` in the best case and
    :math:`O(V!\times V)` in the worst case.
286
287
288

    Examples
    --------
289
    >>> from numpy.random import poisson
290
291
292
    >>> g = gt.complete_graph(30)
    >>> sub = gt.complete_graph(10)
    >>> vm = gt.subgraph_isomorphism(sub, g, max_n=100)
293
    >>> print(len(vm))
294
    100
295
    >>> for i in range(len(vm)):
296
297
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
298
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i])
299
300
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
301
    ...   assert gt.isomorphism(g, sub)
302
303
304
305
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
306
307
308
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
309
    ...               output="subgraph-iso-embed.pdf")
310
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
311
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
312
313
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
314
315
316
317
318
319
320
321
    .. testcode::
       :hide:

       gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
                     edge_pen_width=ewidth, output_size=(200, 200),
                     output="subgraph-iso-embed.png")
       gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
322
323
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
324

325

Tiago Peixoto's avatar
Tiago Peixoto committed
326
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
327
328
329

    References
    ----------
330
331
332
333
334
335
336
337
338
    .. [cordella-improved-2001] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
       "An improved algorithm for matching large graphs.", 3rd IAPR-TC15 Workshop
       on Graph-based Representations in Pattern Recognition, pp. 149-159, Cuen, 2001.
       http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5342
    .. [cordella-subgraph-2004] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
       "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs.",
       IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 10, pp. 1367-1372, 2004. 
       :doi:`10.1109/TPAMI.2004.75`
    .. [boost-subgraph-iso] http://www.boost.org/libs/graph/doc/vf2_sub_graph_iso.html
339
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
340
341

    """
342
343
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
344
345
346
347
    if vertex_label is None:
        vertex_label = (None, None)
    elif vertex_label[0].value_type() != vertex_label[1].value_type():
        raise ValueError("Both vertex label property maps must be of the same type!")
348
349
350
    elif vertex_label[0].value_type() != "int32_t":
        vertex_label = perfect_prop_hash(vertex_label, htype="int32_t")

351
352
353
354
    if edge_label is None:
        edge_label = (None, None)
    elif edge_label[0].value_type() != edge_label[1].value_type():
        raise ValueError("Both edge label property maps must be of the same type!")
355
356
357
    elif edge_label[0].value_type() != "int32_t":
        edge_label = perfect_prop_hash(edge_label, htype="int32_t")

358
359
360
    vmaps = []
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
361
362
363
364
                                _prop("v", sub, vertex_label[0]),
                                _prop("v", g, vertex_label[1]),
                                _prop("e", sub, edge_label[0]),
                                _prop("e", g, edge_label[1]),
365
                                vmaps, max_n, induced, not subgraph)
366
    for i in range(len(vmaps)):
367
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
368
    return vmaps
369

Tiago Peixoto's avatar
Tiago Peixoto committed
370

371
def mark_subgraph(g, sub, vmap, vmask=None, emask=None):
372
373
374
375
376
377
378
379
380
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
381
    `sub`.
382
    """
383
    if vmask is None:
384
        vmask = g.new_vertex_property("bool")
385
    if emask is None:
386
387
388
389
390
391
392
393
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
394
395
        us = set([g.vertex(vmap[x]) for x in v.out_neighbours()])

396
        for ew in w.out_edges():
397
398
399
            if ew.target() in us:
                emask[ew] = True

400
    return vmask, emask
401

Tiago Peixoto's avatar
Tiago Peixoto committed
402

403
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
404
405
406
407
408
409
410
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
411
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
412
413
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
414
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
415
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
416
        is used. Otherwise, Kruskal's algorithm is used.
417
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
433
434
435
436
437
438
439
440
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
441
442
443
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
444
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
445
    >>> tree = gt.min_spanning_tree(g, weights=weight)
446
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
447
448
    <...>
    >>> g.set_edge_filter(tree)
449
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
450
451
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
452
453
454
455
456
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="triang_orig.png")
       gt.graph_draw(g, pos=pos, output="triang_min_span_tree.png")
457

458
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
459
        :width: 400px
460
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
461
        :width: 400px
462
463

    *Left:* Original graph, *Right:* The minimum spanning tree.
464
465
466
467
468

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
469
470
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
471
472
473
474
475
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
476
    if tree_map is None:
477
478
479
480
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

481
482
483
484
485
486
487
488
489
490
491
    u = GraphView(g, directed=False)
    if root is None:
        libgraph_tool_topology.\
               get_kruskal_spanning_tree(u._Graph__graph,
                                         _prop("e", g, weights),
                                         _prop("e", g, tree_map))
    else:
        libgraph_tool_topology.\
               get_prim_spanning_tree(u._Graph__graph, int(root),
                                      _prop("e", g, weights),
                                      _prop("e", g, tree_map))
492
    return tree_map
493

Tiago Peixoto's avatar
Tiago Peixoto committed
494

495
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
496
    r"""Return a random spanning tree of a given graph, which can be directed or
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
519
520

    The running time for this algorithm is :math:`O(\tau)`, with :math:`\tau`
521
522
523
524
    being the mean hitting time of a random walk on the graph. In the worse case,
    we have :math:`\tau \sim O(V^3)`, with :math:`V` being the number of
    vertices in the graph. However, in much more typical cases (e.g. sparse
    random graphs) the running time is simply :math:`O(V)`.
525
526
527

    Examples
    --------
528
529
530
531
532
533
534
535
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
536
    >>> g, pos = gt.triangulation(random((400, 2)), type="delaunay")
537
538
539
540
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
541
    >>> tree2 = gt.random_spanning_tree(g, weights=weight)
542
543
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
544
545
546
547
548
    >>> u = gt.GraphView(g, efilt=tree)
    >>> gt.graph_draw(u, pos=pos, output="triang_random_span_tree.pdf")
    <...>
    >>> u2 = gt.GraphView(g, efilt=tree2)
    >>> gt.graph_draw(u2, pos=pos, output="triang_random_span_tree2.pdf")
549
550
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
551
552
553
554
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rtriang_orig.png")
555
556
       gt.graph_draw(u, pos=pos, output="triang_random_span_tree.png")
       gt.graph_draw(u2, pos=pos, output="triang_random_span_tree2.png")
557
558

    .. image:: rtriang_orig.*
559
        :width: 300px
560
    .. image:: triang_random_span_tree.*
561
562
563
        :width: 300px
    .. image:: triang_random_span_tree2.*
        :width: 300px
564

565
566
    *Left:* Original graph, *Middle:* A random spanning tree, *Right:* Another
    random spanning tree
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
588
589
590
    u = GraphView(g, vfilt=l)
    if u.num_vertices() != g.num_vertices():
        raise ValueError("There must be a path from all vertices to the root vertex: %d" % int(root) )
591
592
593
594

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
595
                             _prop("e", g, tree_map), _get_rng())
596
597
598
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
626
627
628
629
630
631
632
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
633
634
635
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
636
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
637
    >>> dom = gt.dominator_tree(g, root[0])
638
    >>> print(dom.a)
639
640
641
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
642
643
644

    References
    ----------
645
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
646
647

    """
648
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
649
650
651
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
652
653
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
654
        raise ValueError("dominator tree requires a directed graph.")
655
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
656
657
658
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
659

Tiago Peixoto's avatar
Tiago Peixoto committed
660

661
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
662
663
664
665
666
667
668
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
669
    such that if edge (u,v) appears in the graph, then u comes before v in the
Tiago Peixoto's avatar
Tiago Peixoto committed
670
671
672
673
674
675
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
676
677
678
679
680
681
682
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
683
684
685
686
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
687
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
688
689
    [29 28 27 26 23 24 22 21 20 18 17 16 15 14 11 10  9  6  5  4 19 12 13  3  2
     25  1  0  7  8]
Tiago Peixoto's avatar
Tiago Peixoto committed
690
691
692

    References
    ----------
693
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
694
695
696
697
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

698
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
699
700
701
702
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
703
    return topological_order.a[::-1].copy()
704

Tiago Peixoto's avatar
Tiago Peixoto committed
705

706
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
707
708
709
710
711
712
713
714
715
716
717
718
719
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
720
721
722
723
724
725
726
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
727
728
729
730
731
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
732
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
733
734
735
736
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

737
738
739
740
741
742
743
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
744

745
def label_components(g, vprop=None, directed=None, attractors=False):
746
    """
747
    Label the components to which each vertex in the graph belongs. If the
748
749
    graph is directed, it finds the strongly connected components.

750
751
752
    A property map with the component labels is returned, together with an
    histogram of component labels.

753
754
    Parameters
    ----------
755
    g : :class:`~graph_tool.Graph`
756
        Graph to be used.
757
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
758
759
        Vertex property to store the component labels. If none is supplied, one
        is created.
760
    directed : bool (optional, default: ``None``)
761
762
        Treat graph as directed or not, independently of its actual
        directionality.
763
764
765
766
    attractors : bool (optional, default: ``False``)
        If ``True``, and the graph is directed, an additional array with Boolean
        values is returned, specifying if the strongly connected components are
        attractors or not.
767
768
769

    Returns
    -------
770
    comp : :class:`~graph_tool.PropertyMap`
771
        Vertex property map with component labels.
772
773
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
774
775
776
777
    is_attractor : :class:`~numpy.ndarray`
        A Boolean array specifying if the strongly connected components are
        attractors or not. This returned only if ``attractors == True``, and the
        graph is directed.
778
779
780
781
782
783

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

784
    The algorithm runs in :math:`O(V + E)` time.
785
786
787

    Examples
    --------
788
789
790
791
792
793
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

794
795
    >>> g = gt.random_graph(100, lambda: (poisson(2), poisson(2)))
    >>> comp, hist, is_attractor = gt.label_components(g, attractors=True)
796
    >>> print(comp.a)
797
798
799
800
    [13 13 13 13 14 12 13 15 16 13 17 19 13 13 13 20 13 13 13 10 13 13 22 13 13
      4 13 13  2 23 13 13 24 13 13 26 27 13 13 13 13  0 13 13  3 13 13 13 28  1
      6 13 13 13 13  5 13 13 13 13 13 13 13  9 13 11 13 29 13 13 13 13 18 13 30
     31 13 13 32 13 33 34 35 13 13 21 13 25  8 36 13 13 13 13 13 37 13 13  7 13]
801
    >>> print(hist)
802
803
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1 63  1  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1]
804
    >>> print(is_attractor)
805
806
807
808
    [ True False  True  True  True False False  True False  True  True  True
      True False  True False False False False False False False False False
     False False False False False False False False False  True False  True
     False False]
809
810
    """

811
    if vprop is None:
812
813
814
815
816
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

817
818
    if directed is not None:
        g = GraphView(g, directed=directed)
819

820
821
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
822
823
824
825
826
827
828
829
830

    if attractors and g.is_directed() and directed != False:
        is_attractor = numpy.ones(len(hist), dtype="bool")
        libgraph_tool_topology.\
               label_attractors(g._Graph__graph, _prop("v", g, vprop),
                                is_attractor)
        return vprop, hist, is_attractor
    else:
        return vprop, hist
831
832
833
834


def label_largest_component(g, directed=None):
    """
835
836
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
837
838
839
840
841
842
843
844
845
846
847
848
849
850

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
851
         Boolean vertex property map which labels the largest component.
852
853
854
855
856
857
858

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
859
860
861
862
863
864
865
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

866
867
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
868
    >>> print(l.a)
869
870
871
    [0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
     1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
     0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0]
872
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
873
    >>> print(u.num_vertices())
874
    18
875
876
877
878
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
879
    vfilt, inv = g.get_vertex_filter()
880
    label.fa = c.fa == h.argmax()
881
    return label
882

Tiago Peixoto's avatar
Tiago Peixoto committed
883

884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
907
908
909
910
911
912
913
914
915
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
916
    >>> print(l.a)
917
918
919
    [1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0]
920
921
922

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
923
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
924
    ...                            g.vertex(1))
925
    >>> print(l.a)
926
927
928
    [0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1
     1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0
     1 0 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 1 0 1 0]
929
930
931
932
933
934
935
936
937
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


938
def label_biconnected_components(g, eprop=None, vprop=None):
939
940
941
942
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

943
944
945
946
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
990
991
992
993
994
995
996
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
997
    >>> g = gt.random_graph(100, lambda: poisson(2), directed=False)
998
    >>> comp, art, hist = gt.label_biconnected_components(g)
999
    >>> print(comp.a)
1000
1001
1002
1003
1004
    [31 42 41 41 41 21  2 41 41 19 41 33 41 41 12 41 40 41 41 41 41 41 41  8 41
     10 41 32 28 30 41 41 41  5 41 41 41 41 39 38 41 41 41 41 45 44 41 41 22 41
     41 41  0 41 41 41 41 41 41 41 41  7 13 41 20 41 41 41 41 34  9 41 41  4 43
     18 41 41 15 29  1 41 41 41 41  6 41 25 23 35 16 24 37 11  3 36 17 26 27 14
     41]
1005
    >>> print(art.a)
1006
1007
1008
    [1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
     1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1
     1 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0]
1009
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
1010
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
1011
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 56  1  1  1  1]
1012
    """
1013

1014
    if vprop is None:
1015
        vprop = g.new_vertex_property("bool")
1016
    if eprop is None:
1017
1018
1019
1020
1021
1022
1023
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

1024
1025
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
1026
1027
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
1028
    return eprop, vprop, hist
1029

Tiago Peixoto's avatar
Tiago Peixoto committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
def kcore_decomposition(g, deg="out", vprop=None):
    """
    Perform a k-core decomposition of the given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    deg : string
        Degree to be used for the decomposition. It can be either "in", "out" or
        "total", for in-, out-, or total degree of the vertices.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex property to store the decomposition. If ``None`` is supplied,
        one is created.

    Returns
    -------
    kval : :class:`~graph_tool.PropertyMap`
        Vertex property map with the k-core decomposition, i.e. a given vertex v
        belongs to the ``kval[v]``-core.

    Notes
    -----

    The k-core is a maximal set of vertices such that its induced subgraph only
    contains vertices with degree larger than or equal to k.

    This algorithm is described in [batagelk-algorithm]_ and runs in :math:`O(V + E)`
    time.

    Examples
    --------

    >>> g = gt.collection.data["netscience"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> kcore = gt.kcore_decomposition(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.png")

    .. figure:: netsci-kcore.*
        :align: center

        K-core decomposition of a network of network scientists.

    References
    ----------
    .. [k-core] http://en.wikipedia.org/wiki/Degeneracy_%28graph_theory%29
1082
1083
1084
1085
1086
    .. [batagelk-algorithm]  Vladimir Batagelj, Matjaž Zaveršnik, "Fast
       algorithms for determining (generalized) core groups in social
       networks", Advances in Data Analysis and Classification
       Volume 5, Issue 2, pp 129-145 (2011), :DOI:`10.1007/s11634-010-0079-y`,
       :arxiv:`cs/0310049`
Tiago Peixoto's avatar
Tiago Peixoto committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

    """

    if vprop is None:
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    if deg not in ["in", "out", "total"]:
        raise ValueError("invalid degree: " + str(deg))

    if g.is_directed():
        if deg == "out":
            g = GraphView(g, reversed=True)
        if deg == "total":
            g = GraphView(g, directed=False)

    libgraph_tool_topology.\
               kcore_decomposition(g._Graph__graph, _prop("v", g, vprop),
                                   _degree(g, deg))
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1109

1110
1111
1112
def shortest_distance(g, source=None, target=None, weights=None,
                      negative_weights=False, max_dist=None, directed=None,
                      dense=False, dist_map=None, pred_map=False):
1113
    """Calculate the distance from a source to a target vertex, or to of all
1114
1115
    vertices from a given source, or the all pairs shortest paths, if the source
    is not specified.
1116
1117
1118
1119
1120

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
1121
    source : :class:`~graph_tool.Vertex` (optional, default: ``None``)
1122
        Source vertex of the search. If unspecified, the all pairs shortest
1123
        distances are computed.
1124
    target : :class:`~graph_tool.Vertex` or iterable of such objects (optional, default: ``None``)
1125
1126
        Target vertex (or vertices) of the search. If unspecified, the distance
        to all vertices from the source will be computed.
1127
1128
1129
1130
1131
1132
1133
    weights : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        The edge weights. If provided, the shortest path will correspond to the
        minimal sum of weights.
    negative_weights : ``bool`` (optional, default: ``False``)
        If `True`, this will trigger the use of Bellman-Ford algorithm.
        Ignored if ``source`` is ``None``.
    max_dist : scalar value (optional, default: ``None``)
1134
        If specified, this limits the maximum distance of the vertices
1135
1136
1137
        searched. This parameter has no effect if source is ``None``, or if
        `negative_weights=True`.
    directed : ``bool`` (optional, default:``None``)
1138
1139
        Treat graph as directed or not, independently of its actual
        directionality.
1140
1141
1142
    dense : ``bool`` (optional, default: ``False``)
        If ``True``, and source is ``None``, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not ``None``, this option
1143
        has no effect.
1144
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
1145
1146
        Vertex property to store the distances. If none is supplied, one
        is created.
1147
1148
1149
    pred_map : ``bool`` (optional, default: ``False``)
        If ``True``, a vertex property map with the predecessors is returned.
        Ignored if ``source`` is ``None``.
1150
1151
1152
1153

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
1154
        Vertex property map with the distances from source. If source is ``None``,
1155
        it will have a vector value type, with the distances to every vertex.
1156
1157
    pred_map : :class:`~graph_tool.PropertyMap` (optional, if ``pred_map == True``)
        Vertex property map with the predecessors in the search tree.
1158
1159
1160
1161
1162
1163

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
1164
1165
1166
1167
1168
    ``negative_weights == True``, the Bellman-Ford algorithm is used
    [bellman_ford]_, which accepts negative weights, as long as there are no
    negative loops. If source is not given, the distances are calculated with
    Johnson's algorithm [johnson-apsp]_. If dense=True, the Floyd-Warshall
    algorithm [floyd-warshall-apsp]_ is used instead.
1169
1170

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
1171
1172
1173
    :math:`O(V \log V)` if weights are given. If ``negative_weights == True``,
    the complexity is :math:`O(VE)`. If source is not specified, it runs in
    :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.
1174
1175
1176

    Examples
    --------
1177
1178
1179
1180
1181
1182
1183
1184
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
1185
1186
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
1187
    >>> print(dist.a)
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
    [         0          1          5          4 2147483647          4
              9          5          8          5          7          6
              3          5          6          8          3          3
              5          6 2147483647          1          4          5
              5          2          5          7          4          5
              5          5          4          4          5          2
              5 2147483647          5          2 2147483647          6
              5          6          6          2          5          4
              3          6          5          4          4          5
              3          3          5          5          1          5
              4          6          3          4          3          3
              7          5          5          4 2147483647 2147483647
              2          5          3          5          5          6
              3          5          6          6          5          4
              5          3          6          3          4 2147483647
              4          6          4          4          4          4
              6          5          4          4]
    >>>
1206
    >>> dist = gt.shortest_distance(g)
1207
    >>> print(dist[g.vertex(0)].a)
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    [         0          1          5          4 2147483647          4
              9          5          8          5          7          6
              3          5          6          8          3          3
              5          6 2147483647          1          4          5
              5          2          5          7          4          5
              5          5          4          4          5          2
              5 2147483647          5          2 2147483647          6
              5          6          6          2          5          4
              3          6          5          4          4          5
              3          3          5          5          1          5
              4          6          3          4          3          3
              7          5          5          4 2147483647 2147483647
              2          5          3          5          5          6
              3          5          6          6          5          4
              5          3          6          3          4 2147483647
              4          6          4          4          4          4
              6          5          4          4]
1225
    >>> dist = gt.shortest_distance(g, source=g.vertex(0), target=g.vertex(2))
1226
    >>> print(dist)
1227
1228
    5
    >>> dist = gt.shortest_distance(g, source=g.vertex(0), target=[g.vertex(2), g.vertex(6)])
1229
    >>> print(dist)
1230
    [5 9]
1231
1232
1233
1234

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
1235
       Symposium on the Theory of Switching (1959), Harvard University Press.
Tiago Peixoto's avatar
Tiago Peixoto committed
1236
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1237
1238
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1239
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1240
1241
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
1242
    .. [bellman-ford] http://www.boost.org/libs/graph/doc/bellman_ford_shortest.html
1243
1244
    """

1245
1246
1247
1248
1249
1250
    if isinstance(target, collections.Iterable):
        target = numpy.asarray(target, dtype="int64")
    elif target is None:
        target = numpy.array([], dtype="int64")
    else:
        target = numpy.asarray([int(target)], dtype="int64")
1251

1252
    if weights is None:
1253
1254
1255
1256
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1257
1258
    if dist_map is None:
        if source is not None:
1259
1260
1261
1262
1263
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1264
    if source is not None:
1265
1266
1267
1268
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1269
    if max_dist is None:
1270
1271
        max_dist = 0

1272
    if directed is not None:
1273
1274
1275
        u = GraphView(g, directed=directed)
    else:
        u = g
1276

1277
1278
1279
1280
    if source is not None:
        pmap = g.copy_property(u.vertex_index, value_type="int64_t")
        libgraph_tool_topology.get_dists(g._Graph__graph,
                                         int(source),
1281
                                         target,
1282
1283
1284
                                         _prop("v", g, dist_map),
                                         _prop("e", g, weights),
                                         _prop("v", g, pmap),
1285
1286
                                         float(max_dist),
                                         negative_weights)
1287
1288
    else:
        libgraph_tool_topology.get_all_dists(u._Graph__graph,
1289
                                             _prop("v", g, dist_map),
1290
                                             _prop("e", g, weights), dense)
1291

1292
1293
1294
    if source is not None and len(target) > 0:
        if len(target) == 1:
            dist_map = dist_map.a[target[0]]
1295
        else:
1296
            dist_map = numpy.array(dist_map.a[target])
1297

1298
    if source is not None and pred_map:
1299
1300
1301
1302
        return dist_map, pmap
    else:
        return dist_map

1303
1304
1305
def shortest_path(g, source, target, weights=None, negative_weights=False,
                  pred_map=None):
    """Return the shortest path from `source` to `target`.
1306
1307
1308
1309
1310
1311
1312