__init__.py 38.5 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Important functions for assessing graph topology
--------------------------------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
40
41
42
43
   min_spanning_tree
   dominator_tree
   topological_sort
   transitive_closure
   label_components
   label_biconnected_components
44
   label_largest_component
45
   is_planar
46
47
48

Contents
++++++++
49

50
51
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
52
from .. dl_import import dl_import
53
dl_import("import libgraph_tool_topology")
54

55
from .. import _prop, Vector_int32_t, _check_prop_writable, \
56
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView
57
58
59
import random, sys, numpy, weakref
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
           "min_spanning_tree", "dominator_tree", "topological_sort",
60
           "transitive_closure", "label_components", "label_largest_component",
61
           "label_biconnected_components", "shortest_distance",
Tiago Peixoto's avatar
Tiago Peixoto committed
62
           "shortest_path", "pseudo_diameter", "is_planar", "similarity"]
63
64
65
66
67
68
69
70
71
72


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
73
        Second graph to be compared.
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
    >>> gt.random_rewire(u);
    >>> gt.similarity(u, g)
    0.03333333333333333
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
        raise ValueError("label property maps must be of the same type")
    s = libgraph_tool_topology.\
           similarity(g1._Graph__graph, g2._Graph__graph,
                      _prop("v", g1, label1), _prop("v", g1, label2))
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
125

Tiago Peixoto's avatar
Tiago Peixoto committed
126

127
def isomorphism(g1, g2, isomap=False):
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

146
    """
147
148
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
149
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
150
                             _prop("v", g1, imap))
151
152
153
154
155
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
156

157
def subgraph_isomorphism(sub, g, max_n=0, random=False):
158
    r"""
159
160
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
161

162
163
164
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

165
166
167
168
169
170
171
172
173
174
175
176
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
    >>> print len(vm)
Tiago Peixoto's avatar
Tiago Peixoto committed
177
    79
178
179
180
181
182
183
184
185
186
187
188
189
190
    >>> for i in xrange(len(vm)):
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a *= 1.5
    >>> ewidth.a += 0.5
    >>> gt.graph_draw(g, vcolor=vmask, ecolor=emask, penwidth=ewidth,
191
    ...               output="subgraph-iso-embed.pdf")
192
    <...>
193
    >>> gt.graph_draw(sub, output="subgraph-iso.pdf")
194
195
    <...>

196
197
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
198
199
200
201
202
203

    *Left:* Subgraph searched, *Right:* One isomorphic subgraph found in main
     graph.

    Notes
    -----
204
205
206
207
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
208
209
210

    References
    ----------
211
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
212
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
213
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
214
215
216
217

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
218
219
    vlabels=(None, None)
    elabels=(None, None)
220
221
    vmaps = []
    emaps = []
222
223
224
225
    if random:
        seed = numpy.random.randint(0, sys.maxint)
    else:
        seed = 42
226
227
228
229
230
231
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
232
                                vmaps, emaps, max_n, seed)
233
234
235
236
237
    for i in xrange(len(vmaps)):
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
238

239
240
241
242
243
244
245
246
247
248
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
249
    `sub`.
250
    """
251
    if vmask is None:
252
        vmask = g.new_vertex_property("bool")
253
    if emask is None:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
268

Tiago Peixoto's avatar
Tiago Peixoto committed
269

270
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
271
272
273
274
275
276
277
278
279
280
281
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: None)
282
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        is used. Otherwise, Kruskal's algorithm is used.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
300
    >>> from numpy.random import seed, random
301
    >>> seed(42)
302
303
304
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
305
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
306
    >>> tree = gt.min_spanning_tree(g, weights=weight)
307
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_orig.pdf")
308
309
    <...>
    >>> g.set_edge_filter(tree)
310
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_min_span_tree.pdf")
311
312
313
    <...>


314
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
315
        :width: 400px
316
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
317
        :width: 400px
318
319

    *Left:* Original graph, *Right:* The minimum spanning tree.
320
321
322
323
324

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
325
326
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
327
328
329
330
331
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
332
    if tree_map is None:
333
334
335
336
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
352
    return tree_map
353

Tiago Peixoto's avatar
Tiago Peixoto committed
354

Tiago Peixoto's avatar
Tiago Peixoto committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
387
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
388
389
    >>> dom = gt.dominator_tree(g, root[0])
    >>> print dom.a
Tiago Peixoto's avatar
Tiago Peixoto committed
390
391
392
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
393
394
395

    References
    ----------
396
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
397
398

    """
399
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
400
401
402
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
403
404
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
405
        raise ValueError("dominator tree requires a directed graph.")
406
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
407
408
409
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
410

Tiago Peixoto's avatar
Tiago Peixoto committed
411

412
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
    >>> print sort
Tiago Peixoto's avatar
Tiago Peixoto committed
434
435
    [ 3 20  9 29 15  0 10 23  1  2 21  7  4 12 11  5 26 27  6  8 13 14 22 16 17
     28 18 19 24 25]
Tiago Peixoto's avatar
Tiago Peixoto committed
436
437
438

    References
    ----------
439
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
440
441
442
443
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

444
445
446
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
447
    return numpy.array(topological_order)
448

Tiago Peixoto's avatar
Tiago Peixoto committed
449

450
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
471
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
472
473
474
475
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

476
477
478
479
480
481
482
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
483

484
485
def label_components(g, vprop=None, directed=None):
    """
486
    Label the components to which each vertex in the graph belongs. If the
487
488
    graph is directed, it finds the strongly connected components.

489
490
491
    A property map with the component labels is returned, together with an
    histogram of component labels.

492
493
    Parameters
    ----------
494
    g : :class:`~graph_tool.Graph`
495
        Graph to be used.
496
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
497
498
499
500
501
502
503
504
        Vertex property to store the component labels. If none is supplied, one
        is created.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
505
    comp : :class:`~graph_tool.PropertyMap`
506
        Vertex property map with component labels.
507
508
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
509
510
511
512
513
514

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

515
    The algorithm runs in :math:`O(V + E)` time.
516
517
518

    Examples
    --------
519
520
521
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
522
    >>> comp, hist = gt.label_components(g)
523
    >>> print comp.a
Tiago Peixoto's avatar
Tiago Peixoto committed
524
525
526
    [0 0 0 1 0 2 0 0 0 0 2 0 0 0 2 1 0 2 0 1 2 0 1 0 0 1 0 2 0 2 1 0 2 0 0 0 0
     0 0 1 0 0 2 2 2 0 0 0 0 0 0 2 0 0 1 1 0 0 2 0 1 0 0 0 2 0 0 2 2 1 2 1 0 0
     2 0 0 1 2 1 2 2 0 0 0 0 0 2 0 0 0 1 1 0 0 0 1 1 2 2]
527
    >>> print hist
Tiago Peixoto's avatar
Tiago Peixoto committed
528
    [58 18 24]
529
530
    """

531
    if vprop is None:
532
533
534
535
536
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

537
538
    if directed is not None:
        g = GraphView(g, directed=directed)
539

540
541
542
543
544
545
546
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
    return vprop, hist


def label_largest_component(g, directed=None):
    """
547
548
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
549
550
551
552
553
554
555
556
557
558
559
560
561
562

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
563
         Boolean vertex property map which labels the largest component.
564
565
566
567
568
569
570
571
572
573
574
575

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
    >>> print l.a
Tiago Peixoto's avatar
Tiago Peixoto committed
576
577
578
    [1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1
     1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
     0 0 0 1 1 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 0]
579
580
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
    >>> print u.num_vertices()
Tiago Peixoto's avatar
Tiago Peixoto committed
581
    31
582
583
584
585
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
586
587
588
589
590
    vfilt, inv = g.get_vertex_filter()
    if vfilt is None:
        label.a = c.a == h.argmax()
    else:
        label.a = (c.a == h.argmax()) & (vfilt.a ^ inv)
591
    return label
592

Tiago Peixoto's avatar
Tiago Peixoto committed
593

594
def label_biconnected_components(g, eprop=None, vprop=None):
595
596
597
598
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

599
600
601
602
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
647
    >>> seed(43)
648
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
649
    >>> comp, art, hist = gt.label_biconnected_components(g)
650
    >>> print comp.a
Tiago Peixoto's avatar
Tiago Peixoto committed
651
652
653
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
     0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1
     0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0]
654
655
656
657
    >>> print art.a
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
658
    >>> print hist
Tiago Peixoto's avatar
Tiago Peixoto committed
659
    [87 13]
660
    """
661

662
    if vprop is None:
663
        vprop = g.new_vertex_property("bool")
664
    if eprop is None:
665
666
667
668
669
670
671
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

672
673
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
674
675
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
676
    return eprop, vprop, hist
677

Tiago Peixoto's avatar
Tiago Peixoto committed
678

679
def shortest_distance(g, source=None, weights=None, max_dist=None,
680
681
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
682
683
684
685
686
687
688
689
690
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
691
        Source vertex of the search. If unspecified, the all pairs shortest
692
693
694
695
696
697
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
698
        are searched. This parameter has no effect if source is None.
699
700
701
702
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
703
704
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
705
706
707
708
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
709
710
711
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
738
    >>> print dist.a
Tiago Peixoto's avatar
Tiago Peixoto committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
756
    >>> dist = gt.shortest_distance(g)
757
    >>> print dist[g.vertex(0)].a
Tiago Peixoto's avatar
Tiago Peixoto committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    [         0          3          6          4 2147483647          3
              4          3          4          2          3          4
              3          4          2          4          2          5
              4          4 2147483647          4 2147483647          6
              4          7          5 2147483647          3          4
              2          3          5          5          4          5
              1          5          6          1 2147483647          8
              4          2          1          5          5          6
              7          4          5          3          4          4
              5          3          3          5          4          5
              4          3          5          4          2 2147483647
              6          5          4          5          1 2147483647
              5          5          4          2          5          4
              6          3          5          3          4 2147483647
              4          4          7          4          3          5
              5          2          7          3          4          4
              4          3          4          4]
775
776
777
778
779

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
780
781
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
782
783
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
784
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
785
786
787
788
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

789
    if weights is None:
790
791
792
793
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

794
795
    if dist_map is None:
        if source is not None:
796
797
798
799
800
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
801
    if source is not None:
802
803
804
805
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

806
    if max_dist is None:
807
808
        max_dist = 0

809
    if directed is not None:
810
811
812
813
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
814
        if source is not None:
815
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
816
817
818
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
819
                                             _prop("v", g, pmap),
820
821
822
823
824
825
826
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
827
        if directed is not None:
828
            g.pop_filter(directed=True)
829
    if source is not None and pred_map:
830
831
832
833
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
834

835
836
837
838
839
840
841
842
843
844
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
845
    target : :class:`~graph_tool.Vertex`
846
847
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
848
        The edge weights.
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
    >>> print [str(v) for v in vlist]
Tiago Peixoto's avatar
Tiago Peixoto committed
877
    ['10', '222', '246', '0', '50', '257', '12', '242', '11']
878
    >>> print [str(e) for e in elist]
Tiago Peixoto's avatar
Tiago Peixoto committed
879
    ['(10,222)', '(222,246)', '(246,0)', '(0,50)', '(50,257)', '(257,12)', '(12,242)', '(242,11)']
880
881
882
883
884

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
885
886
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
887
888
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
889
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
890
891
    """

892
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
893
894
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
895

Tiago Peixoto's avatar
Tiago Peixoto committed
896
    if pred_map[target] == int(target):  # no path to source
897
898
899
900
901
        return [], []

    vlist = [target]
    elist = []

902
    if weights is not None:
903
904
905
906
907
908
909
910
911
912
913
914
915
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
916
                if weights is not None:
917
918
919
920
921
922
923
924
925
926
927
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

928

Tiago Peixoto's avatar
Tiago Peixoto committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
    >>> print dist
    >>> print end

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
        source = g.vertex(0)
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
    >>> print p
    True
    >>> print list(embed_order[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
1044
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
1045
1046
1047
1048
1049
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
    >>> print p
    False
    >>> g.set_edge_filter(kur, True)
1050
    >>> gt.graph_draw(g, output="kuratowski.pdf")
1051
1052
    <...>

1053
    .. figure:: kuratowski.*
1054
1055
1056
1057
1058
1059
1060
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
1061
1062
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
1087
    if embed is not None:
1088
        ret.append(embed)
1089
    if kur is not None:
1090
1091
1092
1093
1094
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)