__init__.py 66.6 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2014 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   kcore_decomposition
52
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
53
   is_DAG
54
   is_planar
55
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
56
   edge_reciprocity
57
58
59

Contents
++++++++
60

61
62
"""

63
64
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
65
from .. dl_import import dl_import
66
dl_import("from . import libgraph_tool_topology")
67

68
from .. import _prop, Vector_int32_t, _check_prop_writable, \
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
Tiago Peixoto's avatar
Tiago Peixoto committed
70
     libcore, _get_rng, _degree
71
import random, sys, numpy
72
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
73
           "max_cardinality_matching", "max_independent_vertex_set",
74
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
75
           "topological_sort", "transitive_closure", "tsp_tour",
76
77
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
80
           "label_out_component", "kcore_decomposition", "shortest_distance",
           "shortest_path", "pseudo_diameter", "is_bipartite", "is_DAG",
           "is_planar", "make_maximal_planar", "similarity", "edge_reciprocity"]
81
82
83
84
85
86
87
88
89
90


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
91
        Second graph to be compared.
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
118
119
120
121
122
123
124
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

125
126
127
128
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
Tiago Peixoto's avatar
Tiago Peixoto committed
129
    >>> gt.random_rewire(u)
Tiago Peixoto's avatar
Tiago Peixoto committed
130
    19
131
    >>> gt.similarity(u, g)
Tiago Peixoto's avatar
Tiago Peixoto committed
132
    0.03
133
134
135
136
137
138
139
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        try:
            label2 = label2.copy(label1.value_type())
        except ValueError:
            label1 = label1.copy(label2.value_type())
    try:
        _check_prop_scalar(label1, floating=False)
        _check_prop_scalar(label2, floating=False)
        if label1.fa is not None and label1.fa.max() >= g1.num_vertices():
            raise ValueError()
        if label2.fa is not None and label2.fa.max() >= g2.num_vertices():
            raise ValueError()
        s = libgraph_tool_topology.\
               similarity_fast(g1._Graph__graph, g2._Graph__graph,
                               _prop("v", g1, label1), _prop("v", g2, label2))
    except ValueError:
        s = libgraph_tool_topology.\
               similarity(g1._Graph__graph, g2._Graph__graph,
                          _prop("v", g1, label1), _prop("v", g2, label2))
158
159
160
161
162
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
163

Tiago Peixoto's avatar
Tiago Peixoto committed
164

165
def isomorphism(g1, g2, isomap=False):
166
167
168
169
170
171
172
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
173
174
175
176
177
178
179
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

180
181
182
183
184
185
186
187
188
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

189
    """
190
191
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
192
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
193
                             _prop("v", g1, imap))
194
195
196
197
198
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
199

200
def subgraph_isomorphism(sub, g, max_n=0, vertex_label=None, edge_label=None,
201
                         induced=False, subgraph=True):
202
    r"""Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n` subgraphs, if `max_n > 0`).
203

204

Tiago Peixoto's avatar
Tiago Peixoto committed
205
206
207
208
209
210
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
211
    max_n : int (optional, default: `0`)
Tiago Peixoto's avatar
Tiago Peixoto committed
212
213
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
214
215
216
217
218
219
220
221
    vertex_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify vertex labels
        which should match, in addition to the topological isomorphism.
    edge_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify edge labels
        which should match, in addition to the topological isomorphism.
222
223
224
225
226
    induced : bool (optional, default: False)
        If `True`, only node-induced subgraphs are found.
    subgraph : bool (optional, default: True)
        If `False`, all non-subgraph isomorphisms between `sub` and `g` are
        found.
Tiago Peixoto's avatar
Tiago Peixoto committed
227
228
229
230
231
232
233
234
235
236

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.

    Notes
    -----
237
238
239
240
241
    The implementation is based on the VF2 algorithm, introduced by Cordella et al.
    [cordella-improved-2001]_ [cordella-subgraph-2004]_. The spatial complexity
    is of order :math:`O(V)`, where :math:`V` is the (maximum) number of vertices
    of the two graphs. Time complexity is :math:`O(V^2)` in the best case and
    :math:`O(V!\times V)` in the worst case.
242
243
244

    Examples
    --------
245
    >>> from numpy.random import poisson
246
247
248
    >>> g = gt.complete_graph(30)
    >>> sub = gt.complete_graph(10)
    >>> vm = gt.subgraph_isomorphism(sub, g, max_n=100)
249
    >>> print(len(vm))
250
    100
251
    >>> for i in range(len(vm)):
252
253
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
254
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i])
255
256
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
257
    ...   assert gt.isomorphism(g, sub)
258
259
260
261
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
262
263
264
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
265
    ...               output="subgraph-iso-embed.pdf")
266
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
267
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
268
269
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
270
271
272
273
274
275
276
277
    .. testcode::
       :hide:

       gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
                     edge_pen_width=ewidth, output_size=(200, 200),
                     output="subgraph-iso-embed.png")
       gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
278
279
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
280

281

Tiago Peixoto's avatar
Tiago Peixoto committed
282
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
283
284
285

    References
    ----------
286
287
288
289
290
291
292
293
294
    .. [cordella-improved-2001] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
       "An improved algorithm for matching large graphs.", 3rd IAPR-TC15 Workshop
       on Graph-based Representations in Pattern Recognition, pp. 149-159, Cuen, 2001.
       http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.101.5342
    .. [cordella-subgraph-2004] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
       "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs.",
       IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 10, pp. 1367-1372, 2004. 
       :doi:`10.1109/TPAMI.2004.75`
    .. [boost-subgraph-iso] http://www.boost.org/libs/graph/doc/vf2_sub_graph_iso.html
295
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
296
297

    """
298
299
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
300
301
302
303
    if vertex_label is None:
        vertex_label = (None, None)
    elif vertex_label[0].value_type() != vertex_label[1].value_type():
        raise ValueError("Both vertex label property maps must be of the same type!")
304
305
306
    elif vertex_label[0].value_type() != "int32_t":
        vertex_label = perfect_prop_hash(vertex_label, htype="int32_t")

307
308
309
310
    if edge_label is None:
        edge_label = (None, None)
    elif edge_label[0].value_type() != edge_label[1].value_type():
        raise ValueError("Both edge label property maps must be of the same type!")
311
312
313
    elif edge_label[0].value_type() != "int32_t":
        edge_label = perfect_prop_hash(edge_label, htype="int32_t")

314
315
316
    vmaps = []
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
317
318
319
320
                                _prop("v", sub, vertex_label[0]),
                                _prop("v", g, vertex_label[1]),
                                _prop("e", sub, edge_label[0]),
                                _prop("e", g, edge_label[1]),
321
                                vmaps, max_n, induced, not subgraph)
322
    for i in range(len(vmaps)):
323
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
324
    return vmaps
325

Tiago Peixoto's avatar
Tiago Peixoto committed
326

327
def mark_subgraph(g, sub, vmap, vmask=None, emask=None):
328
329
330
331
332
333
334
335
336
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
337
    `sub`.
338
    """
339
    if vmask is None:
340
        vmask = g.new_vertex_property("bool")
341
    if emask is None:
342
343
344
345
346
347
348
349
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
350
351
        us = set([g.vertex(vmap[x]) for x in v.out_neighbours()])

352
        for ew in w.out_edges():
353
354
355
            if ew.target() in us:
                emask[ew] = True

356
    return vmask, emask
357

Tiago Peixoto's avatar
Tiago Peixoto committed
358

359
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
360
361
362
363
364
365
366
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
367
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
368
369
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
370
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
371
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
372
        is used. Otherwise, Kruskal's algorithm is used.
373
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
389
390
391
392
393
394
395
396
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
397
398
399
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
400
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
401
    >>> tree = gt.min_spanning_tree(g, weights=weight)
402
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
403
404
    <...>
    >>> g.set_edge_filter(tree)
405
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
406
407
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
408
409
410
411
412
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="triang_orig.png")
       gt.graph_draw(g, pos=pos, output="triang_min_span_tree.png")
413

414
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
415
        :width: 400px
416
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
417
        :width: 400px
418
419

    *Left:* Original graph, *Right:* The minimum spanning tree.
420
421
422
423
424

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
425
426
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
427
428
429
430
431
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
432
    if tree_map is None:
433
434
435
436
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

437
438
439
440
441
442
443
444
445
446
447
    u = GraphView(g, directed=False)
    if root is None:
        libgraph_tool_topology.\
               get_kruskal_spanning_tree(u._Graph__graph,
                                         _prop("e", g, weights),
                                         _prop("e", g, tree_map))
    else:
        libgraph_tool_topology.\
               get_prim_spanning_tree(u._Graph__graph, int(root),
                                      _prop("e", g, weights),
                                      _prop("e", g, tree_map))
448
    return tree_map
449

Tiago Peixoto's avatar
Tiago Peixoto committed
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
480
481
482
483
484
485
486
487
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
488
489
490
491
492
493
494
495
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
496
    >>> gt.graph_draw(g, pos=pos, output="triang_random_span_tree.pdf")
497
498
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
499
500
501
502
503
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rtriang_orig.png")
       gt.graph_draw(g, pos=pos, output="triang_random_span_tree.png")
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
532
533
534
    u = GraphView(g, vfilt=l)
    if u.num_vertices() != g.num_vertices():
        raise ValueError("There must be a path from all vertices to the root vertex: %d" % int(root) )
535
536
537
538

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
539
                             _prop("e", g, tree_map), _get_rng())
540
541
542
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
570
571
572
573
574
575
576
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
577
578
579
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
580
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
581
    >>> dom = gt.dominator_tree(g, root[0])
582
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
583
    [ 0  0  0  0  0  0 62  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
584
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Tiago Peixoto's avatar
Tiago Peixoto committed
585
586
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
587
588
589

    References
    ----------
590
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
591
592

    """
593
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
594
595
596
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
597
598
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
599
        raise ValueError("dominator tree requires a directed graph.")
600
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
601
602
603
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
604

Tiago Peixoto's avatar
Tiago Peixoto committed
605

606
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
621
622
623
624
625
626
627
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
628
629
630
631
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
632
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
633
634
    [ 1  7 17  0  9  2  3  4  5  6  8 10 11 12 13 25 16 23 27 28 19 29 14 15 18
     20 21 22 24 26]
Tiago Peixoto's avatar
Tiago Peixoto committed
635
636
637

    References
    ----------
638
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
639
640
641
642
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

643
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
644
645
646
647
648
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
    return topological_order.a.copy()
649

Tiago Peixoto's avatar
Tiago Peixoto committed
650

651
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
652
653
654
655
656
657
658
659
660
661
662
663
664
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
665
666
667
668
669
670
671
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
672
673
674
675
676
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
677
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
678
679
680
681
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

682
683
684
685
686
687
688
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
689

690
def label_components(g, vprop=None, directed=None, attractors=False):
691
    """
692
    Label the components to which each vertex in the graph belongs. If the
693
694
    graph is directed, it finds the strongly connected components.

695
696
697
    A property map with the component labels is returned, together with an
    histogram of component labels.

698
699
    Parameters
    ----------
700
    g : :class:`~graph_tool.Graph`
701
        Graph to be used.
702
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
703
704
        Vertex property to store the component labels. If none is supplied, one
        is created.
705
    directed : bool (optional, default: ``None``)
706
707
        Treat graph as directed or not, independently of its actual
        directionality.
708
709
710
711
    attractors : bool (optional, default: ``False``)
        If ``True``, and the graph is directed, an additional array with Boolean
        values is returned, specifying if the strongly connected components are
        attractors or not.
712
713
714

    Returns
    -------
715
    comp : :class:`~graph_tool.PropertyMap`
716
        Vertex property map with component labels.
717
718
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
719
720
721
722
    is_attractor : :class:`~numpy.ndarray`
        A Boolean array specifying if the strongly connected components are
        attractors or not. This returned only if ``attractors == True``, and the
        graph is directed.
723
724
725
726
727
728

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

729
    The algorithm runs in :math:`O(V + E)` time.
730
731
732

    Examples
    --------
733
734
735
736
737
738
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

739
740
    >>> g = gt.random_graph(100, lambda: (poisson(2), poisson(2)))
    >>> comp, hist, is_attractor = gt.label_components(g, attractors=True)
741
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
742
    [14 15 14 14 14  5 14 14 18 14 14  8 14 14 13 14 14 21 14 14  6 23 10 14 14
Tiago Peixoto's avatar
Tiago Peixoto committed
743
     14 24  4 14 14  0 14 14 14 25 14 14  1 14 26 14 19  9 14 14  3 14 14 27 28
Tiago Peixoto's avatar
Tiago Peixoto committed
744
     29 14 14  7 14 14 14 30 14 14 20 14  2 14 22 33 34 14 14 14 35 14 14 16 14
Tiago Peixoto's avatar
Tiago Peixoto committed
745
     11 36 37 14 14 31 14 14 17 14 14 14 14 14  0 14 38 39 32 14 12 14 40 14 14]
746
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
747
748
    [ 2  1  1  1  1  1  1  1  1  1  1  1  1  1 59  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1]
749
    >>> print(is_attractor)
Tiago Peixoto's avatar
Tiago Peixoto committed
750
751
    [ True  True  True False False False  True  True False False False False
      True  True False False False False False False False False  True False
752
     False False False False False False False False False False False False
Tiago Peixoto's avatar
Tiago Peixoto committed
753
     False False False False False]
754
755
    """

756
    if vprop is None:
757
758
759
760
761
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

762
763
    if directed is not None:
        g = GraphView(g, directed=directed)
764

765
766
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
767
768
769
770
771
772
773
774
775

    if attractors and g.is_directed() and directed != False:
        is_attractor = numpy.ones(len(hist), dtype="bool")
        libgraph_tool_topology.\
               label_attractors(g._Graph__graph, _prop("v", g, vprop),
                                is_attractor)
        return vprop, hist, is_attractor
    else:
        return vprop, hist
776
777
778
779


def label_largest_component(g, directed=None):
    """
780
781
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
782
783
784
785
786
787
788
789
790
791
792
793
794
795

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
796
         Boolean vertex property map which labels the largest component.
797
798
799
800
801
802
803

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
804
805
806
807
808
809
810
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

811
812
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
813
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
814
815
816
    [0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
     0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
     0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0]
817
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
818
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
819
    22
820
821
822
823
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
824
    vfilt, inv = g.get_vertex_filter()
825
    label.fa = c.fa == h.argmax()
826
    return label
827

Tiago Peixoto's avatar
Tiago Peixoto committed
828

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
852
853
854
855
856
857
858
859
860
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
861
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
862
863
864
    [1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
     1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0]
865
866
867

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
868
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
869
    ...                            g.vertex(1))
870
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
871
872
873
    [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
874
875
876
877
878
879
880
881
882
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


883
def label_biconnected_components(g, eprop=None, vprop=None):
884
885
886
887
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

888
889
890
891
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
935
936
937
938
939
940
941
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
942
    >>> g = gt.random_graph(100, lambda: poisson(2), directed=False)
943
    >>> comp, art, hist = gt.label_biconnected_components(g)
944
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
945
946
947
948
    [33 34 34 34 34 34  4 20 34 34 18 34 34 34 34 34 15 34 34 34 28 34 34 34 34
     34 34 34 34 34 34 11 14 34 34 34  3 34 34 34 34 34 34 34 34 27 34 34  7 10
     34 34 34 34 34 24 25 34  6 35 34 13 21 30 31 12  5 34  1 32 34 34 26 34 16
     34 34 23 34 34 34 34 34 36 34 34 34 34 34 29 22 17  0  2  8 37 34 38  9 19]
949
    >>> print(art.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
950
951
952
    [1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0
     1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1
     1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
953
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
954
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
Tiago Peixoto's avatar
Tiago Peixoto committed
955
      1  1  1  1  1  1  1  1  1 62  1  1  1  1]
956
    """
957

958
    if vprop is None:
959
        vprop = g.new_vertex_property("bool")
960
    if eprop is None:
961
962
963
964
965
966
967
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

968
969
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
970
971
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
972
    return eprop, vprop, hist
973

Tiago Peixoto's avatar
Tiago Peixoto committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
def kcore_decomposition(g, deg="out", vprop=None):
    """
    Perform a k-core decomposition of the given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    deg : string
        Degree to be used for the decomposition. It can be either "in", "out" or
        "total", for in-, out-, or total degree of the vertices.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex property to store the decomposition. If ``None`` is supplied,
        one is created.

    Returns
    -------
    kval : :class:`~graph_tool.PropertyMap`
        Vertex property map with the k-core decomposition, i.e. a given vertex v
        belongs to the ``kval[v]``-core.

    Notes
    -----

    The k-core is a maximal set of vertices such that its induced subgraph only
    contains vertices with degree larger than or equal to k.

    This algorithm is described in [batagelk-algorithm]_ and runs in :math:`O(V + E)`
    time.

    Examples
    --------

    >>> g = gt.collection.data["netscience"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> kcore = gt.kcore_decomposition(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.png")

    .. figure:: netsci-kcore.*
        :align: center

        K-core decomposition of a network of network scientists.

    References
    ----------
    .. [k-core] http://en.wikipedia.org/wiki/Degeneracy_%28graph_theory%29
1026
1027
1028
1029
1030
    .. [batagelk-algorithm]  Vladimir Batagelj, Matjaž Zaveršnik, "Fast
       algorithms for determining (generalized) core groups in social
       networks", Advances in Data Analysis and Classification
       Volume 5, Issue 2, pp 129-145 (2011), :DOI:`10.1007/s11634-010-0079-y`,
       :arxiv:`cs/0310049`
Tiago Peixoto's avatar
Tiago Peixoto committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052

    """

    if vprop is None:
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    if deg not in ["in", "out", "total"]:
        raise ValueError("invalid degree: " + str(deg))

    if g.is_directed():
        if deg == "out":
            g = GraphView(g, reversed=True)
        if deg == "total":
            g = GraphView(g, directed=False)

    libgraph_tool_topology.\
               kcore_decomposition(g._Graph__graph, _prop("v", g, vprop),
                                   _degree(g, deg))
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1053

1054
def shortest_distance(g, source=None, target=None, weights=None, max_dist=None,
1055
1056
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
1057
    """
1058
1059
1060
    Calculate the distance from a source to a target vertex, or to of all
    vertices from a given source, or the all pairs shortest paths, if the source
    is not specified.
1061
1062
1063
1064
1065
1066

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1067
        Source vertex of the search. If unspecified, the all pairs shortest
1068
        distances are computed.
1069
1070
1071
    target : :class:`~graph_tool.Vertex` (optional, default: None)
        Target vertex of the search. If unspecified, the distance to all
        vertices from the source will be computed.
1072
1073
1074
1075
1076
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
Tiago Peixoto's avatar
Tiago Peixoto committed
1077
        searched. This parameter has no effect if source is None.
1078
1079
1080
1081
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
1082
1083
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
1084
1085
1086
1087
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
1088
1089
1090
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
1113
1114
1115
1116
1117
1118
1119
1120
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
1121
1122
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
1123
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1141

1142
    >>> dist = gt.shortest_distance(g)
1143
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1161
1162
1163
1164
1165

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1166
1167
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1168
1169
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1170
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1171
1172
1173
1174
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

1175
    if weights is None:
1176
1177
1178
1179
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1180
1181
    if dist_map is None:
        if source is not None:
1182
1183
1184
1185
1186
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1187
    if source is not None:
1188
1189
1190
1191
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1192
    if max_dist is None:
1193
1194
        max_dist = 0

1195
    if directed is not None:
1196
1197
1198
        u = GraphView(g, directed=directed)
    else:
        u = g
1199

1200
1201
1202
    if target is None:
        target = -1

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    if source is not None:
        pmap = g.copy_property(u.vertex_index, value_type="int64_t")
        libgraph_tool_topology.get_dists(g._Graph__graph,
                                         int(source),
                                         int(target),
                                         _prop("v", g, dist_map),
                                         _prop("e", g, weights),
                                         _prop("v", g, pmap),
                                         float(max_dist))
    else:
        libgraph_tool_topology.get_all_dists(u._Graph__graph,
1214
                                             _prop("v", g, dist_map),
1215
                                             _prop("e", g, weights), dense)
1216

1217
1218
1219
1220

    if source is not None and target != -1:
        dist_map = dist_map[target]

1221
    if source is not None and pred_map:
1222
1223
1224
1225
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
1226

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
1237
    target : :class:`~graph_tool.Vertex`
1238
1239
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
1240
        The edge weights.
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1264
1265
1266
1267
1268
1269
1270
1271
1272
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(43)
       gt.seed_rng(43)

    >>> from numpy.random import poisson
    >>> g = gt.random_graph(300, lambda: (poisson(4), poisson(4)))
1273
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1274
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1275
    ['10', '131', '184', '265', '223', '11']
1276
    >>> print([str(e) for e in elist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1277
    ['(10, 131)', '(131, 184)', '(184, 265)', '(265, 223)', '(223, 11)']
1278
1279
1280
1281
1282

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1283
1284
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1285
1286
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1287
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1288
1289
    """

1290
    if pred_map is None:
1291
1292
        pred_map = shortest_distance(g, source, target,
                                     weights=weights,
Tiago Peixoto's avatar
Tiago Peixoto committed
1293
                                     pred_map=True)[1]
1294

1295
    if pred_map[target] == int(target):  # no path to target
1296
1297
1298
1299
1300
        return [], []

    vlist = [target]
    elist = []

1301
    if weights is not None:
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1315
                if weights is not None:
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1327

Tiago Peixoto's avatar
Tiago Peixoto committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1369
1370
1371
1372
1373
1374
1375
1376
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
1377
1378
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1379
    >>> print(dist)
Tiago Peixoto's avatar
Tiago Peixoto committed
1380
    9.0
1381
    >>> print(int(ends[0]), int(ends[1]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1382
    0 140
Tiago Peixoto's avatar
Tiago Peixoto committed
1383
1384
1385
1386
1387
1388
1389

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
1390
        source = g.vertex(0, use_index=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
1391
1392
1393
1394
1395
1396
1397