__init__.py 23.2 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.draw`` - Graph drawing and layout
----------------------------------------------
24
25
26
27

Summary
+++++++

28
29
30
Layout algorithms
=================

31
32
33
.. autosummary::
   :nosignatures:

Tiago Peixoto's avatar
Tiago Peixoto committed
34
   sfdp_layout
35
   fruchterman_reingold_layout
36
37
   arf_layout
   random_layout
38
39
40
41
42
43
44
45
46


Graph drawing
=============

.. autosummary::
   :nosignatures:

   graph_draw
Tiago Peixoto's avatar
Tiago Peixoto committed
47
   graphviz_draw
48
   prop_to_size
49

50
51
52
53
54
55
56
57
58
59
60
61

Low-level graph drawing
^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:

   cairo_draw
   interactive_window
   GraphWidget
   GraphWindow

62
63
Contents
++++++++
64
65
"""

66
67
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
68
from .. import GraphView, _check_prop_vector, group_vector_property, \
69
     ungroup_vector_property, infect_vertex_property, _prop, _get_rng
Tiago Peixoto's avatar
Tiago Peixoto committed
70
71
72
73
74
75
from .. topology import max_cardinality_matching, max_independent_vertex_set, \
    label_components,  pseudo_diameter
from .. community import condensation_graph
from .. stats import label_parallel_edges
import numpy.random
from numpy import sqrt
76
import sys
77
78

from .. dl_import import dl_import
79
dl_import("from . import libgraph_tool_layout")
80

81

82
83
__all__ = ["graph_draw", "graphviz_draw",
           "fruchterman_reingold_layout",
Tiago Peixoto's avatar
Tiago Peixoto committed
84
           "arf_layout", "sfdp_layout", "random_layout",
85
           "cairo_draw", "prop_to_size"]
86

Tiago Peixoto's avatar
Tiago Peixoto committed
87

88
def random_layout(g, shape=None, pos=None, dim=2):
89
90
91
92
    r"""Performs a random layout of the graph.

    Parameters
    ----------
93
    g : :class:`~graph_tool.Graph`
94
        Graph to be used.
95
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
96
97
98
99
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
100
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
101
        Vector vertex property maps where the coordinates should be stored.
102
    dim : int (optional, default: ``2``)
103
104
105
106
        Number of coordinates per vertex.

    Returns
    -------
107
108
109
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
110
111
112
113

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
114
115
116

    Examples
    --------
117
118
119
120
121
122
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
123
124
125
126
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
127
    array([ 68.72700594,   1.03142919,   2.56812658])
Tiago Peixoto's avatar
Tiago Peixoto committed
128

129
130
    """

131
    if pos == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
132
133
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
134

135
    pos = ungroup_vector_property(pos, list(range(0, dim)))
136
137

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
138
        shape = [sqrt(g.num_vertices())] * dim
139

140
    for i in range(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
141
142
143
144
145
146
147
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
148
149
150
151

        # deal with filtering
        p = pos[i].ma
        p[:] = numpy.random.random(len(p)) * d + r[0]
152

Tiago Peixoto's avatar
Tiago Peixoto committed
153
    pos = group_vector_property(pos)
154
155
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
156

157
158
159
160
161
162
163
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
164
    g : :class:`~graph_tool.Graph`
165
        Graph to be used.
166
    weight : :class:`PropertyMap` (optional, default: ``None``)
167
168
169
170
171
172
173
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
174
175
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
176
        will be a square.
177
178
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
179
        the same site on a grid. Otherwise they will act on all vertex pairs.
180
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
181
182
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
183
    n_iter : int (optional, default: ``100``)
184
        Total number of iterations.
185
    pos : :class:`PropertyMap` (optional, default: ``None``)
186
187
188
189
190
191
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
192
193
194
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
195
196
197
198

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
199
200
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
201
202
203

    Examples
    --------
204
205
206
207
208
209
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

210
211
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
212
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-fr.pdf")
213
214
    <...>

215
216
217
218
219
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-fr.png")

220
    .. figure:: graph-draw-fr.*
221
222
223
224
225
226
227
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
228
229
       "Graph Drawing by Force-Directed Placement". Software - Practice & Experience
       (Wiley) 21 (11): 1129-1164. (1991) :doi:`10.1002/spe.4380211102`
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    """

    if pos == None:
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
256
               max_iter=1000, pos=None, dim=2):
257
258
    r"""Calculate the ARF spring-block layout of the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
259
260
261
262
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
Tiago Peixoto's avatar
Tiago Peixoto committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        An edge property map with the respective weights.
    d : float (optional, default: ``0.5``)
        Opposing force between vertices.
    a : float (optional, default: ``10``)
        Attracting force between adjacent vertices.
    dt : float (optional, default: ``0.001``)
        Iteration step size.
    epsilon : float (optional, default: ``1e-6``)
        Convergence criterion.
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
        convergence.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: ``2``)
        Number of coordinates per vertex.
Tiago Peixoto's avatar
Tiago Peixoto committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm is defined in [geipel-self-organization-2007]_, and has
    complexity :math:`O(V^2)`.

    Examples
    --------
294
295
296
297
298
299
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
300
301
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
302
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-arf.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
303
304
    <...>

305
306
307
308
309
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-arf.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
    .. figure:: graph-draw-arf.*
        :align: center

        ARF layout of a Price network.

    References
    ----------
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

    if pos is None:
325
        pos = random_layout(g, dim=dim)
Tiago Peixoto's avatar
Tiago Peixoto committed
326
327
328
329
330
331
332
333
334
    _check_prop_vector(pos, name="pos", floating=True)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    return pos


335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def _coarse_graph(g, vweight, eweight, mivs=False, groups=None):
    if groups is None:
        if mivs:
            mivs = max_independent_vertex_set(g, high_deg=True)
            u = GraphView(g, vfilt=mivs, directed=False)
            c = label_components(u)[0]
            c.fa += 1
            u = GraphView(g, directed=False)
            infect_vertex_property(u, c,
                                   list(range(1, c.fa.max() + 1)))
            c = g.own_property(c)
        else:
            mivs = None
            m = max_cardinality_matching(GraphView(g, directed=False),
                                         heuristic=True, weight=eweight,
                                         minimize=False)
            u = GraphView(g, efilt=m, directed=False)
            c = label_components(u)[0]
            c = g.own_property(c)
            u = GraphView(g, directed=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
355
356
    else:
        mivs = None
357
        c = groups
358
    cg, cc, vcount, ecount = condensation_graph(g, c, vweight, eweight)[:4]
Tiago Peixoto's avatar
Tiago Peixoto committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    return cg, cc, vcount, ecount, c, mivs


def _propagate_pos(g, cg, c, cc, cpos, delta, mivs):
    pos = g.new_vertex_property(cpos.value_type())

    if mivs is not None:
        g = GraphView(g, vfilt=mivs)
    libgraph_tool_layout.propagate_pos(g._Graph__graph,
                                       cg._Graph__graph,
                                       _prop("v", g, c),
                                       _prop("v", cg, cc),
                                       _prop("v", g, pos),
                                       _prop("v", cg, cpos),
                                       delta if mivs is None else 0,
374
                                       _get_rng())
Tiago Peixoto's avatar
Tiago Peixoto committed
375
376
377
378
379
380
381
    if mivs is not None:
        g = g.base
        u = GraphView(g, directed=False)
        try:
            libgraph_tool_layout.propagate_pos_mivs(u._Graph__graph,
                                                    _prop("v", u, mivs),
                                                    _prop("v", u, pos),
382
                                                    delta, _get_rng())
Tiago Peixoto's avatar
Tiago Peixoto committed
383
384
385
386
387
388
        except ValueError:
            graph_draw(u, mivs, vertex_fillcolor=mivs)
    return pos


def _avg_edge_distance(g, pos):
389
390
391
392
    ad = libgraph_tool_layout.avg_dist(g._Graph__graph, _prop("v", g, pos))
    if numpy.isnan(ad):
        ad = 1.
    return ad
Tiago Peixoto's avatar
Tiago Peixoto committed
393
394
395


def coarse_graphs(g, method="hybrid", mivs_thres=0.9, ec_thres=0.75,
396
                  weighted_coarse=False, eweight=None, vweight=None,
397
                  groups=None, verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
398
    cg = [[g, None, None, None, None, None]]
399
400
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
Tiago Peixoto's avatar
Tiago Peixoto committed
401
402
    mivs = not (method in ["hybrid", "ec"])
    while True:
403
404
        u = _coarse_graph(cg[-1][0], cg[-1][2], cg[-1][3], mivs, groups)
        groups = None
405
406
407
        thres = mivs_thres if mivs else ec_thres
        if u[0].num_vertices() >= thres * cg[-1][0].num_vertices():
            if method == "hybrid" and not mivs:
Tiago Peixoto's avatar
Tiago Peixoto committed
408
409
410
411
412
413
414
                mivs = True
            else:
                break
        if u[0].num_vertices() <= 2:
            break
        cg.append(u)
        if verbose:
415
416
417
            print("Coarse level (%s):" % ("MIVS" if mivs else "EC"), end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u[0].num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
418
419
420
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
421
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
422
423
424
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
425
426
            if K == 0:
                K = 1.
Tiago Peixoto's avatar
Tiago Peixoto committed
427
428
429
430
431
432
433
434
435
436
437
438
439
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

440
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
441
442
443
444
        u, cc, vcount, ecount, c, mivs = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
445
            print("avg edge distance:", _avg_edge_distance(u, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
446
447
448

        if i < len(cg) - 1:
            if verbose:
449
450
                print("propagating...", end=' ')
                print(mivs.a.sum() if mivs is not None else "")
Tiago Peixoto's avatar
Tiago Peixoto committed
451
            pos = _propagate_pos(cg[i + 1][0], u, c, cc, pos,
452
                                 Ks[i] / 1000., mivs)
Tiago Peixoto's avatar
Tiago Peixoto committed
453
454


455
456
457
458
459
460
def sfdp_layout(g, vweight=None, eweight=None, pin=None, groups=None, C=0.2,
                K=None, p=2., theta=0.6, max_level=11, gamma=1., mu=0., mu_p=1.,
                init_step=None, cooling_step=0.9, adaptive_cooling=True,
                epsilon=1e-1, max_iter=0, pos=None, multilevel=None,
                coarse_method= "hybrid", mivs_thres=0.9, ec_thres=0.75,
                weighted_coarse=False, verbose=False):
461
    r"""Obtain the SFDP spring-block layout of the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
462

463
464
    Parameters
    ----------
465
    g : :class:`~graph_tool.Graph`
466
        Graph to be used.
467
468
469
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with the respective weights.
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
470
        An edge property map with the respective weights.
471
    pin : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
472
473
474
475
476
        A vertex property map with boolean values, which, if given,
        specify the vertices which will not have their positions modified.
    groups : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with group assignments. Vertices belonging to the
        same group will be put close together.
477
478
479
480
481
482
483
484
    C : float (optional, default: ``0.2``)
        Relative strength of repulsive forces.
    K : float (optional, default: ``None``)
        Optimal edge length. If not provided, it will be taken to be the average
        edge distance in the initial layout.
    p : float (optional, default: ``2``)
        Repulsive force exponent.
    theta : float (optional, default: ``0.6``)
485
        Quadtree opening parameter, a.k.a. Barnes-Hut opening criterion.
486
487
488
    max_level : int (optional, default: ``11``)
        Maximum quadtree level.
    gamma : float (optional, default: ``1.0``)
489
490
491
492
493
494
495
496
        Strength of the attractive force between connected components, or group
        assignments.
    mu : float (optional, default: ``0.0``)
        Strength of the attractive force between vertices of the same connected
        component, or group assignment.
    mu_p : float (optional, default: ``1.0``)
        Scaling exponent of the attractive force between vertices of the same
        connected component, or group assignment.
497
498
499
500
501
502
503
504
505
    init_step : float (optional, default: ``None``)
        Initial update step. If not provided, it will be chosen automatically.
    cooling_step : float (optional, default: ``0.9``)
        Cooling update step.
    adaptive_cooling : bool (optional, default: ``True``)
        Use an adaptive cooling scheme.
    epsilon : float (optional, default: ``0.1``)
        Relative convergence criterion.
    max_iter : int (optional, default: ``0``)
506
        Maximum number of iterations. If this value is ``0``, it runs until
507
        convergence.
508
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        Initial vertex layout. If not provided, it will be randomly chosen.
    multilevel : bool (optional, default: ``None``)
        Use a multilevel layout algorithm. If ``None`` is given, it will be
        activated based on the size of the graph.
    coarse_method : str (optional, default: ``"hybrid"``)
        Coarsening method used if ``multilevel == True``. Allowed methods are
        ``"hybrid"``, ``"mivs"`` and ``"ec"``.
    mivs_thres : float (optional, default: ``0.9``)
        If the relative size of the MIVS coarse graph is above this value, the
        coarsening stops.
    ec_thres : float (optional, default: ``0.75``)
        If the relative size of the EC coarse graph is above this value, the
        coarsening stops.
    weighted_coarse : bool (optional, default: ``False``)
        Use weighted coarse graphs.
    verbose : bool (optional, default: ``False``)
        Provide verbose information.
526
527
528

    Returns
    -------
529
530
531
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
532
533
534

    Notes
    -----
535
536
    This algorithm is defined in [hu-multilevel-2005]_, and has
    complexity :math:`O(V\log V)`.
537
538
539

    Examples
    --------
540
541
542
543
544
545
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

546
547
548
    >>> g = gt.price_network(3000)
    >>> pos = gt.sfdp_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.pdf")
549
550
    <...>

551
552
553
554
555
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.png")

556
    .. figure:: graph-draw-sfdp.*
557
558
        :align: center

559
        SFDP layout of a Price network.
560
561
562

    References
    ----------
563
564
565
    .. [hu-multilevel-2005] Yifan Hu, "Efficient and High Quality Force-Directed
       Graph", Mathematica Journal, vol. 10, Issue 1, pp. 37-71, (2005)
       http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
566
567
    """

568
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
569
        pos = random_layout(g, dim=2)
570
571
    _check_prop_vector(pos, name="pos", floating=True)

Tiago Peixoto's avatar
Tiago Peixoto committed
572
573
    g = GraphView(g, directed=False)

574
575
576
577
578
    if pin is not None:
        if pin.value_type() != "bool":
            raise ValueError("'pin' property must be of type 'bool'.")
    else:
        pin = g.new_vertex_property("bool")
Tiago Peixoto's avatar
Tiago Peixoto committed
579
580

    if K is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
581
        K = _avg_edge_distance(g, pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
582
583

    if init_step is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
584
585
586
587
588
589
        init_step = 10 * max(_avg_edge_distance(g, pos), K)

    if multilevel is None:
        multilevel = g.num_vertices() > 1000

    if multilevel:
590
591
        if eweight is not None or vweight is not None:
            weighted_coarse = True
Tiago Peixoto's avatar
Tiago Peixoto committed
592
593
594
595
        cgs = coarse_graphs(g, method=coarse_method,
                            mivs_thres=mivs_thres,
                            ec_thres=ec_thres,
                            weighted_coarse=weighted_coarse,
596
597
                            eweight=eweight,
                            vweight=vweight,
598
                            groups=groups,
Tiago Peixoto's avatar
Tiago Peixoto committed
599
                            verbose=verbose)
600
        for count, (u, pos, K, vcount, ecount) in enumerate(cgs):
Tiago Peixoto's avatar
Tiago Peixoto committed
601
            if verbose:
602
603
                print("Positioning level:", count, u.num_vertices(), end=' ')
                print("with K =", K, "...")
Tiago Peixoto's avatar
Tiago Peixoto committed
604
605
606
607
608
                count += 1
            #graph_draw(u, pos)
            pos = sfdp_layout(u, pos=pos,
                              vweight=vcount if weighted_coarse else None,
                              eweight=ecount if weighted_coarse else None,
609
                              groups=None if u.num_vertices() < g.num_vertices() else groups,
Tiago Peixoto's avatar
Tiago Peixoto committed
610
                              C=C, K=K, p=p,
611
612
                              theta=theta, gamma=gamma, mu=mu, mu_p=mu_p,
                              epsilon=epsilon,
Tiago Peixoto's avatar
Tiago Peixoto committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
                              max_iter=max_iter,
                              cooling_step=cooling_step,
                              adaptive_cooling=False,
                              init_step=max(2 * K,
                                            _avg_edge_distance(u, pos) / 10),
                              multilevel=False,
                              verbose=False)
            #graph_draw(u, pos)
        return pos

    if g.num_vertices() <= 1:
        return pos
    if g.num_vertices() == 2:
        vs = [g.vertex(0, False), g.vertex(1, False)]
        pos[vs[0]] = [0, 0]
        pos[vs[1]] = [1, 1]
        return pos
    if g.num_vertices() <= 50:
        max_level = 0
632
633
634
635
    if groups is None:
        groups = label_components(g)[0]
    elif groups.value_type() != "int32_t":
        raise ValueError("'groups' property must be of type 'int32_t'.")
Tiago Peixoto's avatar
Tiago Peixoto committed
636
637
638
    libgraph_tool_layout.sfdp_layout(g._Graph__graph, _prop("v", g, pos),
                                     _prop("v", g, vweight),
                                     _prop("e", g, eweight),
639
                                     _prop("v", g, pin),
640
                                     (C, K, p, gamma, mu, mu_p, _prop("v", g, groups)),
641
                                     theta, init_step, cooling_step, max_level,
Tiago Peixoto's avatar
Tiago Peixoto committed
642
643
                                     epsilon, max_iter, not adaptive_cooling,
                                     verbose)
644
    return pos
Tiago Peixoto's avatar
Tiago Peixoto committed
645

646
647
648
649
try:
    from .cairo_draw import graph_draw, cairo_draw
except ImportError:
    pass
650
651

try:
652
    from .cairo_draw import GraphWidget, GraphWindow, \
653
654
655
656
        interactive_window
    __all__ += ["interactive_window", "GraphWidget", "GraphWindow"]
except ImportError:
    pass
Tiago Peixoto's avatar
Tiago Peixoto committed
657

658
659
660
661
try:
   from .graphviz_draw import graphviz_draw
except ImportError:
   pass
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

def prop_to_size(prop, mi=0, ma=5, log=False, power=0.5):
    r"""Convert property map values to be more useful as a vertex size, or edge
    width. The new values are taken to be

    .. math::

        y = mi + (ma - mi) \left(\frac{x_i - min(x)} {max(x) - min(x)}\right)^\text{power}

    If `log=True`, the natural logarithm of the property values are used instead.

    """
    prop = prop.copy(value_type="double")
    if log:
        vals = numpy.log(prop.fa)
    else:
        vals = prop.fa

680
    delta = vals.max() - vals.min()
681
682
683
684
    if delta == 0:
        delta = 1
    prop.fa = mi + (ma - mi) * ((vals - vals.min()) / delta) ** power
    return prop