graph_trust_transitivity.hh 8.01 KB
Newer Older
1 2
// graph-tool -- a general graph modification and manipulation thingy
//
Tiago Peixoto's avatar
Tiago Peixoto committed
3
// Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_TRUST_TRANSITIVITY_HH
#define GRAPH_TRUST_TRANSITIVITY_HH

#include "graph.hh"
#include "graph_filtering.hh"
#include "graph_util.hh"

#include <algorithm>

#include <boost/graph/dijkstra_shortest_paths.hpp>

#include <iostream>

namespace graph_tool
{
using namespace std;
using namespace boost;


struct stop_search {}; // exception to be thrown to stop search

template <class SourceMap, class WeightMap>
class source_counter:
    public boost::dijkstra_visitor<null_visitor>
{
public:
    source_counter(SourceMap source_map, WeightMap weight_map, size_t n_sources)
        : _source_map(source_map), _weight_map(weight_map),
          _n_sources(n_sources) {}

    template <class Graph>
    void examine_vertex(typename graph_traits<Graph>::vertex_descriptor u,
                        Graph& g)
    {
        // stop if all sources are found
        if (_source_map[u])
        {
            _n_sources--;
            if (_n_sources == 0)
                throw stop_search();
        }
    }

private:
    SourceMap _source_map;
    WeightMap _weight_map;
    size_t _n_sources;
};

struct dist_compare
{
    template <class Type1, class Type2>
    bool operator()(const Type1& d1, const Type2& d2) const
    {
        return d1 > d2; // we want trust paths with _maximum_ "distance"
    }
};

struct dist_combine
{
    template <class DistType, class WeightType>
    DistType operator()(const DistType& d, const WeightType& w) const
    {
        return d*w;
    }
};

// predicate to filter a single vertex from the graph
struct filter_vertex_pred
{
    filter_vertex_pred() {}
    filter_vertex_pred(size_t v): _v(v) {}
    template <class Vertex>
    bool operator()(const Vertex& v) const { return v != _v; }
    size_t _v;
};

struct get_trust_transitivity
{
    template <class Graph, class VertexIndex, class EdgeIndex, class TrustMap,
              class InferredTrustMap>
    void operator()(Graph& g, VertexIndex vertex_index, EdgeIndex edge_index,
                    size_t max_edge_index, int64_t source, int64_t target,
                    TrustMap c, InferredTrustMap t)
        const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;
        typedef typename property_traits<TrustMap>::value_type c_type;
        typedef typename
            property_traits<InferredTrustMap>::value_type::value_type t_type;

        int i, N = num_vertices(g);
        #pragma omp parallel for default(shared) private(i) schedule(dynamic)
        for (i = 0; i < N; ++i)
            t[vertex(i, g)].resize((source == -1 && target == -1) ? N : 1);

        N = (target == -1) ? num_vertices(g) : target + 1;
        #pragma omp parallel for default(shared) private(i) schedule(dynamic)
        for (i = (target == -1) ? 0 : target; i < N; ++i)
        {

            vertex_t tgt = vertex(i, g);

            // mark the sources
            typedef unchecked_vector_property_map<uint8_t, VertexIndex>
                source_map_t;
            source_map_t source_map(vertex_index, num_vertices(g));

            typename in_edge_iteratorS<Graph>::type e, e_end;
            for (tie(e, e_end) = in_edge_iteratorS<Graph>::get_edges(tgt, g);
                 e != e_end; ++e)
                source_map[boost::source(*e,g)] = true;

            // filter vertex w out of the graph
            typedef filtered_graph<Graph, boost::keep_all, filter_vertex_pred>
                fg_t;
            fg_t fg(g, boost::keep_all(), filter_vertex_pred(tgt));

            // distance map (target weight map)
            typedef unchecked_vector_property_map<t_type, VertexIndex>
                dist_map_t;
            dist_map_t dist_map(vertex_index, num_vertices(g));

            if (source != -1)
            {
                vertex_t src = vertex(source, g);

                // compute the targets weights
                try
                {
                    size_t k = in_degreeS()(tgt, g);
                    source_counter<source_map_t,dist_map_t>
                        visitor(source_map, dist_map, k);
                    dijkstra_shortest_paths(fg, src, weight_map(c).
                                            vertex_index_map(vertex_index).
                                            distance_map(dist_map).
                                            distance_compare(dist_compare()).
                                            distance_combine(dist_combine()).
                                            distance_inf(t_type(0)).
                                            distance_zero(t_type(1)).
                                            visitor(visitor));
                }
                catch (const stop_search&) {}

                // compute the target's trust
                t_type sum_w = 0, avg = 0;
                for (tie(e, e_end) =
                         in_edge_iteratorS<Graph>::get_edges(tgt, g);
                     e != e_end; ++e)
                {
                    t_type weight = dist_map[boost::source(*e,g)];
                    sum_w += weight;
                    avg += c[*e]*weight*weight;
                }
                if (sum_w > 0)
                    t[tgt][0] = avg/sum_w;
                if (tgt == src)
                    t[tgt][0] = 1.0;
            }
            else
            {
                typedef typename
                    mpl::if_<typename is_directed::apply<Graph>::type,
                             reverse_graph<fg_t>,
                             fg_t>::type rg_t;
                rg_t rg(fg);
                dist_map_t sum_w(vertex_index, num_vertices(g));
                int j, N2 = num_vertices(g);
                for (tie(e, e_end) =
                         in_edge_iteratorS<Graph>::get_edges(tgt, g);
                     e != e_end; ++e)
                {
                    // compute the weights to all sources
                    dijkstra_shortest_paths
                        (rg, boost::source(*e, g), weight_map(c).
                         vertex_index_map(vertex_index).
                         distance_map(dist_map).
                         distance_compare(dist_compare()).
                         distance_combine(dist_combine()).
                         distance_inf(t_type(0)).
                         distance_zero(t_type(1)));

                    #pragma omp parallel for default(shared) private(j) \
                        schedule(dynamic)
                    for (j = 0; j < N2; ++j)
                    {
                        vertex_t src = vertex(j, g);
                        t_type weight = dist_map[src];
                        sum_w[src] += weight;
                        size_t tidx = (target == -1) ? vertex_index[tgt] : 0;
                        t[src][tidx] += c[*e]*weight*weight;
                    }
                }

                #pragma omp parallel for default(shared) private(j) \
                    schedule(dynamic)
                for (j = 0; j < N2; ++j)
                {
                    vertex_t src = vertex(j, g);
                    size_t tidx = (target == -1) ? vertex_index[tgt] : 0;
                    if (sum_w[src] > 0)
                        t[src][tidx] /= sum_w[src];
                    if (src == tgt)
                        t[src][tidx] = 1.0;
                }
            }
        }
    }
};

}

#endif