graph_rewiring.hh 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_REWIRING_HH
#define GRAPH_REWIRING_HH

#include <tr1/unordered_set>
#include <boost/random.hpp>
#include <boost/functional/hash.hpp>
24
#include <boost/vector_property_map.hpp>
25
26
27

#include "graph.hh"
#include "graph_filtering.hh"
28
#include "graph_util.hh"
29
30
31
32
33
34
35
36
37
38
39
40
41
42

namespace graph_tool
{
using namespace std;
using namespace boost;

// this will get the source of an edge for directed graphs and the target for
// undirected graphs, i.e. "the source of an in-edge"
struct source_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
43
        return get_source(e, g, typename is_directed::apply<Graph>::type());
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return source(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_source(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return target(e, g);
    }
};

// this will get the target of an edge for directed graphs and the source for
// undirected graphs, i.e. "the target of an in-edge"
struct target_in
{
    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    operator()(typename graph_traits<Graph>::edge_descriptor e, const Graph& g)
    {
71
        return get_target(e, g, typename is_directed::apply<Graph>::type());
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               true_type)
    {
        return target(e, g);
    }

    template <class Graph>
    typename graph_traits<Graph>::vertex_descriptor
    get_target(typename graph_traits<Graph>::edge_descriptor e, const Graph& g,
               false_type)
    {
        return source(e, g);
    }
};

// returns true if vertices u and v are adjacent. This is O(k(u)).
template <class Graph>
bool is_adjacent(typename graph_traits<Graph>::vertex_descriptor u,
                 typename graph_traits<Graph>::vertex_descriptor v,
                 const Graph& g )
{
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
    {
        if (target(*e,g) == v)
            return true;
    }
    return false;
}

// this functor will swap the source of the edge e with the source of edge se
// and the target of edge e with the target of te
struct swap_edge_triad
{
    template <class Graph, class NewEdgeMap>
    static bool parallel_check(typename graph_traits<Graph>::edge_descriptor e,
                               typename graph_traits<Graph>::edge_descriptor se,
                               typename graph_traits<Graph>::edge_descriptor te,
                               NewEdgeMap edge_is_new, const Graph &g)
    {
        // We want to check that if we swap the source of 'e' with the source of
        // 'se', and the target of 'te' with the target of 'e', as such
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),
        //
        // no parallel edges are introduced. We must considered only "new
        // edges", i.e., edges which were already sampled and swapped. "Old
        // edges" will have their chance of being swapped, and then they'll be
        // checked for parallelism.

        typename graph_traits<Graph>::vertex_descriptor
            s = source(e, g),          // current source
            t = target(e, g),          // current target
            ns = source(se, g),        // new source
            nt = target_in()(te, g),   // new target
            te_s = source_in()(te, g), // target edge source
            se_t = target(se, g);      // source edge target


        if (edge_is_new[se] && (ns == s) && (nt == se_t))
            return true; // e is parallel to se after swap
139
        if (edge_is_new[te] && (te_s == ns) && (nt == t))
140
141
142
143
            return true; // e is parallel to te after swap
        if (edge_is_new[te] && edge_is_new[se] && (te != se) &&
             (s == te_s) && (t == se_t))
            return true; // se is parallel to te after swap
144
        if (is_adjacent_in_new(ns,  nt, edge_is_new, g))
145
            return true; // e would clash with an existing (new) edge
146
        if (is_adjacent_in_new(te_s, t, edge_is_new, g))
147
            return true; // te would clash with an existing (new) edge
148
        if (is_adjacent_in_new(s, se_t, edge_is_new, g))
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
            return true; // se would clash with an existing (new) edge
        return false; // the coast is clear - hooray!
    }

    // returns true if vertices u and v are adjacent in the new graph. This is
    // O(k(u)).
    template <class Graph, class EdgeIsNew>
    static bool is_adjacent_in_new
        (typename graph_traits<Graph>::vertex_descriptor u,
         typename graph_traits<Graph>::vertex_descriptor v,
         EdgeIsNew edge_is_new, const Graph& g)
    {
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(u, g); e != e_end; ++e)
        {
164
            if (target(*e,g) == v && edge_is_new[*e])
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
                return true;
        }
        return false;
    }

    template <class Graph, class EdgeIndexMap, class EdgesType>
    void operator()(typename graph_traits<Graph>::edge_descriptor e,
                    typename graph_traits<Graph>::edge_descriptor se,
                    typename graph_traits<Graph>::edge_descriptor te,
                    EdgesType& edges, EdgeIndexMap edge_index, Graph& g)
    {
        // swap the source of the edge 'e' with the source of edge 'se' and the
        // target of edge 'e' with the target of 'te', as such:
        //
        //  (s)    -e--> (t)          (ns)   -e--> (nt)
        //  (ns)   -se-> (se_t)   =>  (s)    -se-> (se_t)
        //  (te_s) -te-> (nt)         (te_s) -te-> (t),

        // new edges which will replace the old ones
        typename graph_traits<Graph>::edge_descriptor ne, nse, nte;

        // split cases where different combinations of the three edges are
        // the same
        if(se != te)
        {
            ne = add_edge(source(se, g), target_in()(te, g), g).first;
            if(e != se)
            {
                nse = add_edge(source(e, g), target(se, g), g).first;
                edge_index[nse] = edge_index[se];
                remove_edge(se, g);
                edges[edge_index[nse]] = nse;
            }
            if(e != te)
            {
                nte = add_edge(source_in()(te, g), target(e, g), g).first;
                edge_index[nte] = edge_index[te];
                remove_edge(te, g);
                edges[edge_index[nte]] = nte;
            }
            edge_index[ne] = edge_index[e];
            remove_edge(e, g);
            edges[edge_index[ne]] = ne;
        }
        else
        {
            if(e != se)
            {
                // se and te are the same. swapping indexes only.
                swap(edge_index[se], edge_index[e]);
                edges[edge_index[se]] = se;
                edges[edge_index[e]] = e;
            }
        }
    }
};

// main rewire loop
template <template <class Graph, class EdgeIndexMap> class RewireStrategy>
struct graph_rewire
{
    template <class Graph, class EdgeIndexMap>
227
228
    void operator()(Graph g, // reference is wrapped inside
                    EdgeIndexMap edge_index, rng_t& rng,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
                    bool self_loops, bool parallel_edges) const
    {
        typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
        typedef typename graph_traits<Graph>::edge_descriptor edge_t;

        if (!self_loops)
        {
            // check the existence of self-loops
            bool has_self_loops = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;
                if (is_adjacent(v, v, g))
                    has_self_loops = true;
            }
            if (has_self_loops)
                throw GraphException("Self-loop detected. Can't rewire graph "
                                     "without self-loops if it already contains"
                                     " self-loops!");
        }

        if (!parallel_edges)
        {
            // check the existence of parallel edges
            bool has_parallel_edges = false;
            int i, N = num_vertices(g);
            #pragma omp parallel for default(shared) private(i) \
                schedule(dynamic)
            for (i = 0; i < N; ++i)
            {
                vertex_t v = vertex(i, g);
                if (v == graph_traits<Graph>::null_vertex())
                    continue;

                tr1::unordered_set<vertex_t> targets;
                typename graph_traits<Graph>::out_edge_iterator e, e_end;
                for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
                {
                    if (targets.find(target(*e, g)) != targets.end())
                        has_parallel_edges = true;
                    else
                        targets.insert(target(*e, g));
                }
            }

            if (has_parallel_edges)
                throw GraphException("Parallel edge detected. Can't rewire "
                                     "graph without parallel edges if it "
                                     "already contains parallel edges!");
        }

        RewireStrategy<Graph, EdgeIndexMap> rewire(g, edge_index, rng);

        vector<edge_t> edges(num_edges(g));
288
289
290
        vector<bool> is_edge(num_edges(g), false);
        typename graph_traits<Graph>::edge_iterator e, e_end;
        for (tie(e, e_end) = boost::edges(g); e != e_end; ++e)
291
        {
292
293
294
295
296
297
298
            if (edge_index[*e] >= edges.size())
            {
                edges.resize(edge_index[*e] + 1);
                is_edge.resize(edge_index[*e] + 1, false);
            }
            edges[edge_index[*e]] = *e;
            is_edge[edge_index[*e]] = true;
299
300
301
        }

        // for each edge simultaneously rewire its source and target
302
        for (size_t i = 0; i < int(edges.size()); ++i)
303
        {
304
305
            if (!is_edge[i])
                continue;
306
307
            typename graph_traits<Graph>::edge_descriptor e = edges[i];
            typename graph_traits<Graph>::edge_descriptor se, te;
308
            tie(se, te) = rewire(e, edges, is_edge, self_loops, parallel_edges);
309
310
311
312
313
314
315
316
317
318
319
320
            swap_edge_triad()(e, se, te, edges, edge_index, g);
        }
    }
};

// This will iterate over a random permutation of a random access sequence, by
// swapping the values of the sequence as it iterates
template <class RandomAccessIterator, class RNG>
class random_permutation_iterator
{
public:
    random_permutation_iterator(RandomAccessIterator first,
321
                                RandomAccessIterator last, RNG& rng)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        : _i(first), _last(last), _rng(rng)
    {
        std::iter_swap(_i, _i + _rng(_last - _i));
    }
    typename RandomAccessIterator::value_type operator*()
    {
        return *_i;
    }
    random_permutation_iterator& operator++()
    {
        ++_i;
        if(_i != _last)
            std::iter_swap(_i, _i + _rng(_last - _i));
        return *this;
    }
    bool operator==(const RandomAccessIterator& i)
    {
        return _i == i;
    }
    bool operator!=(const RandomAccessIterator& i)
    {
        return _i != i;
    }
private:
    RandomAccessIterator _i, _last;
    RNG& _rng;
};

// utility function for random_permutation_iterator
template <class RandomAccessIterator, class RNG>
inline random_permutation_iterator<RandomAccessIterator,RNG>
make_random_permutation_iterator(RandomAccessIterator first,
                                 RandomAccessIterator last, RNG& rng)
{
    return random_permutation_iterator<RandomAccessIterator,RNG>(first, last,
                                                                 rng);
}

360
361
362
// this is the mother class for edge-based rewire strategies
// it contains the common loop for finding edges to swap, so different
// strategies need only to specify where to sample the edges from.
363
364
template <class Graph, class EdgeIndexMap, class RewireStrategy>
class RewireStrategyBase
365
366
367
{
public:
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
368
    typedef typename EdgeIndexMap::value_type index_t;
369
    typedef random_number_generator<rng_t, size_t> random_t;
370

371
372
    RewireStrategyBase(const Graph& g, EdgeIndexMap edge_index, rng_t& rng)
        : _g(g), _edge_is_new(edge_index), _random(rng) {}
373
374

    template<class EdgesType>
375
    pair<edge_t, edge_t> operator()(const edge_t& e, const EdgesType& edges,
376
                                    vector<bool>& is_edge,
377
                                    bool self_loops, bool parallel_edges)
378
    {
379
        // where should we sample the edges from
380
381
382
        vector<index_t>* edges_source=0, *edges_target=0;
        static_cast<RewireStrategy*>(this)->get_edges(e, edges_source,
                                                      edges_target);
383
384
385
386

        //try randomly drawn pairs of edges until one satisfies all the
        //consistency checks
        bool found = false;
387
388
389
        edge_t es, et;
        typedef random_permutation_iterator
            <typename vector<index_t>::iterator, random_t> random_edge_iter;
390

391
        random_edge_iter esi(edges_source->begin(), edges_source->end(),
392
                             _random);
393
        for (; esi != edges_source->end() && !found; ++esi)
394
        {
395
396
            if (!is_edge[*esi])
                continue;
397
            es = edges[*esi];
398
399
            if(!self_loops) // reject self-loops if not allowed
            {
400
                if((source(e, _g) == target(es, _g)))
401
402
403
                    continue;
            }

404
            random_edge_iter eti(edges_target->begin(), edges_target->end(),
405
                                 _random);
406
            for (; eti != edges_target->end() && !found; ++eti)
407
            {
408
409
                if (!is_edge[*eti])
                    continue;
410
                et = edges[*eti];
411
412
                if (!self_loops) // reject self-loops if not allowed
                {
413
414
                    if ((source(es, _g) == target_in()(et, _g)) ||
                        (source_in()(et, _g) == target(e, _g)))
415
416
417
418
                        continue;
                }
                if (!parallel_edges) // reject parallel edges if not allowed
                {
419
420
                    if (swap_edge_triad::parallel_check(e, es, et, _edge_is_new,
                                                        _g))
421
422
423
424
425
426
427
428
                        continue;
                }
                found = true;
            }
        }
        if (!found)
            throw GraphException("Couldn't find random pair of edges to swap"
                                 "... This is a bug.");
429
        _edge_is_new[e] = true;
430
        return make_pair(es, et);
431
432
433
434
435
    }

private:
    const Graph& _g;
    vector_property_map<bool, EdgeIndexMap> _edge_is_new;
436
    random_t _random;
437
438
};

439
440
// this will rewire the edges so that the combined (in, out) degree distribution
// will be the same, but all the rest is random
441
template <class Graph, class EdgeIndexMap>
442
443
444
class RandomRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              RandomRewireStrategy<Graph, EdgeIndexMap> >
445
446
{
public:
447
448
449
450
451
452
453
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               RandomRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

454
455
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
456
    typedef typename EdgeIndexMap::value_type index_t;
457

458
459
460
    RandomRewireStrategy(const Graph& g, EdgeIndexMap edge_index,
                         rng_t& rng)
        : base_t(g, edge_index, rng)
461
    {
462
        int i, N = num_vertices(g);
463
464
        for (i = 0; i < N; ++i)
        {
465
            vertex_t v = vertex(i, g);
466
467
            if (v == graph_traits<Graph>::null_vertex())
                continue;
468
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
469
            for (tie(e_i, e_i_end) = out_edges(v, g); e_i != e_i_end; ++e_i)
470
471
472
            {
                _all_edges.push_back(edge_index[*e_i]);
            }
473
474
        }
    }
475
476
477

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
478
    {
479
480
        edges_source = &_all_edges;
        edges_target = &_all_edges;
481
    }
482

483
484
485
private:
    vector<index_t> _all_edges;
};
486

487
488
489
490

// this will rewire the edges so that the (in,out) degree distributions and the
// (in,out)->(in,out) correlations will be the same, but all the rest is random
template <class Graph, class EdgeIndexMap>
491
492
493
class CorrelatedRewireStrategy:
    public RewireStrategyBase<Graph, EdgeIndexMap,
                              CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
494
495
{
public:
496
497
498
499
500
501
502
    typedef RewireStrategyBase<Graph, EdgeIndexMap,
                               CorrelatedRewireStrategy<Graph, EdgeIndexMap> >
        base_t;

    typedef Graph graph_t;
    typedef EdgeIndexMap edge_index_t;

503
504
505
506
507
508
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
    typedef typename graph_traits<Graph>::edge_descriptor edge_t;
    typedef typename EdgeIndexMap::value_type index_t;

    CorrelatedRewireStrategy (const Graph& g, EdgeIndexMap edge_index,
                              rng_t& rng)
509
        : base_t(g, edge_index, rng), _g(g)
510
    {
511
512
        int i, N = num_vertices(_g);
        for (i = 0; i < N; ++i)
513
        {
514
515
516
517
518
            vertex_t v = vertex(i, _g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
            typename graph_traits<Graph>::out_edge_iterator e_i, e_i_end;
            for (tie(e_i, e_i_end) = out_edges(v, _g); e_i != e_i_end; ++e_i)
519
            {
520
521
                _edges_source_by
                    [make_pair(in_degreeS()(source(*e_i, _g), _g),
522
                               out_degree(source(*e_i, _g), _g))]
523
524
525
526
527
                    .push_back(edge_index[*e_i]);
                _edges_target_by
                    [make_pair(in_degreeS()(target_in()(*e_i, _g), _g),
                               out_degree(target_in()(*e_i, _g), _g))]
                    .push_back(edge_index[*e_i]);
528
529
530
            }
        }
    }
531
532
533

    void get_edges(const edge_t& e, vector<index_t>*& edges_source,
                   vector<index_t>*& edges_target)
534
    {
535
        edges_source =
536
537
            &_edges_source_by[make_pair(in_degreeS()(source(e, _g), _g),
                                        out_degree(source(e, _g), _g))];
538
        edges_target =
539
540
541
            &_edges_target_by[make_pair(in_degreeS()(target_in()(e, _g), _g),
                                        out_degree(target_in()(e, _g), _g))];
    }
542

543
private:
544
    typedef tr1::unordered_map<pair<size_t, size_t>, vector<index_t>,
545
                               hash<pair<size_t, size_t> > > edges_by_end_deg_t;
546
    edges_by_end_deg_t _edges_source_by, _edges_target_by;
547
548
549

protected:
    const Graph& _g;
550
551
552
553
554
};

} // graph_tool namespace

#endif // GRAPH_REWIRING_HH