__init__.py 30.4 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.draw`` - Graph drawing
23
-----------------------------------
24
25
26
27
28
29
30
31

Summary
+++++++

.. autosummary::
   :nosignatures:

   graph_draw
32
   fruchterman_reingold_layout
33
34
35
36
37
   arf_layout
   random_layout

Contents
++++++++
38
39
"""

40
41
42
43
44
45
46
import sys
import os
import os.path
import time
import warnings
import ctypes
import ctypes.util
47
import tempfile
48
from .. import _degree, _prop, PropertyMap, _check_prop_vector,\
49
     _check_prop_scalar, _check_prop_writable, group_vector_property,\
50
51
     ungroup_vector_property, GraphView
from .. topology import label_components
Tiago Peixoto's avatar
Tiago Peixoto committed
52
from .. decorators import _limit_args
53
import numpy.random
54
from numpy import *
55
import copy
56
57
58

from .. dl_import import dl_import
dl_import("import libgraph_tool_layout")
59

60
61
62
63
64
65
try:
    import matplotlib.cm
    import matplotlib.colors
except ImportError:
    warnings.warn("error importing matplotlib module... " + \
                  "graph_draw() will not work.", ImportWarning)
Tiago Peixoto's avatar
Tiago Peixoto committed
66

67
68
69
try:
    libname = ctypes.util.find_library("c")
    libc = ctypes.CDLL(libname)
70
71
    if hasattr(libc, "open_memstream"):
        libc.open_memstream.restype = ctypes.POINTER(ctypes.c_char)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
except OSError:
    pass

try:
    libname = ctypes.util.find_library("gvc")
    if libname is None:
        raise OSError()
    libgv = ctypes.CDLL(libname)
    # properly set the return types of certain functions
    ptype = ctypes.POINTER(ctypes.c_char)
    libgv.gvContext.restype = ptype
    libgv.agopen.restype = ptype
    libgv.agnode.restype = ptype
    libgv.agedge.restype = ptype
    libgv.agget.restype = ptype
87
    libgv.agstrdup_html.restype = ptype
88
89
90
91
92
93
94
95
    # create a context to use the whole time (if we keep freeing and recreating
    # it, we will hit a memory leak in graphviz)
    gvc = libgv.gvContext()
except OSError:
    warnings.warn("error importing graphviz C library (libgvc)... " + \
                  "graph_draw() will not work.", ImportWarning)


96
97
__all__ = ["graph_draw", "fruchterman_reingold_layout", "arf_layout",
           "random_layout"]
98

Tiago Peixoto's avatar
Tiago Peixoto committed
99

100
101
102
103
104
105
def htmlize(val):
    if len(val) >= 2 and val[0] == "<" and val[-1] == ">":
        return ctypes.string_at(libgv.agstrdup_html(val[1:-1]))
    return val


106
def aset(elem, attr, value):
107
    v = htmlize(str(value))
108
109
110
111
112
113
114
    libgv.agsafeset(elem, str(attr), v, v)


def aget(elem, attr):
    return ctypes.string_at(libgv.agget(elem, str(attr)))


115
def graph_draw(g, pos=None, size=(15, 15), pin=False, layout=None, maxiter=None,
116
               ratio="fill", overlap=True, sep=None, splines=False,
117
               vsize=0.105, penwidth=1.0, elen=None, gprops={}, vprops={},
118
119
120
               eprops={}, vcolor="#a40000", ecolor="#2e3436", vcmap=None,
               vnorm=True, ecmap=None, enorm=True, vorder=None, eorder=None,
               output="", output_format="auto", fork=False,
121
               return_string=False):
122
123
124
125
    r"""Draw a graph using graphviz.

    Parameters
    ----------
126
127
128
    g : :class:`~graph_tool.Graph`
        Graph to be drawn.
    pos : :class:`~graph_tool.PropertyMap` or tuple of :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
129
        Vertex property maps containing the x and y coordinates of the vertices.
130
    size : tuple of scalars (optional, default: ``(15,15)``)
131
        Size (in centimeters) of the canvas.
132
133
134
135
136
137
138
139
    pin : bool or :class:`~graph_tool.PropertyMap` (default: ``False``)
        If ``True``, the vertices are not moved from their initial position. If
        a :class:`~graph_tool.PropertyMap` is passed, it is used to pin nodes
        individually.
    layout : string (default: ``"neato" if g.num_vertices() <= 1000 else "sfdp"``)
        Layout engine to be used. Possible values are ``"neato"``, ``"fdp"``,
        ``"dot"``, ``"circo"``, ``"twopi"`` and ``"arf"``.
    maxiter : int (default: ``None``)
140
        If specified, limits the maximum number of iterations.
141
    ratio : string or float (default: ``"fill"``)
142
        Sets the aspect ratio (drawing height/drawing width) for the
143
        drawing. Note that this is adjusted before the ``size`` attribute
144
145
        constraints are enforced.

146
147
        If ``ratio`` is numeric, it is taken as the desired aspect ratio. Then,
        if the actual aspect ratio is less than the desired ratio, the drawing
148
149
150
        height is scaled up to achieve the desired ratio; if the actual ratio is
        greater than that desired ratio, the drawing width is scaled up.

151
        If ``ratio == "fill"`` and the size attribute is set, node positions are
152
153
154
        scaled, separately in both x and y, so that the final drawing exactly
        fills the specified size.

155
156
157
158
        If ``ratio == "compress"`` and the size attribute is set, dot attempts
        to compress the initial layout to fit in the given size. This achieves a
        tighter packing of nodes but reduces the balance and symmetry.  This
        feature only works in dot.
159

160
161
162
163
164
165
        If ``ratio == "expand"``, the size attribute is set, and both the width
        and the height of the graph are less than the value in size, node
        positions are scaled uniformly until at least one dimension fits size
        exactly.  Note that this is distinct from using size as the desired
        size, as here the drawing is expanded before edges are generated and all
        node and text sizes remain unchanged.
166

167
168
        If ``ratio == "auto"``, the page attribute is set and the graph cannot
        be drawn on a single page, then size is set to an "ideal" value. In
169
170
171
172
        particular, the size in a given dimension will be the smallest integral
        multiple of the page size in that dimension which is at least half the
        current size. The two dimensions are then scaled independently to the
        new size. This feature only works in dot.
173
    overlap : bool or string (default: ``"prism"``)
174
        Determines if and how node overlaps should be removed. Nodes are first
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        enlarged using the sep attribute. If ``True``, overlaps are retained. If
        the value is ``"scale"``, overlaps are removed by uniformly scaling in x
        and y. If the value is ``False``, node overlaps are removed by a
        Voronoi-based technique. If the value is ``"scalexy"``, x and y are
        separately scaled to remove overlaps.

        If sfdp is available, one can set overlap to ``"prism"`` to use a
        proximity graph-based algorithm for overlap removal. This is the
        preferred technique, though ``"scale"`` and ``False`` can work well with
        small graphs. This technique starts with a small scaling up, controlled
        by the overlap_scaling attribute, which can remove a significant portion
        of the overlap. The prism option also accepts an optional non-negative
        integer suffix. This can be used to control the number of attempts made
        at overlap removal. By default, ``overlap == "prism"`` is equivalent to
        ``overlap == "prism1000"``. Setting ``overlap == "prism0"`` causes only
        the scaling phase to be run.

        If the value is ``"compress"``, the layout will be scaled down as much
        as possible without introducing any overlaps, obviously assuming there
        are none to begin with.
    sep : float (default: ``None``)
196
197
        Specifies margin to leave around nodes when removing node overlap. This
        guarantees a minimal non-zero distance between nodes.
198
199
200
201
    splines : bool (default: ``False``)
        If ``True``, the edges are drawn as splines and routed around the
        vertices.
    vsize : float, :class:`~graph_tool.PropertyMap`, or tuple (default: ``0.105``)
202
203
        Default vertex size (width and height). If a tuple is specified, the
        first value should be a property map, and the second is a scale factor.
204
    penwidth : float, :class:`~graph_tool.PropertyMap` or tuple (default: ``1.0``)
205
206
        Specifies the width of the pen, in points, used to draw lines and
        curves, including the boundaries of edges and clusters. It has no effect
Tiago Peixoto's avatar
Tiago Peixoto committed
207
208
        on text. If a tuple is specified, the first value should be a property
        map, and the second is a scale factor.
209
    elen : float or :class:`~graph_tool.PropertyMap` (default: ``None``)
210
        Preferred edge length, in inches.
211
    gprops : dict (default: ``{}``)
212
213
        Additional graph properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string.
214
    vprops : dict (default: ``{}``)
215
216
217
        Additional vertex properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or vertex property
        maps, with values convertible to strings.
218
    eprops : dict (default: ``{}``)
219
220
221
        Additional edge properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or edge property
        maps, with values convertible to strings.
222
    vcolor : string or :class:`~graph_tool.PropertyMap` (default: ``"#a40000"``)
223
224
        Drawing color for vertices. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
225
226
        the ``vcmap`` argument.
    ecolor : string or :class:`~graph_tool.PropertyMap` (default: ``"#2e3436"``)
227
228
        Drawing color for edges. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
229
230
        the ``ecmap`` argument.
    vcmap : :class:`matplotlib.colors.Colormap` (default: :class:`matplotlib.cm.jet`)
231
        Vertex color map.
232
    vnorm : bool (default: ``True``)
233
        Normalize vertex color values to the [0,1] range.
234
    ecmap : :class:`matplotlib.colors.Colormap` (default: :class:`matplotlib.cm.jet`)
235
        Edge color map.
236
    enorm : bool (default: ``True``)
237
        Normalize edge color values to the [0,1] range.
238
    vorder : :class:`~graph_tool.PropertyMap` (default: ``None``)
239
240
        Scalar vertex property map which specifies the order with which vertices
        are drawn.
241
    eorder : :class:`~graph_tool.PropertyMap` (default: ``None``)
242
243
        Scalar edge property map which specifies the order with which edges
        are drawn.
244
    output : string (default: ``""``)
245
        Output file name.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    output_format : string (default: ``"auto"``)
        Output file format. Possible values are ``"auto"``, ``"xlib"``,
        ``"ps"``, ``"svg"``, ``"svgz"``, ``"fig"``, ``"mif"``, ``"hpgl"``,
        ``"pcl"``, ``"png"``, ``"gif"``, ``"dia"``, ``"imap"``, ``"cmapx"``. If
        the value is ``"auto"``, the format is guessed from the ``output``
        parameter, or ``xlib`` if it is empty. If the value is ``None``, no
        output is produced.
    fork : bool (default: ``False``)
        If ``True``, the program is forked before drawing. This is used as a
        work-around for a bug in graphviz, where the ``exit()`` function is
        called, which would cause the calling program to end. This is always
        assumed ``True``, if ``output_format == 'xlib'``.
    return_string : bool (default: ``False``)
        If ``True``, a string containing the rendered graph as binary data is
260
        returned (defaults to png format).
261
262
263

    Returns
    -------
264
    pos : :class:`~graph_tool.PropertyMap`
265
        Vector vertex property map with the x and y coordinates of the vertices.
266
    gv : gv.digraph or gv.graph (optional, only if ``returngv == True``)
267
268
269
270
271
        Internally used graphviz graph.


    Notes
    -----
272
273
274
    This function is a wrapper for the [graphviz] routines. Extensive additional
    documentation for the graph, vertex and edge properties is available at:
    http://www.graphviz.org/doc/info/attrs.html.
275
276
277
278


    Examples
    --------
279
    >>> from numpy import *
280
281
282
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.random_graph(1000, lambda: min(zipf(2.4), 40),
283
    ...                     lambda i, j: exp(abs(i - j)), directed=False)
284
    >>> # extract largest component
285
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
286
    >>> deg = g.degree_property_map("out")
287
    >>> deg.a = 2 * (sqrt(deg.a) * 0.5 + 0.4)
288
    >>> ebet = gt.betweenness(g)[1]
289
290
291
292
    >>> ebet.a *= 4000
    >>> ebet.a += 10
    >>> gt.graph_draw(g, vsize=deg, vcolor=deg, vorder=deg, elen=10,
    ...               ecolor=ebet, eorder=ebet, penwidth=ebet,
293
    ...               overlap="prism", output="graph-draw.pdf")
294
    <...>
295

296
    .. figure:: graph-draw.*
297
298
299
300
301
302
303
304
305
        :align: center

        Kamada-Kawai force-directed layout of a graph with a power-law degree
        distribution, and dissortative degree correlation. The vertex size and
        color indicate the degree, and the edge color and width the edge
        betweeness centrality.

    References
    ----------
306
    .. [graphviz] http://www.graphviz.org
307
308

    """
Tiago Peixoto's avatar
Tiago Peixoto committed
309

310
    if output != "" and output is not None:
311
        output = os.path.expanduser(output)
312
        # check opening file for writing, since graphviz will bork if it is not
313
314
315
316
317
        # possible to open file
        if os.path.dirname(output) != "" and \
               not os.access(os.path.dirname(output), os.W_OK):
            raise IOError("cannot write to " + os.path.dirname(output))

318
319
320
    has_layout = False
    try:
        gvg = libgv.agopen("G", 1 if g.is_directed() else 0)
321

322
        if layout is None:
323
324
325
326
            if pin == False:
                layout = "neato" if g.num_vertices() <= 1000 else "sfdp"
            else:
                layout = "neato"
327

328
329
330
331
        if layout == "arf":
            layout = "neato"
            pos = arf_layout(g, pos=pos)
            pin = True
Tiago Peixoto's avatar
Tiago Peixoto committed
332

333
        if pos is not None:
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
            # copy user-supplied property
            if isinstance(pos, PropertyMap):
                pos = ungroup_vector_property(pos, [0, 1])
            else:
                pos = (g.copy_property(pos[0]), g.copy_property(pos[1]))

        if type(vsize) == tuple:
            s = g.new_vertex_property("double")
            g.copy_property(vsize[0], s)
            s.a *= vsize[1]
            vsize = s

        if type(penwidth) == tuple:
            s = g.new_edge_property("double")
            g.copy_property(penwidth[0], s)
            s.a *= penwidth[1]
            penwidth = s

        # main graph properties
        aset(gvg, "outputorder", "edgesfirst")
        aset(gvg, "mode", "major")
355
356
        if type(overlap) is bool:
            overlap = "true" if overlap else "false"
357
        else:
358
359
360
            overlap = str(overlap)
        aset(gvg, "overlap", overlap)
        if sep is not None:
361
362
363
364
365
366
            aset(gvg, "sep", sep)
        if splines:
            aset(gvg, "splines", "true")
        aset(gvg, "ratio", ratio)
        # size is in centimeters... convert to inches
        aset(gvg, "size", "%f,%f" % (size[0] / 2.54, size[1] / 2.54))
367
        if maxiter is not None:
368
369
370
371
372
373
374
375
376
377
378
379
380
            aset(gvg, "maxiter", maxiter)

        seed = numpy.random.randint(sys.maxint)
        aset(gvg, "start", "%d" % seed)

        # apply all user supplied graph properties
        for k, val in gprops.iteritems():
            if isinstance(val, PropertyMap):
                aset(gvg, k, val[g])
            else:
                aset(gvg, k, val)

        # normalize color properties
381
382
        if (isinstance(vcolor, PropertyMap) and
            vcolor.value_type() != "string"):
383
384
385
386
387
388
389
390
391
392
393
394
            minmax = [float("inf"), -float("inf")]
            for v in g.vertices():
                c = vcolor[v]
                minmax[0] = min(c, minmax[0])
                minmax[1] = max(c, minmax[1])
            if minmax[0] == minmax[1]:
                minmax[1] += 1
            if vnorm:
                vnorm = matplotlib.colors.normalize(vmin=minmax[0], vmax=minmax[1])
            else:
                vnorm = lambda x: x

395
396
        if (isinstance(ecolor, PropertyMap) and
            ecolor.value_type() != "string"):
397
398
399
400
401
402
403
404
405
406
407
408
            minmax = [float("inf"), -float("inf")]
            for e in g.edges():
                c = ecolor[e]
                minmax[0] = min(c, minmax[0])
                minmax[1] = max(c, minmax[1])
            if minmax[0] == minmax[1]:
                minmax[1] += 1
            if enorm:
                enorm = matplotlib.colors.normalize(vmin=minmax[0],
                                                    vmax=minmax[1])
            else:
                enorm = lambda x: x
409

410
411
        if vcmap is None:
            vcmap = matplotlib.cm.jet
Tiago Peixoto's avatar
Tiago Peixoto committed
412

413
414
        if ecmap is None:
            ecmap = matplotlib.cm.jet
415

416
        # add nodes
417
        if vorder is not None:
418
            vertices = sorted(g.vertices(), lambda a, b: cmp(vorder[a], vorder[b]))
419
        else:
420
421
422
            vertices = g.vertices()
        for v in vertices:
            n = libgv.agnode(gvg, str(int(v)))
Tiago Peixoto's avatar
Tiago Peixoto committed
423

424
425
            if type(vsize) == PropertyMap:
                vw = vh = vsize[v]
Tiago Peixoto's avatar
Tiago Peixoto committed
426
            else:
427
428
429
430
431
432
                vw = vh = vsize

            aset(n, "shape", "circle")
            aset(n, "width", "%g" % vw)
            aset(n, "height", "%g" % vh)
            aset(n, "style", "filled")
433
            aset(n, "color", "#2e3436")
434
435
436
437
            # apply color
            if isinstance(vcolor, str):
                aset(n, "fillcolor", vcolor)
            else:
438
439
440
441
442
443
                color = vcolor[v]
                if isinstance(color, str):
                    aset(n, "fillcolor", color)
                else:
                    color = tuple([int(c * 255.0) for c in vcmap(vnorm(color))])
                    aset(n, "fillcolor", "#%.2x%.2x%.2x%.2x" % color)
444
445
446
            aset(n, "label", "")

            # user supplied position
447
            if pos is not None:
448
449
450
451
452
453
454
                if isinstance(pin, bool):
                    pin_val = pin
                else:
                    pin_val = pin[v]
                aset(n, "pos", "%f,%f%s" % (pos[0][v], pos[1][v],
                                            "!" if pin_val else ""))
                aset(n, "pin", pin_val)
455
456
457
458
459
460
461
462
463

            # apply all user supplied properties
            for k, val in vprops.iteritems():
                if isinstance(val, PropertyMap):
                    aset(n, k, val[v])
                else:
                    aset(n, k, val)

        # add edges
464
        if eorder is not None:
465
            edges = sorted(g.edges(), lambda a, b: cmp(eorder[a], eorder[b]))
466
        else:
467
468
469
470
471
472
473
474
475
476
477
478
            edges = g.edges()
        for e in edges:
            ge = libgv.agedge(gvg,
                              libgv.agnode(gvg, str(int(e.source()))),
                              libgv.agnode(gvg, str(int(e.target()))))
            aset(ge, "arrowsize", "0.3")
            if g.is_directed():
                aset(ge, "arrowhead", "vee")

            # apply color
            if isinstance(ecolor, str):
                aset(ge, "color", ecolor)
Tiago Peixoto's avatar
Tiago Peixoto committed
479
            else:
480
481
482
483
484
485
                color = ecolor[e]
                if isinstance(color, str):
                    aset(ge, "color", color)
                else:
                    color = tuple([int(c * 255.0) for c in ecmap(enorm(color))])
                    aset(ge, "color", "#%.2x%.2x%.2x%.2x" % color)
486
487

            # apply edge length
488
            if elen is not None:
489
490
491
492
493
494
                if isinstance(elen, PropertyMap):
                    aset(ge, "len", elen[e])
                else:
                    aset(ge, "len", elen)

            # apply width
495
            if penwidth is not None:
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
                if isinstance(penwidth, PropertyMap):
                    aset(ge, "penwidth", penwidth[e])
                else:
                    aset(ge, "penwidth", penwidth)

            # apply all user supplied properties
            for k, v in eprops.iteritems():
                if isinstance(v, PropertyMap):
                    aset(ge, k, v[e])
                else:
                    aset(ge, k, v)

        libgv.gvLayout(gvc, gvg, layout)
        has_layout = True
        retv = libgv.gvRender(gvc, gvg, "dot", None)  # retrieve positions only

        if pos == None:
            pos = (g.new_vertex_property("double"),
                   g.new_vertex_property("double"))
        for v in g.vertices():
            n = libgv.agnode(gvg, str(int(v)))
            p = aget(n, "pos")
            p = p.split(",")
            pos[0][v] = float(p[0])
            pos[1][v] = float(p[1])

        # I don't get this, but it seems necessary
        pos[0].a /= 100
        pos[1].a /= 100

        pos = group_vector_property(pos)

        if return_string:
            if output_format == "auto":
                output_format = "png"
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
            if hasattr(libc, "open_memstream"):
                buf = ctypes.c_char_p()
                buf_len = ctypes.c_size_t()
                fstream = libc.open_memstream(ctypes.byref(buf),
                                              ctypes.byref(buf_len))
                libgv.gvRender(gvc, gvg, output_format, fstream)
                libc.fclose(fstream)
                data = copy.copy(ctypes.string_at(buf, buf_len.value))
                libc.free(buf)
            else:
                # write to temporary file, if open_memstream is not available
                output = tempfile.mkstemp()[1]
                libgv.gvRenderFilename(gvc, gvg, output_format, output)
                data = open(output).read()
                os.remove(output)
546
547
548
549
        else:
            if output_format == "auto":
                if output == "":
                    output_format = "xlib"
550
                elif output is not None:
551
552
553
554
555
556
557
558
559
560
561
                    output_format = output.split(".")[-1]

            # if using xlib we need to fork the process, otherwise good ol'
            # graphviz will call exit() when the window is closed
            if output_format == "xlib" or fork:
                pid = os.fork()
                if pid == 0:
                    libgv.gvRenderFilename(gvc, gvg, output_format, output)
                    os._exit(0)  # since we forked, it's good to be sure
                if output_format != "xlib":
                    os.wait()
562
            elif output is not None:
563
                libgv.gvRenderFilename(gvc, gvg, output_format, output)
Tiago Peixoto's avatar
Tiago Peixoto committed
564

565
566
567
        ret = [pos]
        if return_string:
            ret.append(data)
Tiago Peixoto's avatar
Tiago Peixoto committed
568

569
570
571
572
    finally:
        if has_layout:
            libgv.gvFreeLayout(gvc, gvg)
        libgv.agclose(gvg)
573
574
575
576
577

    if len(ret) > 1:
        return tuple(ret)
    else:
        return ret[0]
578

Tiago Peixoto's avatar
Tiago Peixoto committed
579

580
def random_layout(g, shape=None, pos=None, dim=2):
581
582
583
584
    r"""Performs a random layout of the graph.

    Parameters
    ----------
585
    g : :class:`~graph_tool.Graph`
586
        Graph to be used.
587
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
588
589
590
591
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
592
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
593
        Vector vertex property maps where the coordinates should be stored.
594
    dim : int (optional, default: ``2``)
595
596
597
598
        Number of coordinates per vertex.

    Returns
    -------
599
600
601
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
602
603
604
605

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
606
607
608
609
610
611
612
613
614
615
616

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
    array([ 86.59969709,   1.31435598,   0.64651486])

617
618
    """

619
    if pos == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
620
621
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
622

Tiago Peixoto's avatar
Tiago Peixoto committed
623
    pos = ungroup_vector_property(pos, range(0, dim))
624
625

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
626
        shape = [sqrt(g.num_vertices())] * dim
627
628

    for i in xrange(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
629
630
631
632
633
634
635
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
636
637
638
639

        # deal with filtering
        p = pos[i].ma
        p[:] = numpy.random.random(len(p)) * d + r[0]
640

Tiago Peixoto's avatar
Tiago Peixoto committed
641
    pos = group_vector_property(pos)
642
643
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
644

645
646
647
648
649
650
651
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
652
    g : :class:`~graph_tool.Graph`
653
        Graph to be used.
654
    weight : :class:`PropertyMap` (optional, default: ``None``)
655
656
657
658
659
660
661
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
662
663
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
664
        will be a square.
665
666
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
667
        the same site on a grid. Otherwise they will act on all vertex pairs.
668
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
669
670
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
671
    n_iter : int (optional, default: ``100``)
672
        Total number of iterations.
673
    pos : :class:`PropertyMap` (optional, default: ``None``)
674
675
676
677
678
679
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
680
681
682
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
683
684
685
686

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
687
688
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
689
690
691
692
693
694
695

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
696
    >>> gt.graph_draw(g, pos=pos, pin=True, output="graph-draw-fr.pdf")
697
698
    <...>

699
    .. figure:: graph-draw-fr.*
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
       "Graph Drawing by Force-Directed Placement". Software – Practice & Experience
       (Wiley) 21 (11): 1129–1164. (1991) :doi:`10.1002/spe.4380211102`
    """

    if pos == None:
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
735
               max_iter=1000, pos=None, dim=2):
736
737
738
739
    r"""Calculate the ARF spring-block layout of the graph.

    Parameters
    ----------
740
    g : :class:`~graph_tool.Graph`
741
        Graph to be used.
742
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
743
        An edge property map with the respective weights.
744
    d : float (optional, default: ``0.5``)
745
        Opposing force between vertices.
746
    a : float (optional, default: ``10``)
747
        Attracting force between adjacent vertices.
748
    dt : float (optional, default: ``0.001``)
749
        Iteration step size.
750
    epsilon : float (optional, default: ``1e-6``)
751
        Convergence criterion.
752
753
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
754
        convergence.
755
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
756
        Vector vertex property maps where the coordinates should be stored.
757
    dim : int (optional, default: ``2``)
758
759
760
761
        Number of coordinates per vertex.

    Returns
    -------
762
763
764
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
765
766
767

    Notes
    -----
768
    This algorithm is defined in [geipel-self-organization-2007]_, and has
769
770
771
772
773
774
    complexity :math:`O(V^2)`.

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
775
776
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
777
    >>> gt.graph_draw(g, pos=pos, pin=True, output="graph-draw-arf.pdf")
778
779
    <...>

780
    .. figure:: graph-draw-arf.*
781
782
        :align: center

783
        ARF layout of a Price network.
784
785
786

    References
    ----------
787
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
788
789
790
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
791
792
793
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

794
    if pos is None:
795
796
797
798
        if dim != 2:
            pos = random_layout(g, dim=dim)
        else:
            pos = graph_draw(g, output=None)
799
800
    _check_prop_vector(pos, name="pos", floating=True)

801
802
803
804
    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
805
    return pos