__init__.py 32.5 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4 5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.topology`` - Important functions for assessing graph topology
--------------------------------------------------------------------------
24 25 26 27 28 29 30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
33
   isomorphism
34 35
   subgraph_isomorphism
   mark_subgraph
36 37 38 39 40 41
   min_spanning_tree
   dominator_tree
   topological_sort
   transitive_closure
   label_components
   label_biconnected_components
42
   is_planar
43 44 45

Contents
++++++++
46

47 48
"""

Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. dl_import import dl_import
50
dl_import("import libgraph_tool_topology")
51

52
from .. import _prop, Vector_int32_t, _check_prop_writable, \
53 54 55 56 57
     _check_prop_scalar,  _check_prop_vector, Graph, PropertyMap
import random, sys, numpy, weakref
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
           "min_spanning_tree", "dominator_tree", "topological_sort",
           "transitive_closure", "label_components",
58 59
           "label_biconnected_components", "shortest_distance",
           "shortest_path", "is_planar"]
60

Tiago Peixoto's avatar
Tiago Peixoto committed
61

62
def isomorphism(g1, g2, isomap=False):
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

81
    """
82 83
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
84
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
85
                             _prop("v", g1, imap))
86 87 88 89 90
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
91

92
def subgraph_isomorphism(sub, g, max_n=0, random=True):
93
    r"""
94 95
    Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n`
    subgraphs, if `max_n > 0`).
96

97 98 99
    If `random` = True, the vertices of `g` are indexed in random order before
    the search.

100 101 102 103 104 105 106 107 108 109 110 111
    It returns two lists, containing the vertex and edge property maps for `sub`
    with the isomorphism mappings. The value of the properties are the
    vertex/edge index of the corresponding vertex/edge in `g`.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (poisson(6),poisson(6)))
    >>> sub = gt.random_graph(10, lambda: (poisson(1.8), poisson(1.9)))
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
    >>> print len(vm)
Tiago Peixoto's avatar
Tiago Peixoto committed
112
    93
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
    >>> for i in xrange(len(vm)):
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a *= 1.5
    >>> ewidth.a += 0.5
    >>> gt.graph_draw(g, vcolor=vmask, ecolor=emask, penwidth=ewidth,
    ...               output="subgraph-iso-embed.png")
    <...>
    >>> gt.graph_draw(sub, output="subgraph-iso.png")
    <...>

    .. image:: subgraph-iso.png
    .. image:: subgraph-iso-embed.png

    *Left:* Subgraph searched, *Right:* One isomorphic subgraph found in main
     graph.

    Notes
    -----
139 140 141 142
    The algorithm used is described in [ullmann-algorithm-1976]. It has
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
143 144 145

    References
    ----------
146
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
Tiago Peixoto's avatar
Tiago Peixoto committed
147
       isomorphism", Journal of the ACM 23 (1): 31–42, 1976, :doi:`10.1145/321921.321925`
148
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
149 150 151 152

    """
    # vertex and edge labels disabled for the time being, until GCC is capable
    # of compiling all the variants using reasonable amounts of memory
Tiago Peixoto's avatar
Tiago Peixoto committed
153 154
    vlabels=(None, None)
    elabels=(None, None)
155 156
    vmaps = []
    emaps = []
157 158 159 160
    if random:
        seed = numpy.random.randint(0, sys.maxint)
    else:
        seed = 42
161 162 163 164 165 166
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
                                _prop("v", sub, vlabels[0]),
                                _prop("v", g, vlabels[1]),
                                _prop("e", sub, elabels[0]),
                                _prop("e", g, elabels[1]),
167
                                vmaps, emaps, max_n, seed)
168 169 170 171 172
    for i in xrange(len(vmaps)):
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
173

174 175 176 177 178 179 180 181 182 183
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
184
    `sub`.
185
    """
186
    if vmask is None:
187
        vmask = g.new_vertex_property("bool")
188
    if emask is None:
189 190 191 192 193 194 195 196 197 198 199 200 201 202
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
203

Tiago Peixoto's avatar
Tiago Peixoto committed
204

205
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
206 207 208 209 210 211 212 213 214 215 216
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: None)
217
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        is used. Otherwise, Kruskal's algorithm is used.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
235
    >>> from numpy.random import seed, random
236
    >>> seed(42)
237 238 239
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
240
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
241
    >>> tree = gt.min_spanning_tree(g, weights=weight)
Tiago Peixoto's avatar
Tiago Peixoto committed
242
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_orig.png")
243 244
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
245
    >>> gt.graph_draw(g, pos=pos, pin=True, output="triang_min_span_tree.png")
246 247 248 249
    <...>


    .. image:: triang_orig.png
Tiago Peixoto's avatar
Tiago Peixoto committed
250 251 252
        :width: 400px
    .. image:: triang_min_span_tree.png
        :width: 400px
253 254

    *Left:* Original graph, *Right:* The minimum spanning tree.
255 256 257 258 259

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
260 261
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
262 263 264 265 266
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
267
    if tree_map is None:
268 269 270 271
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    try:
        g.stash_filter(directed=True)
        g.set_directed(False)
        if root is None:
            libgraph_tool_topology.\
                   get_kruskal_spanning_tree(g._Graph__graph,
                                             _prop("e", g, weights),
                                             _prop("e", g, tree_map))
        else:
            libgraph_tool_topology.\
                   get_prim_spanning_tree(g._Graph__graph, int(root),
                                          _prop("e", g, weights),
                                          _prop("e", g, tree_map))
    finally:
        g.pop_filter(directed=True)
287
    return tree_map
288

Tiago Peixoto's avatar
Tiago Peixoto committed
289

Tiago Peixoto's avatar
Tiago Peixoto committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
322
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
323 324
    >>> dom = gt.dominator_tree(g, root[0])
    >>> print dom.a
Tiago Peixoto's avatar
Tiago Peixoto committed
325 326 327 328
    [ 0  0 72  0  0  0  0  0  0  0  0  0  0  0 21  0  0  0  0  0  0  3  0  0  0
      0  0  0  0  0  0 41  0  0  0  0  0  0  0  0  0 11  0  0  0  0  0  0  0  0
      0  0  0  0  0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0  3  0  0
      0  0  0  0  0  2  0  0  0  0  0  0  0 80  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
329 330 331

    References
    ----------
332
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
333 334

    """
335
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
336 337 338
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
339 340
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
341
        raise ValueError("dominator tree requires a directed graph.")
342
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
343 344 345
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
346

Tiago Peixoto's avatar
Tiago Peixoto committed
347

348
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
    >>> print sort
Tiago Peixoto's avatar
Tiago Peixoto committed
370 371
    [19 27  1  7  0 23  8 16  2 15 24 12  3  4 22  5  6  9 10 11 18 13 21 14 20
     17 25 26 28 29]
Tiago Peixoto's avatar
Tiago Peixoto committed
372 373 374

    References
    ----------
375
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
376 377 378 379
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

380 381 382
    topological_order = Vector_int32_t()
    libgraph_tool_topology.\
               topological_sort(g._Graph__graph, topological_order)
Tiago Peixoto's avatar
Tiago Peixoto committed
383
    return numpy.array(topological_order)
384

Tiago Peixoto's avatar
Tiago Peixoto committed
385

386
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
407
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
408 409 410 411
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

412 413 414 415 416 417 418
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
419

420 421
def label_components(g, vprop=None, directed=None):
    """
422
    Label the components to which each vertex in the graph belongs. If the
423 424 425 426
    graph is directed, it finds the strongly connected components.

    Parameters
    ----------
427
    g : :class:`~graph_tool.Graph`
428 429
        Graph to be used.

430
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
431 432 433 434 435 436 437 438 439
        Vertex property to store the component labels. If none is supplied, one
        is created.

    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
440
    comp : :class:`~graph_tool.PropertyMap`
441 442 443 444 445 446 447
        Vertex property map with component labels.

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

448
    The algorithm runs in :math:`O(V + E)` time.
449 450 451

    Examples
    --------
452 453 454
    >>> from numpy.random import seed
    >>> seed(43)
    >>> g = gt.random_graph(100, lambda: (1, 1))
455 456
    >>> comp = gt.label_components(g)
    >>> print comp.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
457 458 459
    [0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 1 1 0 2 0 1 1 0 0 0 0 1 0
     0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 1 0 0 0 0 0 1 0 0 0
     1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0]
460 461
    """

462
    if vprop is None:
463 464 465 466 467
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

468 469 470 471
    try:
        if directed is not None:
            g.stash_filter(directed=True)
            g.set_directed(directed)
472

473 474 475 476 477
        libgraph_tool_topology.\
              label_components(g._Graph__graph, _prop("v", g, vprop))
    finally:
        if directed is not None:
            g.pop_filter(directed=True)
478 479
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
480

481
def label_biconnected_components(g, eprop=None, vprop=None):
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
    >>> from numpy.random import seed
Tiago Peixoto's avatar
Tiago Peixoto committed
530
    >>> seed(43)
531 532 533
    >>> g = gt.random_graph(100, lambda: 2, directed=False)
    >>> comp, art, nc = gt.label_biconnected_components(g)
    >>> print comp.a
Tiago Peixoto's avatar
Tiago Peixoto committed
534 535 536
    [1 0 0 0 2 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 0 0 0
     1 0 1 3 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0
     0 0 0 0 0 0 0 0 0 0 1 3 1 0 2 1 0 0 0 0 0 2 0 0 0 2]
537 538 539 540 541 542 543 544
    >>> print art.a
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
    >>> print nc
    4

    """
545

546
    if vprop is None:
547
        vprop = g.new_vertex_property("bool")
548
    if eprop is None:
549 550 551 552 553 554 555 556
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

    g.stash_filter(directed=True)
557 558 559 560 561 562 563
    try:
        g.set_directed(False)
        nc = libgraph_tool_topology.\
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
    finally:
        g.pop_filter(directed=True)
564
    return eprop, vprop, nc
565

Tiago Peixoto's avatar
Tiago Peixoto committed
566

567
def shortest_distance(g, source=None, weights=None, max_dist=None,
568 569
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
570 571 572 573 574 575 576 577 578
    """
    Calculate the distance of all vertices from a given source, or the all pairs
    shortest paths, if the source is not specified.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
579
        Source vertex of the search. If unspecified, the all pairs shortest
580 581 582 583 584 585
        distances are computed.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
586
        are searched. This parameter has no effect if source is None.
587 588 589 590
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
591 592
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
593 594 595 596
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
597 598 599
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
    >>> print dist.get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    [         0          3          5          4 2147483647          1
              6          3          4          4          5          4
              4          4          4          4          1          3
              3          1          5          3 2147483647          4
              2          5          5 2147483647          5          5
              4          3          3          2          4          4
              4          4          5          5 2147483647 2147483647
              4          4          3          5          3          4
     2147483647          3          2          4          5          5
              3          3          3          5          4 2147483647
              3          4          5          4          2 2147483647
              4          3          2          4          2 2147483647
              3          3          4          3          4          5
              2          3          6          4          4 2147483647
              6          4          5          1          4          5
              3          4          4          2          4          6
              3          4          2          4]
644 645
    >>> dist = gt.shortest_distance(g)
    >>> print array(dist[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
    [         0          3          5          4 2147483647          1
              6          3          4          4          5          4
              4          4          4          4          1          3
              3          1          5          3 2147483647          4
              2          5          5 2147483647          5          5
              4          3          3          2          4          4
              4          4          5          5 2147483647 2147483647
              4          4          3          5          3          4
     2147483647          3          2          4          5          5
              3          3          3          5          4 2147483647
              3          4          5          4          2 2147483647
              4          3          2          4          2 2147483647
              3          3          4          3          4          5
              2          3          6          4          4 2147483647
              6          4          5          1          4          5
              3          4          4          2          4          6
              3          4          2          4]
663 664 665 666 667

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
668 669
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
670 671
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
672
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
673 674 675 676
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

677
    if weights is None:
678 679 680 681
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

682 683
    if dist_map is None:
        if source is not None:
684 685 686 687 688
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
689
    if source is not None:
690 691 692 693
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

694
    if max_dist is None:
695 696
        max_dist = 0

697
    if directed is not None:
698 699 700 701
        g.stash_filter(directed=True)
        g.set_directed(directed)

    try:
702
        if source is not None:
703
            pmap = g.copy_property(g.vertex_index, value_type="int64_t")
704 705 706
            libgraph_tool_topology.get_dists(g._Graph__graph, int(source),
                                             _prop("v", g, dist_map),
                                             _prop("e", g, weights),
707
                                             _prop("v", g, pmap),
708 709 710 711 712 713 714
                                             float(max_dist))
        else:
            libgraph_tool_topology.get_all_dists(g._Graph__graph,
                                                 _prop("v", g, dist_map),
                                                 _prop("e", g, weights), dense)

    finally:
715
        if directed is not None:
716
            g.pop_filter(directed=True)
717
    if source is not None and pred_map:
718 719 720 721
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
722

723 724 725 726 727 728 729 730 731 732
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
733
    target : :class:`~graph_tool.Vertex`
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
    >>> from numpy.random import seed, poisson
    >>> seed(42)
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
    >>> print [str(v) for v in vlist]
Tiago Peixoto's avatar
Tiago Peixoto committed
766
    ['10', '66', '46', '266', '101', '143', '91', '275', '82', '11']
767
    >>> print [str(e) for e in elist]
Tiago Peixoto's avatar
Tiago Peixoto committed
768
    ['(10,66)', '(66,46)', '(46,266)', '(266,101)', '(101,143)', '(143,91)', '(91,275)', '(275,82)', '(82,11)']
769 770 771 772 773

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
774 775
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
776 777
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
778
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
779 780
    """

781
    if pred_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
782 783
        pred_map = shortest_distance(g, source, weights=weights,
                                     pred_map=True)[1]
784

Tiago Peixoto's avatar
Tiago Peixoto committed
785
    if pred_map[target] == int(target):  # no path to source
786 787 788 789 790
        return [], []

    vlist = [target]
    elist = []

791
    if weights is not None:
792 793 794 795 796 797 798 799 800 801 802 803 804
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
805
                if weights is not None:
806 807 808 809 810 811 812 813 814 815 816
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

def is_planar(g, embedding=False, kuratowski=False):
    """
    Test if the graph is planar.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    embedding : bool (optional, default: False)
        If true, return a mapping from vertices to the clockwise order of
        out-edges in the planar embedding.
    kuratowski : bool (optional, default: False)
        If true, the minimal set of edges that form the obstructing Kuratowski
        subgraph will be returned as a property map, if the graph is not planar.

    Returns
    -------
    is_planar : bool
        Whether or not the graph is planar.
    embedding : :class:`~graph_tool.PropertyMap` (only if `embedding=True`)
        A vertex property map with the out-edges indexes in clockwise order in
        the planar embedding,
    kuratowski : :class:`~graph_tool.PropertyMap` (only if `kuratowski=True`)
        An edge property map with the minimal set of edges that form the
        obstructing Kuratowski subgraph (if the value of kuratowski[e] is 1,
        the edge belongs to the set)

    Notes
    -----

    A graph is planar if it can be drawn in two-dimensional space without any of
    its edges crossing. This algorithm performs the Boyer-Myrvold planarity
    testing [boyer-myrvold]_. See [boost-planarity]_ for more details.

    This algorithm runs in :math:`O(V)` time.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.triangulation(random((100,2)))[0]
    >>> p, embed_order = gt.is_planar(g, embedding=True)
    >>> print p
    True
    >>> print list(embed_order[g.vertex(0)])
Tiago Peixoto's avatar
Tiago Peixoto committed
863
    [0, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
864 865 866 867 868
    >>> g = gt.random_graph(100, lambda: 4, directed=False)
    >>> p, kur = gt.is_planar(g, kuratowski=True)
    >>> print p
    False
    >>> g.set_edge_filter(kur, True)
869
    >>> gt.graph_draw(g, output="kuratowski.png")
870 871 872 873 874 875 876 877 878 879
    <...>

    .. figure:: kuratowski.png
        :align: center

        Obstructing Kuratowski subgraph of a random graph.

    References
    ----------
    .. [boyer-myrvold] John M. Boyer and Wendy J. Myrvold, "On the Cutting Edge:
Tiago Peixoto's avatar
Tiago Peixoto committed
880 881
       Simplified O(n) Planarity by Edge Addition" Journal of Graph Algorithms
       and Applications, 8(2): 241-273, 2004. http://www.emis.ams.org/journals/JGAA/accepted/2004/BoyerMyrvold2004.8.3.pdf
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
    .. [boost-planarity] http://www.boost.org/libs/graph/doc/boyer_myrvold.html
    """

    g.stash_filter(directed=True)
    g.set_directed(False)

    if embedding:
        embed = g.new_vertex_property("vector<int>")
    else:
        embed = None

    if kuratowski:
        kur = g.new_edge_property("bool")
    else:
        kur = None

    try:
        is_planar = libgraph_tool_topology.is_planar(g._Graph__graph,
                                                     _prop("v", g, embed),
                                                     _prop("e", g, kur))
    finally:
        g.pop_filter(directed=True)

    ret = [is_planar]
906
    if embed is not None:
907
        ret.append(embed)
908
    if kur is not None:
909 910 911 912 913
        ret.append(kur)
    if len(ret) == 1:
        return ret[0]
    else:
        return tuple(ret)