__init__.py 40.4 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4 5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2020 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24 25

This module includes centrality-related algorithms.
26 27 28 29 30 31 32 33 34 35

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
Tiago Peixoto's avatar
Tiago Peixoto committed
36
   closeness
37
   eigenvector
Tiago Peixoto's avatar
Tiago Peixoto committed
38
   katz
39
   hits
40
   eigentrust
41
   trust_transitivity
42 43 44

Contents
++++++++
45 46
"""

47 48
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. dl_import import dl_import
50
dl_import("from . import libgraph_tool_centrality")
Tiago Peixoto's avatar
Tiago Peixoto committed
51

52
from .. import _prop, ungroup_vector_property, Vector_size_t
53
from .. topology import shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
54 55
import sys
import numpy
56
import numpy.linalg
Tiago Peixoto's avatar
Tiago Peixoto committed
57

Tiago Peixoto's avatar
Tiago Peixoto committed
58 59
__all__ = ["pagerank", "betweenness", "central_point_dominance", "closeness",
           "eigentrust", "eigenvector", "katz", "hits", "trust_transitivity"]
Tiago Peixoto's avatar
Tiago Peixoto committed
60

Tiago Peixoto's avatar
Tiago Peixoto committed
61

62 63
def pagerank(g, damping=0.85, pers=None, weight=None, prop=None, epsilon=1e-6,
             max_iter=None, ret_iter=False):
64
    r"""Calculate the PageRank of each vertex.
65 66 67

    Parameters
    ----------
68
    g : :class:`~graph_tool.Graph`
69
        Graph to be used.
70
    damping : float, optional (default: 0.85)
71
        Damping factor.
72
    pers : :class:`~graph_tool.VertexPropertyMap`, optional (default: None)
73 74
        Personalization vector. If omitted, a constant value of :math:`1/N`
        will be used.
75
    weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
76
        Edge weights. If omitted, a constant value of 1 will be used.
77
    prop : :class:`~graph_tool.VertexPropertyMap`, optional (default: None)
78 79
        Vertex property map to store the PageRank values. If supplied, it will
        be used uninitialized.
Tiago Peixoto's avatar
Tiago Peixoto committed
80
    epsilon : float, optional (default: 1e-6)
81 82 83 84 85 86 87 88 89
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
90
    pagerank : :class:`~graph_tool.VertexPropertyMap`
91
        A vertex property map containing the PageRank values.
92 93 94 95 96

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
97
    eigenvector: eigenvector centrality
98
    hits: authority and hub centralities
99
    trust_transitivity: pervasive trust transitivity
100 101 102

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
103 104
    The value of PageRank [pagerank-wikipedia]_ of vertex v, :math:`PR(v)`, is
    given iteratively by the relation:
105 106

    .. math::
107

108 109
        PR(v) = \frac{1-d}{N} + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}
110

111 112
    where :math:`\Gamma^{-}(v)` are the in-neighbors of v, :math:`d^{+}(u)` is
    the out-degree of u, and d is a damping factor.
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    If a personalization property :math:`p(v)` is given, the definition becomes:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}

    If edge weights are also given, the equation is then generalized to:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u) w_{u\to v}}{d^{+}(u)}

    where :math:`d^{+}(u)=\sum_{y}A_{u,y}w_{u\to y}` is redefined to be the sum
    of the weights of the out-going edges from u.

131 132 133 134
    If a node has out-degree zero, it is assumed to connect to every other node
    with a weight proportional to :math:`p(v)` or a constant if no
    personalization is given.

135
    The implemented algorithm progressively iterates the above equations, until
Tiago Peixoto's avatar
Tiago Peixoto committed
136
    it no longer changes, according to the parameter epsilon. It has a
137 138 139 140 141 142
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
143

Tiago Peixoto's avatar
Tiago Peixoto committed
144 145 146 147
    .. testsetup:: pagerank

       import matplotlib

148 149 150 151 152 153 154
    .. doctest:: pagerank

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> pr = gt.pagerank(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
       ...               vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
155 156
       ...               vorder=pr, vcmap=matplotlib.cm.gist_heat,
       ...               output="polblogs_pr.pdf")
157 158
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
159
    .. figure:: polblogs_pr.png
160
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
161
       :width: 80%
162 163

       PageRank values of the a political blogs network of [adamic-polblogs]_.
164 165 166

    Now with a personalization vector, and edge weights:

167 168 169 170 171 172 173 174 175
    .. doctest:: pagerank

       >>> d = g.degree_property_map("total")
       >>> periphery = d.a <= 2
       >>> p = g.new_vertex_property("double")
       >>> p.a[periphery] = 100
       >>> pr = gt.pagerank(g, pers=p)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
       ...               vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
176 177
       ...               vorder=pr, vcmap=matplotlib.cm.gist_heat,
       ...               output="polblogs_pr_pers.pdf")
178 179
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
180
    .. testcleanup:: pagerank
181

Tiago Peixoto's avatar
Tiago Peixoto committed
182 183
       conv_png("polblogs_pr.pdf")
       conv_png("polblogs_pr_pers.pdf")
184 185


Tiago Peixoto's avatar
Tiago Peixoto committed
186
    .. figure:: polblogs_pr_pers.png
187
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
188
       :width: 80%
189 190 191 192

       Personalized PageRank values of the a political blogs network of
       [adamic-polblogs]_, where vertices with very low degree are given
       artificially high scores.
193 194 195

    References
    ----------
196 197
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
198
       "The pagerank citation ranking: Bringing order to the web", Technical
199
       report, Stanford University, 1998
200 201 202
    .. [Langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
203 204 205
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
206 207
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
208
    if max_iter is None:
209
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
210
    if prop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
211
        prop = g.new_vertex_property("double")
212 213
        N = len(prop.fa)
        prop.fa = pers.fa[:N] if pers is not None else 1. / g.num_vertices()
Tiago Peixoto's avatar
Tiago Peixoto committed
214
    ic = libgraph_tool_centrality.\
215 216 217
            get_pagerank(g._Graph__graph, _prop("v", g, prop),
                         _prop("v", g, pers), _prop("e", g, weight),
                         damping, epsilon, max_iter)
Tiago Peixoto's avatar
Tiago Peixoto committed
218 219 220 221 222
    if ret_iter:
        return prop, ic
    else:
        return prop

Tiago Peixoto's avatar
Tiago Peixoto committed
223

224 225
def betweenness(g, pivots=None, vprop=None, eprop=None, weight=None, norm=True):
    r"""Calculate the betweenness centrality for each vertex and edge.
226 227 228

    Parameters
    ----------
229
    g : :class:`~graph_tool.Graph`
230
        Graph to be used.
231 232 233 234 235
    pivots : list or :class:`~numpy.ndarray`, optional (default: None)
        If provided, the betweenness will be estimated using the vertices in
        this list as pivots. If the list contains all nodes (the default) the
        algorithm will be exact, and if the vertices are randomly chosen the
        result will be an unbiased estimator.
236
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: None)
237
        Vertex property map to store the vertex betweenness values.
238
    eprop : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
239
        Edge property map to store the edge betweenness values.
240
    weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
241 242 243 244 245 246
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
Tiago Peixoto's avatar
Tiago Peixoto committed
247 248
    vertex_betweenness : A vertex property map with the vertex betweenness values.
    edge_betweenness : An edge property map with the edge betweenness values.
249 250 251 252 253 254

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
255
    eigenvector: eigenvector centrality
256
    hits: authority and hub centralities
257
    trust_transitivity: pervasive trust transitivity
258 259 260 261 262

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

263 264
    .. math::

265 266 267
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

268 269 270 271 272
    where :math:`\sigma_{st}` is the number of shortest paths from s to t, and
    :math:`\sigma_{st}(v)` is the number of shortest paths from s to t that pass
    through a vertex :math:`v`. This may be normalised by dividing through the
    number of pairs of vertices not including v, which is :math:`(n-1)(n-2)/2`,
    for undirected graphs, or :math:`(n-1)(n-2)` for directed ones.
273

274
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
275 276 277 278 279 280
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE +
    V(V+E)\log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If the ``pivots`` parameter is given, the complexity will be instead
    :math:`O(PE)` for unweighted graphs and :math:`O(PE + P(V+E)\log V)` for
    weighted graphs, where :math:`P` is the number of pivot vertices.
281 282 283 284 285

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
286

Tiago Peixoto's avatar
Tiago Peixoto committed
287 288 289 290
    .. testsetup:: betweenness

       import matplotlib

291 292 293 294 295 296 297 298
    .. doctest:: betweenness

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> vp, ep = gt.betweenness(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=vp,
       ...               vertex_size=gt.prop_to_size(vp, mi=5, ma=15),
       ...               edge_pen_width=gt.prop_to_size(ep, mi=0.5, ma=5),
Tiago Peixoto's avatar
Tiago Peixoto committed
299
       ...               vcmap=matplotlib.cm.gist_heat,
300 301 302
       ...               vorder=vp, output="polblogs_betweenness.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
303
    .. testcleanup:: betweenness
304

Tiago Peixoto's avatar
Tiago Peixoto committed
305
       conv_png("polblogs_betweenness.pdf")
306

Tiago Peixoto's avatar
Tiago Peixoto committed
307
    .. figure:: polblogs_betweenness.png
308
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
309
       :width: 80%
310 311

       Betweenness values of the a political blogs network of [adamic-polblogs]_.
312 313 314

    References
    ----------
315 316
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
Tiago Peixoto's avatar
Tiago Peixoto committed
317
       centrality", Journal of Mathematical Sociology, 2001, :doi:`10.1080/0022250X.2001.9990249`
318 319 320
    .. [brandes-centrality-2007] U. Brandes, C. Pich, "Centrality estimation in
       large networks", Int. J. Bifurcation Chaos 17, 2303 (2007).
       :DOI:`10.1142/S0218127407018403`
321 322 323
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
324

325
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
326
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
327
        vprop = g.new_vertex_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
328
    if eprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
329
        eprop = g.new_edge_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
330
    if weight is not None and weight.value_type() != eprop.value_type():
Tiago Peixoto's avatar
Tiago Peixoto committed
331 332 333
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
334 335 336 337 338 339
    if pivots is not None:
        pivots = numpy.asarray(pivots, dtype="uint64")
    else:
        pivots = g.get_vertices()
    vpivots = Vector_size_t(len(pivots))
    vpivots.a = pivots
Tiago Peixoto's avatar
Tiago Peixoto committed
340
    libgraph_tool_centrality.\
341
            get_betweenness(g._Graph__graph, vpivots, _prop("e", g, weight),
342 343 344 345 346
                            _prop("e", g, eprop), _prop("v", g, vprop))
    if norm:
        libgraph_tool_centrality.\
            norm_betweenness(g._Graph__graph, vpivots, _prop("e", g, eprop),
                             _prop("v", g, vprop))
Tiago Peixoto's avatar
Tiago Peixoto committed
347 348
    return vprop, eprop

Tiago Peixoto's avatar
Tiago Peixoto committed
349 350 351 352 353 354 355 356
def closeness(g, weight=None, source=None, vprop=None, norm=True, harmonic=False):
    r"""
    Calculate the closeness centrality for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
357
    weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
358 359 360
        Edge property map corresponding to the weight value of each edge.
    source : :class:`~graph_tool.Vertex`, optional (default: ``None``)
        If specified, the centrality is computed for this vertex alone.
361
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
362 363 364 365 366 367 368 369 370
        Vertex property map to store the vertex centrality values.
    norm : bool, optional (default: ``True``)
        Whether or not the centrality values should be normalized.
    harmonic : bool, optional (default: ``False``)
        If true, the sum of the inverse of the distances will be computed,
        instead of the inverse of the sum.

    Returns
    -------
371
    vertex_closeness : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
372 373 374 375 376 377 378 379
        A vertex property map with the vertex closeness values.

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
    eigenvector: eigenvector centrality
380
    hits: authority and hub centralities
Tiago Peixoto's avatar
Tiago Peixoto committed
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    trust_transitivity: pervasive trust transitivity

    Notes
    -----
    The closeness centrality of a vertex :math:`i` is defined as,

    .. math::

        c_i = \frac{1}{\sum_j d_{ij}}

    where :math:`d_{ij}` is the (possibly directed and/or weighted) distance
    from :math:`i` to :math:`j`. In case there is no path between the two
    vertices, here the distance is taken to be zero.

    If ``harmonic == True``, the definition becomes

    .. math::

        c_i = \sum_j\frac{1}{d_{ij}},

    but now, in case there is no path between the two vertices, we take
    :math:`d_{ij} \to\infty` such that :math:`1/d_{ij}=0`.

    If ``norm == True``, the values of :math:`c_i` are normalized by
    :math:`n_i-1` where :math:`n_i` is the size of the (out-) component of
    :math:`i`. If ``harmonic == True``, they are instead simply normalized by
407
    :math:`V-1`.
Tiago Peixoto's avatar
Tiago Peixoto committed
408

409
    The algorithm complexity of :math:`O(V(V + E))` for unweighted graphs and
Tiago Peixoto's avatar
Tiago Peixoto committed
410
    :math:`O(V(V+E) \log V)` for weighted graphs. If the option ``source`` is
411
    specified, this drops to :math:`O(V + E)` and :math:`O((V+E)\log V)`
Tiago Peixoto's avatar
Tiago Peixoto committed
412 413 414 415 416 417 418
    respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------

Tiago Peixoto's avatar
Tiago Peixoto committed
419 420 421 422
    .. testsetup:: closeness

       import matplotlib

Tiago Peixoto's avatar
Tiago Peixoto committed
423 424 425 426 427 428 429
    .. doctest:: closeness

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> c = gt.closeness(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=c,
       ...               vertex_size=gt.prop_to_size(c, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
430
       ...               vcmap=matplotlib.cm.gist_heat,
Tiago Peixoto's avatar
Tiago Peixoto committed
431 432 433
       ...               vorder=c, output="polblogs_closeness.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
434
    .. testcleanup:: closeness
Tiago Peixoto's avatar
Tiago Peixoto committed
435

Tiago Peixoto's avatar
Tiago Peixoto committed
436
       conv_png("polblogs_closeness.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
437

Tiago Peixoto's avatar
Tiago Peixoto committed
438
    .. figure:: polblogs_closeness.png
Tiago Peixoto's avatar
Tiago Peixoto committed
439
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
440
       :width: 80%
Tiago Peixoto's avatar
Tiago Peixoto committed
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

       Closeness values of the a political blogs network of [adamic-polblogs]_.

    References
    ----------
    .. [closeness-wikipedia] https://en.wikipedia.org/wiki/Closeness_centrality
    .. [opsahl-node-2010] Opsahl, T., Agneessens, F., Skvoretz, J., "Node
       centrality in weighted networks: Generalizing degree and shortest
       paths". Social Networks 32, 245-251, 2010 :DOI:`10.1016/j.socnet.2010.03.006`
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`

    """
    if source is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
456
        if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
457 458 459 460 461 462 463
            vprop = g.new_vertex_property("double")
        libgraph_tool_centrality.\
            closeness(g._Graph__graph, _prop("e", g, weight),
                      _prop("v", g, vprop), harmonic, norm)
        return vprop
    else:
        max_dist = g.num_vertices() + 1
464
        dist = shortest_distance(g, source=source, weights=weight,
Tiago Peixoto's avatar
Tiago Peixoto committed
465
                                 max_dist=max_dist)
466
        dists = dist.fa[(dist.fa < max_dist) * (dist.fa > 0)]
Tiago Peixoto's avatar
Tiago Peixoto committed
467 468 469 470 471 472 473
        if harmonic:
            c = (1. / dists).sum()
            if norm:
                c /= g.num_vertices() - 1
        else:
            c = 1. / dists.sum()
            if norm:
474 475
                c *= len(dists)
        return c
Tiago Peixoto's avatar
Tiago Peixoto committed
476

Tiago Peixoto's avatar
Tiago Peixoto committed
477

Tiago Peixoto's avatar
Tiago Peixoto committed
478
def central_point_dominance(g, betweenness):
479
    r"""Calculate the central point dominance of the graph, given the betweenness
480 481 482 483
    centrality of each vertex.

    Parameters
    ----------
484
    g : :class:`~graph_tool.Graph`
485
        Graph to be used.
486
    betweenness : :class:`~graph_tool.VertexPropertyMap`
487 488 489 490 491
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
492 493
    cp : float
        The central point dominance.
494 495 496 497 498 499 500 501

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
502
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
503 504
    as:

505 506
    .. math::

507 508 509 510 511 512 513 514 515
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
516 517 518 519 520

    >>> g = gt.collection.data["polblogs"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> vp, ep = gt.betweenness(g)
    >>> print(gt.central_point_dominance(g, vp))
Tiago Peixoto's avatar
Tiago Peixoto committed
521
    0.116106...
522 523 524

    References
    ----------
525
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
526 527
       Based on Betweenness", Sociometry, Vol. 40, No. 1, pp. 35-41, 1977,
       :doi:`10.2307/3033543`
528 529
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
530
    return libgraph_tool_centrality.\
531
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
532 533
                                       _prop("v", g, betweenness))

534

535 536 537 538 539 540 541 542 543
def eigenvector(g, weight=None, vprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the eigenvector centrality of each vertex in the graph, as well as
    the largest eigenvalue.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
544
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
545
        Edge property map with the edge weights.
546
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
547 548
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
549 550 551 552 553 554 555 556 557 558
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eigenvalue : float
        The largest eigenvalue of the (weighted) adjacency matrix.
559
    eigenvector : :class:`~graph_tool.VertexPropertyMap`
560 561 562 563 564 565
        A vertex property map containing the eigenvector values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
566
    hits: authority and hub centralities
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The eigenvector centrality :math:`\mathbf{x}` is the eigenvector of the
    (weighted) adjacency matrix with the largest eigenvalue :math:`\lambda`,
    i.e. it is the solution of

    .. math::

        \mathbf{A}\mathbf{x} = \lambda\mathbf{x},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda` is the largest eigenvalue.

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) adjacency matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
594

595 596 597
    .. testsetup:: eigenvector

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
598
       import matplotlib
599 600 601 602 603 604 605 606 607 608

    .. doctest:: eigenvector

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a)) * 42
       >>> ee, x = gt.eigenvector(g, w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
609
       ...               vcmap=matplotlib.cm.gist_heat,
610 611 612
       ...               vorder=x, output="polblogs_eigenvector.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
613
    .. testcleanup:: eigenvector
614

Tiago Peixoto's avatar
Tiago Peixoto committed
615
       conv_png("polblogs_eigenvector.pdf")
616

Tiago Peixoto's avatar
Tiago Peixoto committed
617
    .. figure:: polblogs_eigenvector.png
618
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
619
       :width: 80%
620 621 622

       Eigenvector values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.
623 624 625 626 627 628 629 630 631

    References
    ----------

    .. [eigenvector-centrality] http://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
    .. [langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
632 633 634
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
635 636 637

    """

638
    if vprop is None:
639
        vprop = g.new_vertex_property("double")
640
        vprop.fa = 1. / g.num_vertices()
641 642 643 644 645 646 647 648
    if max_iter is None:
        max_iter = 0
    ee = libgraph_tool_centrality.\
         get_eigenvector(g._Graph__graph, _prop("e", g, weight),
                         _prop("v", g, vprop), epsilon, max_iter)
    return ee, vprop


649 650
def katz(g, alpha=0.01, beta=None, weight=None, vprop=None, epsilon=1e-6,
         max_iter=None, norm=True):
Tiago Peixoto's avatar
Tiago Peixoto committed
651
    r"""
Tiago Peixoto's avatar
Tiago Peixoto committed
652
    Calculate the Katz centrality of each vertex in the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
653 654 655 656 657

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
658
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
659 660
        Edge property map with the edge weights.
    alpha : float, optional (default: ``0.01``)
661 662
        Free parameter :math:`\alpha`. This must be smaller than the inverse of
        the largest eigenvalue of the adjacency matrix.
663
    beta : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
664 665
        Vertex property map where the local personalization values. If not
        provided, the global value of 1 will be used.
666
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
667 668 669 670 671 672 673
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.
674 675
    norm : bool, optional (default: ``True``)
        Whether or not the centrality values should be normalized.
Tiago Peixoto's avatar
Tiago Peixoto committed
676 677 678

    Returns
    -------
679
    centrality : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
680 681 682 683 684 685 686
        A vertex property map containing the Katz centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
    eigenvector: eigenvector centrality
687
    hits: authority and hub centralities
Tiago Peixoto's avatar
Tiago Peixoto committed
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Katz centrality :math:`\mathbf{x}` is the solution of the nonhomogeneous
    linear system

    .. math::

        \mathbf{x} = \alpha\mathbf{A}\mathbf{x} + \mathbf{\beta},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\mathbf{\beta}` is the personalization vector (if not supplied,
    :math:`\mathbf{\beta} = \mathbf{1}` is assumed).

    The algorithm uses successive iterations of the equation above, which has a
    topology-dependent convergence complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
712 713 714
    .. testsetup:: katz

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
715
       import matplotlib
716 717 718 719 720 721

    .. doctest:: katz

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
722
       >>> w.a = np.random.random(len(w.a))
723 724 725
       >>> x = gt.katz(g, weight=w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
726
       ...               vcmap=matplotlib.cm.gist_heat,
727 728 729
       ...               vorder=x, output="polblogs_katz.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
730
    .. testcleanup:: katz
731

Tiago Peixoto's avatar
Tiago Peixoto committed
732
       conv_png("polblogs_katz.pdf")
733

Tiago Peixoto's avatar
Tiago Peixoto committed
734
    .. figure:: polblogs_katz.png
735
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
736
       :width: 80%
737 738 739

       Katz centrality values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.
Tiago Peixoto's avatar
Tiago Peixoto committed
740 741 742 743 744 745 746

    References
    ----------

    .. [katz-centrality] http://en.wikipedia.org/wiki/Katz_centrality
    .. [katz-new] L. Katz, "A new status index derived from sociometric analysis",
       Psychometrika 18, Number 1, 39-43, 1953, :DOI:`10.1007/BF02289026`
747 748 749
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
Tiago Peixoto's avatar
Tiago Peixoto committed
750 751
    """

752
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
753 754 755
        vprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
756
    libgraph_tool_centrality.\
Tiago Peixoto's avatar
Tiago Peixoto committed
757
         get_katz(g._Graph__graph, _prop("e", g, weight), _prop("v", g, vprop),
758 759 760
                  _prop("v", g, beta), float(alpha), epsilon, max_iter)
    if norm:
        vprop.fa = vprop.fa / numpy.linalg.norm(vprop.fa)
Tiago Peixoto's avatar
Tiago Peixoto committed
761 762 763
    return vprop


764 765 766 767 768 769 770 771
def hits(g, weight=None, xprop=None, yprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the authority and hub centralities of each vertex in the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
772
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
773
        Edge property map with the edge weights.
774
    xprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
775
        Vertex property map where the authority centrality must be stored.
776
    yprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
777 778 779 780 781 782 783 784 785 786 787
        Vertex property map where the hub centrality must be stored.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eig : `float`
        The largest eigenvalue of the cocitation matrix.
788
    x : :class:`~graph_tool.VertexPropertyMap`
789
        A vertex property map containing the authority centrality values.
790
    y : :class:`~graph_tool.VertexPropertyMap`
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
        A vertex property map containing the hub centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    eigenvector: eigenvector centrality
    pagerank: PageRank centrality
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Hyperlink-Induced Topic Search (HITS) centrality assigns hub
    (:math:`\mathbf{y}`) and authority (:math:`\mathbf{x}`) centralities to the
    vertices, following:

    .. math::

        \begin{align}
            \mathbf{x} &= \alpha\mathbf{A}\mathbf{y} \\
            \mathbf{y} &= \beta\mathbf{A}^T\mathbf{x}
        \end{align}


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda = 1/(\alpha\beta)` is the largest eigenvalue of the
    cocitation matrix, :math:`\mathbf{A}\mathbf{A}^T`. (Without loss of
    generality, we set :math:`\beta=1` in the algorithm.)

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) cocitation matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
830

Tiago Peixoto's avatar
Tiago Peixoto committed
831 832 833 834
    .. testsetup:: hits

       import matplotlib

835 836 837 838 839 840 841
    .. doctest:: hits

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> ee, x, y = gt.hits(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
842
       ...               vcmap=matplotlib.cm.gist_heat,
843 844 845 846
       ...               vorder=x, output="polblogs_hits_auths.pdf")
       <...>
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=y,
       ...               vertex_size=gt.prop_to_size(y, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
847
       ...               vcmap=matplotlib.cm.gist_heat,
848 849 850
       ...               vorder=y, output="polblogs_hits_hubs.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
851
    .. testcleanup:: hits
852

Tiago Peixoto's avatar
Tiago Peixoto committed
853 854
       conv_png("polblogs_hits_auths.pdf")
       conv_png("polblogs_hits_hubs.pdf")
855

Tiago Peixoto's avatar
Tiago Peixoto committed
856
    .. figure:: polblogs_hits_auths.png
Tiago Peixoto's avatar
Tiago Peixoto committed
857
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
858
       :width: 80%
859 860 861 862

       HITS authority values of the a political blogs network of
       [adamic-polblogs]_.

Tiago Peixoto's avatar
Tiago Peixoto committed
863
    .. figure:: polblogs_hits_hubs.png
Tiago Peixoto's avatar
Tiago Peixoto committed
864
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
865
       :width: 80%
866 867

       HITS hub values of the a political blogs network of [adamic-polblogs]_.
868 869 870 871 872 873

    References
    ----------

    .. [hits-algorithm] http://en.wikipedia.org/wiki/HITS_algorithm
    .. [kleinberg-authoritative] J. Kleinberg, "Authoritative sources in a
874
       hyperlinked environment", Journal of the ACM 46 (5): 604-632, 1999,
875 876
       :DOI:`10.1145/324133.324140`.
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
877 878 879
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
880 881 882 883 884 885 886 887 888 889 890 891 892 893
    """

    if xprop is None:
        xprop = g.new_vertex_property("double")
    if yprop is None:
        yprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
    l = libgraph_tool_centrality.\
         get_hits(g._Graph__graph, _prop("e", g, weight), _prop("v", g, xprop),
                  _prop("v", g, yprop), epsilon, max_iter)
    return 1. / l, xprop, yprop


Tiago Peixoto's avatar
Tiago Peixoto committed
894
def eigentrust(g, trust_map, vprop=None, norm=False, epsilon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
895
               ret_iter=False):
896 897 898 899 900
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
901
    g : :class:`~graph_tool.Graph`
902
        Graph to be used.
903
    trust_map : :class:`~graph_tool.EdgePropertyMap`
904
        Edge property map with the values of trust associated with each
905
        edge. The values must lie in the range [0,1].
906
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
907
        Vertex property map where the values of eigentrust must be stored.
908
    norm : bool, optional (default:  ``False``)
909
        Norm eigentrust values so that the total sum equals 1.
910
    epsilon : float, optional (default: ``1e-6``)
911 912
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
913
    max_iter : int, optional (default: ``None``)
914
        If supplied, this will limit the total number of iterations.
915
    ret_iter : bool, optional (default: ``False``)
916 917 918 919
        If true, the total number of iterations is also returned.

    Returns
    -------
920
    eigentrust : :class:`~graph_tool.VertexPropertyMap`
921
        A vertex property map containing the eigentrust values.
922 923 924 925 926

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
927
    trust_transitivity: pervasive trust transitivity
928 929 930

    Notes
    -----
931
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
932 933
    following limit

934 935
    .. math::

936 937 938 939 940
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

941 942
    .. math::

943 944 945 946 947 948 949 950
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
951 952 953 954

    .. testsetup:: eigentrust

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
955
       import matplotlib
956 957 958 959 960 961 962 963 964 965

    .. doctest:: eigentrust

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a)) * 42
       >>> t = gt.eigentrust(g, w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
       ...               vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
966
       ...               vcmap=matplotlib.cm.gist_heat,
967 968 969
       ...               vorder=t, output="polblogs_eigentrust.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
970
    .. testcleanup:: eigentrust
971

Tiago Peixoto's avatar
Tiago Peixoto committed
972
       conv_png("polblogs_eigentrust.pdf")
973

Tiago Peixoto's avatar
Tiago Peixoto committed
974
    .. figure:: polblogs_eigentrust.png
975
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
976
       :width: 80%
977 978 979 980

       Eigentrust values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.

981 982 983

    References
    ----------
984
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
985 986
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
Tiago Peixoto's avatar
Tiago Peixoto committed
987
       Pages: 640 - 651, 2003, :doi:`10.1145/775152.775242`
988 989 990
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
991 992
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
993
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
994
        vprop = g.new_vertex_property("double")
995 996
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
Tiago Peixoto's avatar
Tiago Peixoto committed
997
                          _prop("v", g, vprop), epsilon, max_iter)
998 999 1000 1001 1002 1003 1004 1005
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1006

1007
def trust_transitivity(g, trust_map, source=None, target=None, vprop=None):
1008
    r"""
1009 1010
    Calculate the pervasive trust transitivity between chosen (or all) vertices
    in the graph.
1011 1012 1013

    Parameters
    ----------
1014
    g : :class:`~graph_tool.Graph`
1015
        Graph to be used.
1016
    trust_map : :class:`~graph_tool.EdgePropertyMap`
1017 1018
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
Tiago Peixoto's avatar
Tiago Peixoto committed
1019
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1020
        Source vertex. All trust values are computed relative to this vertex.
1021
        If left unspecified, the trust values for all sources are computed.
Tiago Peixoto's avatar
Tiago Peixoto committed
1022
    target : :class:`~graph_tool.Vertex` (optional, default: None)
1023 1024
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
1025
    vprop : :class:`~graph_tool.VertexPropertyMap` (optional, default: None)
1026 1027
        A vertex property map where the values of transitive trust must be
        stored.
1028 1029 1030

    Returns
    -------
1031
    trust_transitivity : :class:`~graph_tool.VertexPropertyMap` or float
1032 1033 1034 1035 1036 1037 1038
        A vertex vector property map containing, for each source vertex, a
        vector with the trust values for the other vertices. If only one of
        `source` or `target` is specified, this will be a single-valued vertex
        property map containing the trust vector from/to the source/target
        vertex to/from the rest of the network. If both `source` and `target`
        are specified, the result is a single float, with the corresponding
        trust value for the target.
1039

1040 1041 1042 1043 1044 1045 1046 1047
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
1048
    The pervasive trust transitivity between vertices i and j is defined as
1049

1050 1051
    .. math::

1052 1053
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
1054

1055 1056 1057
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
1058

1059 1060
    .. math::

1061
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
1062

1063
    The algorithm measures the transitive trust by finding the paths with
1064
    maximum weight, using Dijkstra's algorithm, to all in-neighbors of a given
1065
    target. This search needs to be performed repeatedly for every target, since
1066
    it needs to be removed from the graph first. For each given source, the
1067 1068 1069
    resulting complexity is therefore :math:`O(V^2\log V)` for all targets, and
    :math:`O(V\log V)` for a single target. For a given target, the complexity
    for obtaining the trust from all given sources is :math:`O(kV\log V)`, where
1070
    :math:`k` is the in-degree of the target. Thus, the complexity for obtaining
1071
    the complete trust matrix is :math:`O(EV\log V)`, where :math:`E` is the
1072
    number of edges in the network.
1073 1074 1075 1076 1077

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
1078 1079 1080
    .. testsetup:: trust_transitivity

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
1081
       import matplotlib
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

    .. doctest:: trust_transitivity

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g = gt.Graph(g, prune=True)
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a))
       >>> t = gt.trust_transitivity(g, w, source=g.vertex(42))
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
       ...               vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed