__init__.py 28.4 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2011 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.draw`` - Graph drawing
23
-----------------------------------
24
25
26
27
28
29
30
31

Summary
+++++++

.. autosummary::
   :nosignatures:

   graph_draw
32
   fruchterman_reingold_layout
33
34
35
36
37
   arf_layout
   random_layout

Contents
++++++++
38
39
"""

40
41
42
43
44
45
46
import sys
import os
import os.path
import time
import warnings
import ctypes
import ctypes.util
47
from .. import _degree, _prop, PropertyMap, _check_prop_vector,\
48
     _check_prop_scalar, _check_prop_writable, group_vector_property,\
49
50
     ungroup_vector_property, GraphView
from .. topology import label_components
Tiago Peixoto's avatar
Tiago Peixoto committed
51
from .. decorators import _limit_args
52
import numpy.random
53
from numpy import *
54
import copy
55
56
57

from .. dl_import import dl_import
dl_import("import libgraph_tool_layout")
58

59
60
61
62
63
64
try:
    import matplotlib.cm
    import matplotlib.colors
except ImportError:
    warnings.warn("error importing matplotlib module... " + \
                  "graph_draw() will not work.", ImportWarning)
Tiago Peixoto's avatar
Tiago Peixoto committed
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
try:
    libname = ctypes.util.find_library("c")
    libc = ctypes.CDLL(libname)
    libc.open_memstream.restype = ctypes.POINTER(ctypes.c_char)
except OSError:
    pass

try:
    libname = ctypes.util.find_library("gvc")
    if libname is None:
        raise OSError()
    libgv = ctypes.CDLL(libname)
    # properly set the return types of certain functions
    ptype = ctypes.POINTER(ctypes.c_char)
    libgv.gvContext.restype = ptype
    libgv.agopen.restype = ptype
    libgv.agnode.restype = ptype
    libgv.agedge.restype = ptype
    libgv.agget.restype = ptype
    # create a context to use the whole time (if we keep freeing and recreating
    # it, we will hit a memory leak in graphviz)
    gvc = libgv.gvContext()
except OSError:
    warnings.warn("error importing graphviz C library (libgvc)... " + \
                  "graph_draw() will not work.", ImportWarning)


93
94
__all__ = ["graph_draw", "fruchterman_reingold_layout", "arf_layout",
           "random_layout"]
95

Tiago Peixoto's avatar
Tiago Peixoto committed
96

97
98
99
100
101
102
103
104
105
def aset(elem, attr, value):
    v = str(value)
    libgv.agsafeset(elem, str(attr), v, v)


def aget(elem, attr):
    return ctypes.string_at(libgv.agget(elem, str(attr)))


106
107
108
def graph_draw(g, pos=None, size=(15, 15), pin=False, layout=None, maxiter=None,
               ratio="fill", overlap="prism", sep=None, splines=False,
               vsize=0.105, penwidth=1.0, elen=None, gprops={}, vprops={},
109
110
111
112
               eprops={}, vcolor="#a40000", ecolor="#2e3436", vcmap=None,
               vnorm=True, ecmap=None, enorm=True, vorder=None, eorder=None,
               output="", output_format="auto", fork=False,
               return_string=False, seed=0):
113
114
115
116
117
118
    r"""Draw a graph using graphviz.

    Parameters
    ----------
    g : Graph
        Graph to be used.
119
    pos : PropertyMap or tuple of PropertyMaps (optional, default: None)
120
121
122
123
124
        Vertex property maps containing the x and y coordinates of the vertices.
    size : tuple of scalars (optional, default: (15,15))
        Size (in centimeters) of the canvas.
    pin : bool (default: False)
        If True, the vertices are not moved from their initial position.
125
    layout : string (default: "neato" if g.num_vertices() <= 1000 else "sfdp")
126
        Layout engine to be used. Possible values are "neato", "fdp", "dot",
127
        "circo", "twopi" and "arf".
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    maxiter : int (default: None)
        If specified, limits the maximum number of iterations.
    ratio : string or float (default: "fill")
        Sets the aspect ratio (drawing height/drawing width) for the
        drawing. Note that this is adjusted before the 'size' attribute
        constraints are enforced.

        If ratio is numeric, it is taken as the desired aspect ratio. Then, if
        the actual aspect ratio is less than the desired ratio, the drawing
        height is scaled up to achieve the desired ratio; if the actual ratio is
        greater than that desired ratio, the drawing width is scaled up.

        If ratio = "fill" and the size attribute is set, node positions are
        scaled, separately in both x and y, so that the final drawing exactly
        fills the specified size.

        If ratio = "compress" and the size attribute is set, dot attempts to
        compress the initial layout to fit in the given size. This achieves a
        tighter packing of nodes but reduces the balance and symmetry.
        This feature only works in dot.

        If ratio = "expand", the size attribute is set, and both the width and
        the height of the graph are less than the value in size, node positions
        are scaled uniformly until at least one dimension fits size exactly.
        Note that this is distinct from using size as the desired size, as here
        the drawing is expanded before edges are generated and all node and text
        sizes remain unchanged.

        If ratio = "auto", the page attribute is set and the graph cannot be
157
        drawn on a single page, then size is set to an "ideal" value. In
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        particular, the size in a given dimension will be the smallest integral
        multiple of the page size in that dimension which is at least half the
        current size. The two dimensions are then scaled independently to the
        new size. This feature only works in dot.
    overlap : bool or string (default: "prism")
        Determines if and how node overlaps should be removed. Nodes are first
        enlarged using the sep attribute. If True, overlaps are retained. If
        the value is "scale", overlaps are removed by uniformly scaling in x and
        y. If the value is False, node overlaps are removed by a Voronoi-based
        technique. If the value is "scalexy", x and y are separately scaled to
        remove overlaps.

        If sfdp is available, one can set overlap to "prism" to use a proximity
        graph-based algorithm for overlap removal. This is the preferred
        technique, though "scale" and False can work well with small graphs.
        This technique starts with a small scaling up, controlled by the
        overlap_scaling attribute, which can remove a significant portion of the
        overlap. The prism option also accepts an optional non-negative integer
        suffix. This can be used to control the number of attempts made at
        overlap removal. By default, overlap="prism" is equivalent to
        overlap="prism1000". Setting overlap="prism0" causes only the scaling
        phase to be run.

        If the value is "compress", the layout will be scaled down as much as
        possible without introducing any overlaps, obviously assuming there are
        none to begin with.
    sep : float (default: None)
        Specifies margin to leave around nodes when removing node overlap. This
        guarantees a minimal non-zero distance between nodes.
    splines : bool (default: False)
        If True, the edges are drawn as splines and routed around the vertices.
189
190
191
192
    vsize : float, PropertyMap, or tuple (default: 0.1)
        Default vertex size (width and height). If a tuple is specified, the
        first value should be a property map, and the second is a scale factor.
    penwidth : float, PropertyMap or tuple (default: 1.0)
193
194
        Specifies the width of the pen, in points, used to draw lines and
        curves, including the boundaries of edges and clusters. It has no effect
Tiago Peixoto's avatar
Tiago Peixoto committed
195
196
        on text. If a tuple is specified, the first value should be a property
        map, and the second is a scale factor.
197
198
199
200
201
202
203
204
205
206
207
208
209
    elen : float or PropertyMap (default: None)
        Preferred edge length, in inches.
    gprops : dict (default: {})
        Additional graph properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string.
    vprops : dict (default: {})
        Additional vertex properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or vertex property
        maps, with values convertible to strings.
    eprops : dict (default: {})
        Additional edge properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or edge property
        maps, with values convertible to strings.
210
    vcolor : string or PropertyMap (default: "#a40000")
211
212
213
        Drawing color for vertices. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
        the 'vcmap' argument.
214
    ecolor : string or PropertyMap (default: "#2e3436")
215
216
217
218
219
220
221
222
223
224
225
        Drawing color for edges. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
        the 'ecmap' argument.
    vcmap : matplotlib.colors.Colormap (default: matplotlib.cm.jet)
        Vertex color map.
    vnorm : bool (default: True)
        Normalize vertex color values to the [0,1] range.
    ecmap : matplotlib.colors.Colormap (default: matplotlib.cm.jet)
        Edge color map.
    enorm : bool (default: True)
        Normalize edge color values to the [0,1] range.
226
227
228
229
230
231
    vorder : PropertyMap (default: None)
        Scalar vertex property map which specifies the order with which vertices
        are drawn.
    eorder : PropertyMap (default: None)
        Scalar edge property map which specifies the order with which edges
        are drawn.
232
233
234
235
236
237
    output : string (default: "")
        Output file name.
    output_format : string (default: "auto")
        Output file format. Possible values are "auto", "xlib", "ps", "svg",
        "svgz", "fig", "mif", "hpgl", "pcl", "png", "gif", "dia", "imap",
        "cmapx". If the value is "auto", the format is guessed from the 'output'
238
239
        parameter, or 'xlib' if it is empty. If the value is None, no output is
        produced.
240
    fork : bool (default: False)
241
        If True, the program is forked before drawing. This is used as a
242
243
244
        work-around for a bug in graphviz, where the exit() function is called,
        which would cause the calling program to end. This is always assumed
        'True', if output_format = 'xlib'.
245
246
247
    return_string : bool (default: False)
        If True, a string containing the rendered graph as binary data is
        returned (defaults to png format).
248
249
250

    Returns
    -------
251
252
    pos : PropertyMap
        Vector vertex property map with the x and y coordinates of the vertices.
253
254
255
256
257
258
    gv : gv.digraph or gv.graph (optional, only if returngv == True)
        Internally used graphviz graph.


    Notes
    -----
259
    This function is a wrapper for the [graphviz] python
260
261
262
263
264
265
    routines. Extensive additional documentation for the graph, vertex and edge
    properties is available at: http://www.graphviz.org/doc/info/attrs.html.


    Examples
    --------
266
    >>> from numpy import *
267
268
269
270
271
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.random_graph(1000, lambda: min(zipf(2.4), 40),
    ...                     lambda i,j: exp(abs(i-j)), directed=False)
    >>> # extract largest component
272
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
273
274
275
276
277
278
279
    >>> deg = g.degree_property_map("out")
    >>> deg.get_array()[:] = 2*(sqrt(deg.get_array()[:])*0.5 + 0.4)
    >>> ebet = gt.betweenness(g)[1]
    >>> ebet.get_array()[:] *= 4000
    >>> ebet.get_array()[:] += 10
    >>> gt.graph_draw(g, vsize=deg, vcolor=deg, elen=10, ecolor=ebet,
    ...               penwidth=ebet, overlap="prism", output="graph-draw.png")
280
    <...>
281
282
283
284
285
286
287
288
289
290
291

    .. figure:: graph-draw.png
        :align: center

        Kamada-Kawai force-directed layout of a graph with a power-law degree
        distribution, and dissortative degree correlation. The vertex size and
        color indicate the degree, and the edge color and width the edge
        betweeness centrality.

    References
    ----------
292
    .. [graphviz] http://www.graphviz.org
293
294

    """
Tiago Peixoto's avatar
Tiago Peixoto committed
295

296
    if output != "" and output != None:
297
        output = os.path.expanduser(output)
298
        # check opening file for writing, since graphviz will bork if it is not
299
300
301
302
303
        # possible to open file
        if os.path.dirname(output) != "" and \
               not os.access(os.path.dirname(output), os.W_OK):
            raise IOError("cannot write to " + os.path.dirname(output))

304
305
306
    has_layout = False
    try:
        gvg = libgv.agopen("G", 1 if g.is_directed() else 0)
307

308
309
        if layout is None:
            layout = "neato" if g.num_vertices() <= 1000 else "sfdp"
310

311
312
313
314
        if layout == "arf":
            layout = "neato"
            pos = arf_layout(g, pos=pos)
            pin = True
Tiago Peixoto's avatar
Tiago Peixoto committed
315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        if pos != None:
            # copy user-supplied property
            if isinstance(pos, PropertyMap):
                pos = ungroup_vector_property(pos, [0, 1])
            else:
                pos = (g.copy_property(pos[0]), g.copy_property(pos[1]))

        if type(vsize) == tuple:
            s = g.new_vertex_property("double")
            g.copy_property(vsize[0], s)
            s.a *= vsize[1]
            vsize = s

        if type(penwidth) == tuple:
            s = g.new_edge_property("double")
            g.copy_property(penwidth[0], s)
            s.a *= penwidth[1]
            penwidth = s

        # main graph properties
        aset(gvg, "outputorder", "edgesfirst")
        aset(gvg, "mode", "major")
        if overlap == False:
            overlap = "false"
340
        else:
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            overlap = "true"
        if isinstance(overlap, str):
            aset(gvg, "overlap", overlap)
        if sep != None:
            aset(gvg, "sep", sep)
        if splines:
            aset(gvg, "splines", "true")
        aset(gvg, "ratio", ratio)
        # size is in centimeters... convert to inches
        aset(gvg, "size", "%f,%f" % (size[0] / 2.54, size[1] / 2.54))
        if maxiter != None:
            aset(gvg, "maxiter", maxiter)

        seed = numpy.random.randint(sys.maxint)
        aset(gvg, "start", "%d" % seed)

        # apply all user supplied graph properties
        for k, val in gprops.iteritems():
            if isinstance(val, PropertyMap):
                aset(gvg, k, val[g])
            else:
                aset(gvg, k, val)

        # normalize color properties
        if vcolor != None and not isinstance(vcolor, str):
            minmax = [float("inf"), -float("inf")]
            for v in g.vertices():
                c = vcolor[v]
                minmax[0] = min(c, minmax[0])
                minmax[1] = max(c, minmax[1])
            if minmax[0] == minmax[1]:
                minmax[1] += 1
            if vnorm:
                vnorm = matplotlib.colors.normalize(vmin=minmax[0], vmax=minmax[1])
            else:
                vnorm = lambda x: x

        if ecolor != None and not isinstance(ecolor, str):
            minmax = [float("inf"), -float("inf")]
            for e in g.edges():
                c = ecolor[e]
                minmax[0] = min(c, minmax[0])
                minmax[1] = max(c, minmax[1])
            if minmax[0] == minmax[1]:
                minmax[1] += 1
            if enorm:
                enorm = matplotlib.colors.normalize(vmin=minmax[0],
                                                    vmax=minmax[1])
            else:
                enorm = lambda x: x
391

392
393
        if vcmap is None:
            vcmap = matplotlib.cm.jet
Tiago Peixoto's avatar
Tiago Peixoto committed
394

395
396
        if ecmap is None:
            ecmap = matplotlib.cm.jet
397

398
399
400
        # add nodes
        if vorder != None:
            vertices = sorted(g.vertices(), lambda a, b: cmp(vorder[a], vorder[b]))
401
        else:
402
403
404
            vertices = g.vertices()
        for v in vertices:
            n = libgv.agnode(gvg, str(int(v)))
Tiago Peixoto's avatar
Tiago Peixoto committed
405

406
407
            if type(vsize) == PropertyMap:
                vw = vh = vsize[v]
Tiago Peixoto's avatar
Tiago Peixoto committed
408
            else:
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
                vw = vh = vsize

            aset(n, "shape", "circle")
            aset(n, "width", "%g" % vw)
            aset(n, "height", "%g" % vh)
            aset(n, "style", "filled")
            aset(n, "color", ecolor if isinstance(ecolor, str) else "#2e3436")
            # apply color
            if isinstance(vcolor, str):
                aset(n, "fillcolor", vcolor)
            else:
                color = tuple([int(c * 255.0) for c in vcmap(vnorm(vcolor[v]))])
                aset(n, "fillcolor", "#%.2x%.2x%.2x%.2x" % color)
            aset(n, "label", "")

            # user supplied position
            if pos != None:
                aset(n, "pos", "%f,%f" % (pos[0][v], pos[1][v]))
                aset(n, "pin", pin)

            # apply all user supplied properties
            for k, val in vprops.iteritems():
                if isinstance(val, PropertyMap):
                    aset(n, k, val[v])
                else:
                    aset(n, k, val)

        # add edges
        if eorder != None:
            edges = sorted(g.edges(), lambda a, b: cmp(eorder[a], eorder[b]))
439
        else:
440
441
442
443
444
445
446
447
448
449
450
451
            edges = g.edges()
        for e in edges:
            ge = libgv.agedge(gvg,
                              libgv.agnode(gvg, str(int(e.source()))),
                              libgv.agnode(gvg, str(int(e.target()))))
            aset(ge, "arrowsize", "0.3")
            if g.is_directed():
                aset(ge, "arrowhead", "vee")

            # apply color
            if isinstance(ecolor, str):
                aset(ge, "color", ecolor)
Tiago Peixoto's avatar
Tiago Peixoto committed
452
            else:
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
                color = tuple([int(c * 255.0) for c in ecmap(enorm(ecolor[e]))])
                aset(ge, "color", "#%.2x%.2x%.2x%.2x" % color)

            # apply edge length
            if elen != None:
                if isinstance(elen, PropertyMap):
                    aset(ge, "len", elen[e])
                else:
                    aset(ge, "len", elen)

            # apply width
            if penwidth != None:
                if isinstance(penwidth, PropertyMap):
                    aset(ge, "penwidth", penwidth[e])
                else:
                    aset(ge, "penwidth", penwidth)

            # apply all user supplied properties
            for k, v in eprops.iteritems():
                if isinstance(v, PropertyMap):
                    aset(ge, k, v[e])
                else:
                    aset(ge, k, v)

        libgv.gvLayout(gvc, gvg, layout)
        has_layout = True
        retv = libgv.gvRender(gvc, gvg, "dot", None)  # retrieve positions only

        if pos == None:
            pos = (g.new_vertex_property("double"),
                   g.new_vertex_property("double"))
        for v in g.vertices():
            n = libgv.agnode(gvg, str(int(v)))
            p = aget(n, "pos")
            p = p.split(",")
            pos[0][v] = float(p[0])
            pos[1][v] = float(p[1])

        # I don't get this, but it seems necessary
        pos[0].a /= 100
        pos[1].a /= 100

        pos = group_vector_property(pos)

        if return_string:
            if output_format == "auto":
                output_format = "png"
            buf = ctypes.c_char_p()
            buf_len = ctypes.c_size_t()
            fstream = libc.open_memstream(ctypes.byref(buf),
                                          ctypes.byref(buf_len))
            libgv.gvRender(gvc, gvg, output_format, fstream)
            libc.fclose(fstream)
            data = copy.copy(ctypes.string_at(buf, buf_len.value))
            libc.free(buf)
        else:
            if output_format == "auto":
                if output == "":
                    output_format = "xlib"
                elif output != None:
                    output_format = output.split(".")[-1]

            # if using xlib we need to fork the process, otherwise good ol'
            # graphviz will call exit() when the window is closed
            if output_format == "xlib" or fork:
                pid = os.fork()
                if pid == 0:
                    libgv.gvRenderFilename(gvc, gvg, output_format, output)
                    os._exit(0)  # since we forked, it's good to be sure
                if output_format != "xlib":
                    os.wait()
            elif output != None:
                libgv.gvRenderFilename(gvc, gvg, output_format, output)
Tiago Peixoto's avatar
Tiago Peixoto committed
526

527
528
529
        ret = [pos]
        if return_string:
            ret.append(data)
Tiago Peixoto's avatar
Tiago Peixoto committed
530

531
532
533
534
    finally:
        if has_layout:
            libgv.gvFreeLayout(gvc, gvg)
        libgv.agclose(gvg)
535
536
537
538
539

    if len(ret) > 1:
        return tuple(ret)
    else:
        return ret[0]
540

Tiago Peixoto's avatar
Tiago Peixoto committed
541

542
def random_layout(g, shape=None, pos=None, dim=2):
543
544
545
546
547
548
    r"""Performs a random layout of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
Tiago Peixoto's avatar
Tiago Peixoto committed
549
550
551
552
553
    shape : tuple or list (optional, default: None)
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
554
555
556
557
558
559
560
561
562
563
564
565
566
    pos : PropertyMap (optional, default: None)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: 2)
        Number of coordinates per vertex.

    Returns
    -------
    pos : A vector vertex property map
        Vertex property map with the coordinates of the vertices.

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
567
568
569
570
571
572
573
574
575
576
577

    Examples
    --------
    >>> from numpy.random import seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
    array([ 86.59969709,   1.31435598,   0.64651486])

578
579
    """

580
    if pos == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
581
582
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
583

Tiago Peixoto's avatar
Tiago Peixoto committed
584
    pos = ungroup_vector_property(pos, range(0, dim))
585
586

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
587
        shape = [sqrt(g.num_vertices())] * dim
588
589

    for i in xrange(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
590
591
592
593
594
595
596
597
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
        pos[i].a = numpy.random.random(g.num_vertices()) * d + r[0]
598

Tiago Peixoto's avatar
Tiago Peixoto committed
599
    pos = group_vector_property(pos)
600
601
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
602

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    weight : PropertyMap (optional, default: None)
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
    circular : bool (optional, default: False)
        If `True`, the layout will have a circular shape. Otherwise the shape
        will be a square.
    grid : bool (optional, default: True)
        If `True`, the repulsive forces will only act on vertices which are on
        the same site on a grid. Otherwise they will act on all vertex pairs.
    t_range : tuple of floats (optional, default: (scale / 10, scale / 1000))
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
    n_iter : int (optional, default: 100)
        Total number of iterations.
    pos : PropertyMap (optional, default: None)
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
    pos : A vector vertex property map
        Vertex property map with the coordinates of the vertices.

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
    complexity :math:`O(\text{n_iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n_iter}\times (V + E))` otherwise.

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
    >>> gt.graph_draw(g, pos=pos, pin=True, output="graph-draw-fr.png")
    <...>

    .. figure:: graph-draw-fr.png
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
       "Graph Drawing by Force-Directed Placement". Software – Practice & Experience
       (Wiley) 21 (11): 1129–1164. (1991) :doi:`10.1002/spe.4380211102`
    """

    if pos == None:
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
692
               max_iter=1000, pos=None, dim=2):
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    r"""Calculate the ARF spring-block layout of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    weight : PropertyMap (optional, default: None)
        An edge property map with the respective weights.
    d : float (optional, default: 0.1)
        Opposing force between vertices.
    a : float (optional, default: 10)
        Attracting force between adjacent vertices.
    dt : float (optional, default: 0.001)
        Iteration step size.
    epsilon : float (optional, default: 1e-6)
        Convergence criterion.
    max_iter : int (optional, default: 1000)
        Maximum number of iterations. If this value is 0, it runs until
        convergence.
    pos : PropertyMap (optional, default: None)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: 2)
        Number of coordinates per vertex.

    Returns
    -------
    pos : A vector vertex property map
        Vertex property map with the coordinates of the vertices.

    Notes
    -----
724
    This algorithm is defined in [geipel-self-organization-2007]_, and has
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    complexity :math:`O(V^2)`.

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: 3, directed=False)
    >>> t = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(t)
    >>> pos = gt.graph_draw(g, output=None) # initial configuration
    >>> pos = gt.arf_layout(g, pos=pos, max_iter=0)
    >>> gt.graph_draw(g, pos=pos, pin=True, output="graph-draw-arf.png")
    <...>

    .. figure:: graph-draw-arf.png
        :align: center

        ARF layout of a minimum spanning tree of a random graph.

    References
    ----------
746
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
747
748
749
750
751
       applied to Dynamic Network Layout" , International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549, arXiv:0704.1748v5
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

752
    if pos == None:
753
754
755
756
        if dim != 2:
            pos = random_layout(g, dim=dim)
        else:
            pos = graph_draw(g, output=None)
757
758
759
    _check_prop_vector(pos, name="pos", floating=True)

    g.stash_filter(directed=True)
760
761
762
763
764
765
766
    try:
        g.set_directed(False)
        libgraph_tool_layout.arf_layout(g._Graph__graph, _prop("v", g, pos),
                                        _prop("e", g, weight), d, a, dt,
                                        max_iter, epsilon, dim)
    finally:
        g.pop_filter(directed=True)
767
    return pos