__init__.py 27.2 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2014 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.draw`` - Graph drawing and layout
----------------------------------------------
24
25
26
27

Summary
+++++++

28
29
30
Layout algorithms
=================

31
32
33
.. autosummary::
   :nosignatures:

Tiago Peixoto's avatar
Tiago Peixoto committed
34
   sfdp_layout
35
   fruchterman_reingold_layout
36
   arf_layout
Tiago Peixoto's avatar
Tiago Peixoto committed
37
   radial_tree_layout
38
   random_layout
39
   get_hierarchy_control_points
40
41
42
43
44
45
46
47

Graph drawing
=============

.. autosummary::
   :nosignatures:

   graph_draw
Tiago Peixoto's avatar
Tiago Peixoto committed
48
   graphviz_draw
49
   prop_to_size
50

51
52
53
54
55
56
57
58
59
60
61
62

Low-level graph drawing
^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:

   cairo_draw
   interactive_window
   GraphWidget
   GraphWindow

63
64
Contents
++++++++
65
66
"""

67
68
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
69
from .. import GraphView, _check_prop_vector, group_vector_property, \
70
     ungroup_vector_property, infect_vertex_property, _prop, _get_rng
Tiago Peixoto's avatar
Tiago Peixoto committed
71
from .. topology import max_cardinality_matching, max_independent_vertex_set, \
Tiago Peixoto's avatar
Tiago Peixoto committed
72
    label_components, pseudo_diameter, shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
73
74
from .. community import condensation_graph
from .. stats import label_parallel_edges
Tiago Peixoto's avatar
Tiago Peixoto committed
75
from .. generation import predecessor_tree
Tiago Peixoto's avatar
Tiago Peixoto committed
76
77
import numpy.random
from numpy import sqrt
78
import sys
79
80

from .. dl_import import dl_import
81
dl_import("from . import libgraph_tool_layout")
82

83

84
85
__all__ = ["graph_draw", "graphviz_draw",
           "fruchterman_reingold_layout",
Tiago Peixoto's avatar
Tiago Peixoto committed
86
           "arf_layout", "sfdp_layout", "random_layout",
Tiago Peixoto's avatar
Tiago Peixoto committed
87
           "radial_tree_layout",
88
           "cairo_draw", "prop_to_size", "get_hierarchy_control_points"]
89

Tiago Peixoto's avatar
Tiago Peixoto committed
90

91
def random_layout(g, shape=None, pos=None, dim=2):
92
93
94
95
    r"""Performs a random layout of the graph.

    Parameters
    ----------
96
    g : :class:`~graph_tool.Graph`
97
        Graph to be used.
98
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
99
100
101
102
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
103
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
104
        Vector vertex property maps where the coordinates should be stored.
105
    dim : int (optional, default: ``2``)
106
107
108
109
        Number of coordinates per vertex.

    Returns
    -------
110
111
112
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
113
114
115
116

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
117
118
119

    Examples
    --------
120
121
122
123
124
125
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
126
127
128
129
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
130
    array([ 68.72700594,   1.03142919,   2.56812658])
Tiago Peixoto's avatar
Tiago Peixoto committed
131

132
133
    """

134
    if pos == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
135
136
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
137

138
    pos = ungroup_vector_property(pos, list(range(0, dim)))
139
140

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
141
        shape = [sqrt(g.num_vertices())] * dim
142

143
    for i in range(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
144
145
146
147
148
149
150
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
151
152
153
154

        # deal with filtering
        p = pos[i].ma
        p[:] = numpy.random.random(len(p)) * d + r[0]
155

Tiago Peixoto's avatar
Tiago Peixoto committed
156
    pos = group_vector_property(pos)
157
158
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
159

160
161
162
163
164
165
166
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
167
    g : :class:`~graph_tool.Graph`
168
        Graph to be used.
169
    weight : :class:`PropertyMap` (optional, default: ``None``)
170
171
172
173
174
175
176
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
177
178
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
179
        will be a square.
180
181
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
182
        the same site on a grid. Otherwise they will act on all vertex pairs.
183
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
184
185
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
186
    n_iter : int (optional, default: ``100``)
187
        Total number of iterations.
188
    pos : :class:`PropertyMap` (optional, default: ``None``)
189
190
191
192
193
194
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
195
196
197
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
198
199
200
201

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
202
203
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
204
205
206

    Examples
    --------
207
208
209
210
211
212
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

213
214
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
215
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-fr.pdf")
216
217
    <...>

218
219
220
221
222
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-fr.png")

223
    .. figure:: graph-draw-fr.*
224
225
226
227
228
229
230
        :align: center

        Fruchterman-Reingold layout of a Price network.

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
231
232
       "Graph Drawing by Force-Directed Placement". Software - Practice & Experience
       (Wiley) 21 (11): 1129-1164. (1991) :doi:`10.1002/spe.4380211102`
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    """

    if pos == None:
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
259
               max_iter=1000, pos=None, dim=2):
260
261
    r"""Calculate the ARF spring-block layout of the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
262
263
264
265
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
Tiago Peixoto's avatar
Tiago Peixoto committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        An edge property map with the respective weights.
    d : float (optional, default: ``0.5``)
        Opposing force between vertices.
    a : float (optional, default: ``10``)
        Attracting force between adjacent vertices.
    dt : float (optional, default: ``0.001``)
        Iteration step size.
    epsilon : float (optional, default: ``1e-6``)
        Convergence criterion.
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
        convergence.
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: ``2``)
        Number of coordinates per vertex.
Tiago Peixoto's avatar
Tiago Peixoto committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm is defined in [geipel-self-organization-2007]_, and has
    complexity :math:`O(V^2)`.

    Examples
    --------
297
298
299
300
301
302
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
303
304
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
305
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-arf.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
306
307
    <...>

308
309
310
311
312
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-arf.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    .. figure:: graph-draw-arf.*
        :align: center

        ARF layout of a Price network.

    References
    ----------
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

    if pos is None:
328
        pos = random_layout(g, dim=dim)
Tiago Peixoto's avatar
Tiago Peixoto committed
329
330
331
332
333
334
335
336
337
    _check_prop_vector(pos, name="pos", floating=True)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    return pos


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
def _coarse_graph(g, vweight, eweight, mivs=False, groups=None):
    if groups is None:
        if mivs:
            mivs = max_independent_vertex_set(g, high_deg=True)
            u = GraphView(g, vfilt=mivs, directed=False)
            c = label_components(u)[0]
            c.fa += 1
            u = GraphView(g, directed=False)
            infect_vertex_property(u, c,
                                   list(range(1, c.fa.max() + 1)))
            c = g.own_property(c)
        else:
            mivs = None
            m = max_cardinality_matching(GraphView(g, directed=False),
                                         heuristic=True, weight=eweight,
                                         minimize=False)
            u = GraphView(g, efilt=m, directed=False)
            c = label_components(u)[0]
            c = g.own_property(c)
            u = GraphView(g, directed=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
358
359
    else:
        mivs = None
360
        c = groups
361
    cg, cc, vcount, ecount = condensation_graph(g, c, vweight, eweight)[:4]
Tiago Peixoto's avatar
Tiago Peixoto committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
    return cg, cc, vcount, ecount, c, mivs


def _propagate_pos(g, cg, c, cc, cpos, delta, mivs):
    pos = g.new_vertex_property(cpos.value_type())

    if mivs is not None:
        g = GraphView(g, vfilt=mivs)
    libgraph_tool_layout.propagate_pos(g._Graph__graph,
                                       cg._Graph__graph,
                                       _prop("v", g, c),
                                       _prop("v", cg, cc),
                                       _prop("v", g, pos),
                                       _prop("v", cg, cpos),
                                       delta if mivs is None else 0,
377
                                       _get_rng())
Tiago Peixoto's avatar
Tiago Peixoto committed
378
379
380
381
382
383
384
    if mivs is not None:
        g = g.base
        u = GraphView(g, directed=False)
        try:
            libgraph_tool_layout.propagate_pos_mivs(u._Graph__graph,
                                                    _prop("v", u, mivs),
                                                    _prop("v", u, pos),
385
                                                    delta, _get_rng())
Tiago Peixoto's avatar
Tiago Peixoto committed
386
387
388
389
390
391
        except ValueError:
            graph_draw(u, mivs, vertex_fillcolor=mivs)
    return pos


def _avg_edge_distance(g, pos):
392
    libgraph_tool_layout.sanitize_pos(g._Graph__graph, _prop("v", g, pos))
393
394
395
396
    ad = libgraph_tool_layout.avg_dist(g._Graph__graph, _prop("v", g, pos))
    if numpy.isnan(ad):
        ad = 1.
    return ad
Tiago Peixoto's avatar
Tiago Peixoto committed
397
398
399


def coarse_graphs(g, method="hybrid", mivs_thres=0.9, ec_thres=0.75,
400
                  weighted_coarse=False, eweight=None, vweight=None,
401
                  groups=None, verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
402
    cg = [[g, None, None, None, None, None]]
403
404
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
Tiago Peixoto's avatar
Tiago Peixoto committed
405
406
    mivs = not (method in ["hybrid", "ec"])
    while True:
407
408
        u = _coarse_graph(cg[-1][0], cg[-1][2], cg[-1][3], mivs, groups)
        groups = None
409
410
411
        thres = mivs_thres if mivs else ec_thres
        if u[0].num_vertices() >= thres * cg[-1][0].num_vertices():
            if method == "hybrid" and not mivs:
Tiago Peixoto's avatar
Tiago Peixoto committed
412
413
414
415
416
417
418
                mivs = True
            else:
                break
        if u[0].num_vertices() <= 2:
            break
        cg.append(u)
        if verbose:
419
420
421
            print("Coarse level (%s):" % ("MIVS" if mivs else "EC"), end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u[0].num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
422
423
424
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
425
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
426
427
428
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
429
430
            if K == 0:
                K = 1.
Tiago Peixoto's avatar
Tiago Peixoto committed
431
432
433
434
435
436
437
438
439
440
441
442
443
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

444
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
445
446
447
448
        u, cc, vcount, ecount, c, mivs = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
449
            print("avg edge distance:", _avg_edge_distance(u, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
450
451
452

        if i < len(cg) - 1:
            if verbose:
453
454
                print("propagating...", end=' ')
                print(mivs.a.sum() if mivs is not None else "")
Tiago Peixoto's avatar
Tiago Peixoto committed
455
            pos = _propagate_pos(cg[i + 1][0], u, c, cc, pos,
456
                                 Ks[i] / 1000., mivs)
Tiago Peixoto's avatar
Tiago Peixoto committed
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
def coarse_graph_stack(g, c, coarse_stack, eweight=None, vweight=None,
                       weighted_coarse=True, verbose=False):
    cg = [[g, c, None, None]]
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
    for u in coarse_stack:
        c = u.vp["b"]
        vcount = u.vp["count"]
        ecount = u.ep["count"]
        cg.append((u, c, vcount, ecount))
        if verbose:
            print("Coarse level:", end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u.num_vertices())
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
    for i in range(len(cg)):
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
            if K == 0:
                K = 1.
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

    for i in range(len(cg)):
        u, c, vcount, ecount = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
            print("avg edge distance:", _avg_edge_distance(u, pos))

        if i < len(cg) - 1:
            if verbose:
                print("propagating...")
            pos = _propagate_pos(cg[i + 1][0], u, c, u.vertex_index.copy("int"),
                                 pos, Ks[i] / 1000., None)

Tiago Peixoto's avatar
Tiago Peixoto committed
507

508
509
def sfdp_layout(g, vweight=None, eweight=None, pin=None, groups=None, C=0.2,
                K=None, p=2., theta=0.6, max_level=11, gamma=1., mu=0., mu_p=1.,
510
511
                init_step=None, cooling_step=0.9, adaptive_cooling=True,
                epsilon=1e-2, max_iter=0, pos=None, multilevel=None,
512
513
                coarse_method="hybrid", mivs_thres=0.9, ec_thres=0.75,
                coarse_stack=None, weighted_coarse=False, verbose=False):
514
    r"""Obtain the SFDP spring-block layout of the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
515

516
517
    Parameters
    ----------
518
    g : :class:`~graph_tool.Graph`
519
        Graph to be used.
520
521
522
    vweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with the respective weights.
    eweight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
523
        An edge property map with the respective weights.
524
    pin : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
525
526
527
528
529
        A vertex property map with boolean values, which, if given,
        specify the vertices which will not have their positions modified.
    groups : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        A vertex property map with group assignments. Vertices belonging to the
        same group will be put close together.
530
531
532
533
534
535
536
537
    C : float (optional, default: ``0.2``)
        Relative strength of repulsive forces.
    K : float (optional, default: ``None``)
        Optimal edge length. If not provided, it will be taken to be the average
        edge distance in the initial layout.
    p : float (optional, default: ``2``)
        Repulsive force exponent.
    theta : float (optional, default: ``0.6``)
538
        Quadtree opening parameter, a.k.a. Barnes-Hut opening criterion.
539
540
541
    max_level : int (optional, default: ``11``)
        Maximum quadtree level.
    gamma : float (optional, default: ``1.0``)
542
543
544
545
546
547
548
549
        Strength of the attractive force between connected components, or group
        assignments.
    mu : float (optional, default: ``0.0``)
        Strength of the attractive force between vertices of the same connected
        component, or group assignment.
    mu_p : float (optional, default: ``1.0``)
        Scaling exponent of the attractive force between vertices of the same
        connected component, or group assignment.
550
551
    init_step : float (optional, default: ``None``)
        Initial update step. If not provided, it will be chosen automatically.
552
    cooling_step : float (optional, default: ``0.9``)
553
554
555
        Cooling update step.
    adaptive_cooling : bool (optional, default: ``True``)
        Use an adaptive cooling scheme.
556
    epsilon : float (optional, default: ``0.01``)
557
558
        Relative convergence criterion.
    max_iter : int (optional, default: ``0``)
559
        Maximum number of iterations. If this value is ``0``, it runs until
560
        convergence.
561
    pos : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
        Initial vertex layout. If not provided, it will be randomly chosen.
    multilevel : bool (optional, default: ``None``)
        Use a multilevel layout algorithm. If ``None`` is given, it will be
        activated based on the size of the graph.
    coarse_method : str (optional, default: ``"hybrid"``)
        Coarsening method used if ``multilevel == True``. Allowed methods are
        ``"hybrid"``, ``"mivs"`` and ``"ec"``.
    mivs_thres : float (optional, default: ``0.9``)
        If the relative size of the MIVS coarse graph is above this value, the
        coarsening stops.
    ec_thres : float (optional, default: ``0.75``)
        If the relative size of the EC coarse graph is above this value, the
        coarsening stops.
    weighted_coarse : bool (optional, default: ``False``)
        Use weighted coarse graphs.
    verbose : bool (optional, default: ``False``)
        Provide verbose information.
579
580
581

    Returns
    -------
582
583
584
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.
585
586
587

    Notes
    -----
588
589
    This algorithm is defined in [hu-multilevel-2005]_, and has
    complexity :math:`O(V\log V)`.
590
591
592

    Examples
    --------
593
594
595
596
597
598
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

599
600
601
    >>> g = gt.price_network(3000)
    >>> pos = gt.sfdp_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.pdf")
602
603
    <...>

604
605
606
607
608
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.png")

609
    .. figure:: graph-draw-sfdp.*
610
611
        :align: center

612
        SFDP layout of a Price network.
613
614
615

    References
    ----------
616
617
618
    .. [hu-multilevel-2005] Yifan Hu, "Efficient and High Quality Force-Directed
       Graph", Mathematica Journal, vol. 10, Issue 1, pp. 37-71, (2005)
       http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
619
620
    """

621
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
622
        pos = random_layout(g, dim=2)
623
624
    _check_prop_vector(pos, name="pos", floating=True)

Tiago Peixoto's avatar
Tiago Peixoto committed
625
626
    g = GraphView(g, directed=False)

627
628
629
630
631
    if pin is not None:
        if pin.value_type() != "bool":
            raise ValueError("'pin' property must be of type 'bool'.")
    else:
        pin = g.new_vertex_property("bool")
Tiago Peixoto's avatar
Tiago Peixoto committed
632
633

    if K is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
634
        K = _avg_edge_distance(g, pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
635
636

    if init_step is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
637
638
639
640
641
642
        init_step = 10 * max(_avg_edge_distance(g, pos), K)

    if multilevel is None:
        multilevel = g.num_vertices() > 1000

    if multilevel:
643
644
        if eweight is not None or vweight is not None:
            weighted_coarse = True
645
646
647
648
649
650
651
652
653
654
655
656
657
        if coarse_stack is None:
            cgs = coarse_graphs(g, method=coarse_method,
                                mivs_thres=mivs_thres,
                                ec_thres=ec_thres,
                                weighted_coarse=weighted_coarse,
                                eweight=eweight,
                                vweight=vweight,
                                groups=groups,
                                verbose=verbose)
        else:
            cgs = coarse_graph_stack(g, coarse_stack[0], coarse_stack[1],
                                     eweight=eweight, vweight=vweight,
                                     verbose=verbose)
658
        for count, (u, pos, K, vcount, ecount) in enumerate(cgs):
Tiago Peixoto's avatar
Tiago Peixoto committed
659
            if verbose:
660
661
                print("Positioning level:", count, u.num_vertices(), end=' ')
                print("with K =", K, "...")
Tiago Peixoto's avatar
Tiago Peixoto committed
662
663
664
665
666
                count += 1
            #graph_draw(u, pos)
            pos = sfdp_layout(u, pos=pos,
                              vweight=vcount if weighted_coarse else None,
                              eweight=ecount if weighted_coarse else None,
667
                              groups=None if u.num_vertices() < g.num_vertices() else groups,
Tiago Peixoto's avatar
Tiago Peixoto committed
668
                              C=C, K=K, p=p,
669
670
                              theta=theta, gamma=gamma, mu=mu, mu_p=mu_p,
                              epsilon=epsilon,
Tiago Peixoto's avatar
Tiago Peixoto committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
                              max_iter=max_iter,
                              cooling_step=cooling_step,
                              adaptive_cooling=False,
                              init_step=max(2 * K,
                                            _avg_edge_distance(u, pos) / 10),
                              multilevel=False,
                              verbose=False)
            #graph_draw(u, pos)
        return pos

    if g.num_vertices() <= 1:
        return pos
    if g.num_vertices() == 2:
        vs = [g.vertex(0, False), g.vertex(1, False)]
        pos[vs[0]] = [0, 0]
        pos[vs[1]] = [1, 1]
        return pos
    if g.num_vertices() <= 50:
        max_level = 0
690
691
692
693
    if groups is None:
        groups = label_components(g)[0]
    elif groups.value_type() != "int32_t":
        raise ValueError("'groups' property must be of type 'int32_t'.")
694
    libgraph_tool_layout.sanitize_pos(g._Graph__graph, _prop("v", g, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
695
696
697
    libgraph_tool_layout.sfdp_layout(g._Graph__graph, _prop("v", g, pos),
                                     _prop("v", g, vweight),
                                     _prop("e", g, eweight),
698
                                     _prop("v", g, pin),
699
                                     (C, K, p, gamma, mu, mu_p, _prop("v", g, groups)),
700
                                     theta, init_step, cooling_step, max_level,
Tiago Peixoto's avatar
Tiago Peixoto committed
701
702
                                     epsilon, max_iter, not adaptive_cooling,
                                     verbose)
703
    return pos
Tiago Peixoto's avatar
Tiago Peixoto committed
704

Tiago Peixoto's avatar
Tiago Peixoto committed
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
def radial_tree_layout(g, root, weighted=False, r=1.):
    r"""Computes a radial layout of the graph according to the minimum spanning
    tree centered at the ``root`` vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex` or ``int``
        The root of the radial tree.
    weighted : ``bool`` (optional, default: ``False``)
        If true, the angle between the child branches will be computed according
        to weight of the entire sub-branches.
    r : ``float`` (optional, default: ``1.``)
        Layer spacing.

    Returns
    -------
    pos : :class:`~graph_tool.PropertyMap`
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm has complexity :math:`O(V + E)`.

    Examples
    --------
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.price_network(1000)
    >>> pos = gt.radial_tree_layout(g, g.vertex(0))
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-radial.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="graph-draw-radial.png")

    .. figure:: graph-draw-radial.*
        :align: center

        Radial tree layout of a Price network.

    """

    levels, pred_map = shortest_distance(GraphView(g, directed=False), root,
                                         pred_map=True)
    t = predecessor_tree(g, pred_map)
    pos = t.new_vertex_property("vector<double>")
    levels = t.own_property(levels)

    libgraph_tool_layout.get_radial(t._Graph__graph,
                                    _prop("v", g, pos),
                                    _prop("v", g, levels),
                                    int(root), weighted, r)
    return g.own_property(pos)

768
try:
769
    from .cairo_draw import graph_draw, cairo_draw, get_hierarchy_control_points
770
771
except ImportError:
    pass
772
773

try:
774
    from .cairo_draw import GraphWidget, GraphWindow, \
775
776
777
778
        interactive_window
    __all__ += ["interactive_window", "GraphWidget", "GraphWindow"]
except ImportError:
    pass
Tiago Peixoto's avatar
Tiago Peixoto committed
779

780
781
782
783
try:
   from .graphviz_draw import graphviz_draw
except ImportError:
   pass
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801

def prop_to_size(prop, mi=0, ma=5, log=False, power=0.5):
    r"""Convert property map values to be more useful as a vertex size, or edge
    width. The new values are taken to be

    .. math::

        y = mi + (ma - mi) \left(\frac{x_i - min(x)} {max(x) - min(x)}\right)^\text{power}

    If `log=True`, the natural logarithm of the property values are used instead.

    """
    prop = prop.copy(value_type="double")
    if log:
        vals = numpy.log(prop.fa)
    else:
        vals = prop.fa

802
    delta = vals.max() - vals.min()
803
804
805
806
    if delta == 0:
        delta = 1
    prop.fa = mi + (ma - mi) * ((vals - vals.min()) / delta) ** power
    return prop