__init__.py 30.4 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2019 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.draw`` - Graph drawing and layout
----------------------------------------------
24
25
26
27

Summary
+++++++

28
29
30
Layout algorithms
=================

31
32
33
.. autosummary::
   :nosignatures:

Tiago Peixoto's avatar
Tiago Peixoto committed
34
   sfdp_layout
35
   fruchterman_reingold_layout
36
   arf_layout
Tiago Peixoto's avatar
Tiago Peixoto committed
37
   radial_tree_layout
Tiago Peixoto's avatar
Tiago Peixoto committed
38
   planar_layout
39
   random_layout
40
41
42
43
44
45
46
47

Graph drawing
=============

.. autosummary::
   :nosignatures:

   graph_draw
48
   draw_hierarchy
Tiago Peixoto's avatar
Tiago Peixoto committed
49
   graphviz_draw
50
   prop_to_size
51
   get_hierarchy_control_points
52

53
54
55
56
57
58
59
60
61
62
63
64

Low-level graph drawing
^^^^^^^^^^^^^^^^^^^^^^^

.. autosummary::
   :nosignatures:

   cairo_draw
   interactive_window
   GraphWidget
   GraphWindow

65
66
Contents
++++++++
67
68
"""

69
70
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
71
from .. import Graph, GraphView, _check_prop_vector, group_vector_property, \
72
     ungroup_vector_property, infect_vertex_property, _prop, _get_rng
Tiago Peixoto's avatar
Tiago Peixoto committed
73
from .. topology import max_cardinality_matching, max_independent_vertex_set, \
Tiago Peixoto's avatar
Tiago Peixoto committed
74
75
    label_components, pseudo_diameter, shortest_distance, make_maximal_planar, \
    is_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
76
from .. stats import label_parallel_edges
77
from .. generation import predecessor_tree, condensation_graph
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
import numpy.random
from numpy import sqrt
80
import sys
81
82

from .. dl_import import dl_import
83
dl_import("from . import libgraph_tool_layout")
84

85

Tiago Peixoto's avatar
Tiago Peixoto committed
86
__all__ = ["graph_draw", "graphviz_draw", "fruchterman_reingold_layout",
Tiago Peixoto's avatar
Tiago Peixoto committed
87
88
89
           "arf_layout", "sfdp_layout", "planar_layout", "random_layout",
           "radial_tree_layout", "cairo_draw", "prop_to_size",
           "get_hierarchy_control_points", "default_cm"]
90

Tiago Peixoto's avatar
Tiago Peixoto committed
91

92
def random_layout(g, shape=None, pos=None, dim=2):
93
94
95
96
    r"""Performs a random layout of the graph.

    Parameters
    ----------
97
    g : :class:`~graph_tool.Graph`
98
        Graph to be used.
99
    shape : tuple or list (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
100
101
102
103
        Rectangular shape of the bounding area. The size of this parameter must
        match `dim`, and each element can be either a pair specifying a range,
        or a single value specifying a range starting from zero. If None is
        passed, a square of linear size :math:`\sqrt{N}` is used.
104
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
105
        Vector vertex property maps where the coordinates should be stored.
106
    dim : int (optional, default: ``2``)
107
108
109
110
        Number of coordinates per vertex.

    Returns
    -------
111
    pos : :class:`~graph_tool.VertexPropertyMap`
112
113
        A vector-valued vertex property map with the coordinates of the
        vertices.
114
115
116
117

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
Tiago Peixoto's avatar
Tiago Peixoto committed
118
119
120

    Examples
    --------
121
122
123
124
125
126
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
127
128
129
130
    >>> g = gt.random_graph(100, lambda: (3, 3))
    >>> shape = [[50, 100], [1, 2], 4]
    >>> pos = gt.random_layout(g, shape=shape, dim=3)
    >>> pos[g.vertex(0)].a
Tiago Peixoto's avatar
Tiago Peixoto committed
131
    array([68.72700594,  1.03142919,  2.56812658])
Tiago Peixoto's avatar
Tiago Peixoto committed
132

133
134
    """

135
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
136
137
        pos = g.new_vertex_property("vector<double>")
    _check_prop_vector(pos, name="pos")
138

139
    pos = ungroup_vector_property(pos, list(range(0, dim)))
140

141
    if shape is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
142
        shape = [sqrt(g.num_vertices())] * dim
143

144
    for i in range(dim):
Tiago Peixoto's avatar
Tiago Peixoto committed
145
146
147
148
149
150
151
        if hasattr(shape[i], "__len__"):
            if len(shape[i]) != 2:
                raise ValueError("The elements of 'shape' must have size 2.")
            r = [min(shape[i]), max(shape[i])]
        else:
            r = [min(shape[i], 0), max(shape[i], 0)]
        d = r[1] - r[0]
152
153

        # deal with filtering
154
155
        p = pos[i].fa
        pos[i].fa = numpy.random.random(len(p)) * d + r[0]
156

Tiago Peixoto's avatar
Tiago Peixoto committed
157
    pos = group_vector_property(pos)
158
159
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
160

Tiago Peixoto's avatar
Tiago Peixoto committed
161
162
163
164
165
166
167
def planar_layout(g, pos=None):
    r"""Performs a canonical layout of a planar graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Planar graph to be used.
168
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
169
170
171
172
        Vector vertex property maps where the coordinates should be stored.

    Returns
    -------
173
    pos : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm has complexity :math:`O(V + E)`.

    Examples
    --------
    >>> g = gt.lattice([10, 10])
    >>> pos = gt.planar_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="lattice-planar.pdf")
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
188
    .. testcleanup::
Tiago Peixoto's avatar
Tiago Peixoto committed
189

Tiago Peixoto's avatar
Tiago Peixoto committed
190
       conv_png("lattice-planar.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
191

Tiago Peixoto's avatar
Tiago Peixoto committed
192
193

    .. figure:: lattice-planar.png
Tiago Peixoto's avatar
Tiago Peixoto committed
194
        :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
195
        :width: 60%
Tiago Peixoto's avatar
Tiago Peixoto committed
196
197
198
199
200

        Straight-line drawing of planar graph (a 2D square lattice).

    References
    ----------
201
    .. [straight-line-boost] http://www.boost.org/doc/libs/release/libs/graph/doc/straight_line_drawing.html
Tiago Peixoto's avatar
Tiago Peixoto committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    .. [chrobak-linear-1995] M. Chrobak, T. Payne, "A Linear-time Algorithm for
       Drawing a Planar Graph on the Grid", Information Processing Letters 54:
       241-246, (1995), :doi:`10.1016/0020-0190(95)00020-D`
    """

    if g.num_vertices() < 3:
        raise ValueError("Graph must have at least 3 vertices.")
    if not is_planar(g):
        raise ValueError("Graph is not planar.")
    u = Graph(GraphView(g, directed=False, skip_properties=True))
    make_maximal_planar(u)
    embed = is_planar(u, embedding=True)[1]
    if pos is None:
        pos = u.new_vp("vector<double>")
    make_maximal_planar(u)
    libgraph_tool_layout.planar_layout(u._Graph__graph,
                                       _prop("v", u, embed),
                                       _prop("v", u, pos))
    pos = g.own_property(pos)
    return pos


224
225
226
227
228
229
230
def fruchterman_reingold_layout(g, weight=None, a=None, r=1., scale=None,
                                circular=False, grid=True, t_range=None,
                                n_iter=100, pos=None):
    r"""Calculate the Fruchterman-Reingold spring-block layout of the graph.

    Parameters
    ----------
231
    g : :class:`~graph_tool.Graph`
232
        Graph to be used.
233
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
234
235
236
237
238
239
240
        An edge property map with the respective weights.
    a : float (optional, default: :math:`V`)
        Attracting force between adjacent vertices.
    r : float (optional, default: 1.0)
        Repulsive force between vertices.
    scale : float (optional, default: :math:`\sqrt{V}`)
        Total scale of the layout (either square side or radius).
241
242
    circular : bool (optional, default: ``False``)
        If ``True``, the layout will have a circular shape. Otherwise the shape
243
        will be a square.
244
245
    grid : bool (optional, default: ``True``)
        If ``True``, the repulsive forces will only act on vertices which are on
246
        the same site on a grid. Otherwise they will act on all vertex pairs.
247
    t_range : tuple of floats (optional, default: ``(scale / 10, scale / 1000)``)
248
249
        Temperature range used in annealing. The temperature limits the
        displacement at each iteration.
250
    n_iter : int (optional, default: ``100``)
251
        Total number of iterations.
252
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
253
254
255
256
257
258
        Vector vertex property maps where the coordinates should be stored. If
        provided, this will also be used as the initial position of the
        vertices.

    Returns
    -------
259
    pos : :class:`~graph_tool.VertexPropertyMap`
260
261
        A vector-valued vertex property map with the coordinates of the
        vertices.
262
263
264
265

    Notes
    -----
    This algorithm is defined in [fruchterman-reingold]_, and has
Tiago Peixoto's avatar
Tiago Peixoto committed
266
267
    complexity :math:`O(\text{n-iter}\times V^2)` if `grid=False` or
    :math:`O(\text{n-iter}\times (V + E))` otherwise.
268
269
270

    Examples
    --------
271
272
273
274
275
276
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

277
278
    >>> g = gt.price_network(300)
    >>> pos = gt.fruchterman_reingold_layout(g, n_iter=1000)
279
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-fr.pdf")
280
281
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
282
    .. testcleanup::
283

Tiago Peixoto's avatar
Tiago Peixoto committed
284
       conv_png("graph-draw-fr.pdf")
285

Tiago Peixoto's avatar
Tiago Peixoto committed
286
287
288
    .. figure:: graph-draw-fr.png
       :align: center
       :width: 60%
289

Tiago Peixoto's avatar
Tiago Peixoto committed
290
       Fruchterman-Reingold layout of a Price network.
291
292
293
294

    References
    ----------
    .. [fruchterman-reingold] Fruchterman, Thomas M. J.; Reingold, Edward M.
295
296
       "Graph Drawing by Force-Directed Placement". Software - Practice & Experience
       (Wiley) 21 (11): 1129-1164. (1991) :doi:`10.1002/spe.4380211102`
297
298
    """

299
    if pos is None:
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        pos = random_layout(g, dim=2)
    _check_prop_vector(pos, name="pos", floating=True)

    if a is None:
        a = float(g.num_vertices())

    if scale is None:
        scale = sqrt(g.num_vertices())

    if t_range is None:
        t_range = (scale / 10, scale / 1000)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.fruchterman_reingold_layout(ug._Graph__graph,
                                                     _prop("v", g, pos),
                                                     _prop("e", g, weight),
                                                     a, r, not circular, scale,
                                                     grid, t_range[0],
                                                     t_range[1], n_iter)
    return pos


def arf_layout(g, weight=None, d=0.5, a=10, dt=0.001, epsilon=1e-6,
323
               max_iter=1000, pos=None, dim=2):
324
325
    r"""Calculate the ARF spring-block layout of the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
326
327
328
329
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
330
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
331
332
333
334
335
336
337
338
339
340
341
342
        An edge property map with the respective weights.
    d : float (optional, default: ``0.5``)
        Opposing force between vertices.
    a : float (optional, default: ``10``)
        Attracting force between adjacent vertices.
    dt : float (optional, default: ``0.001``)
        Iteration step size.
    epsilon : float (optional, default: ``1e-6``)
        Convergence criterion.
    max_iter : int (optional, default: ``1000``)
        Maximum number of iterations. If this value is ``0``, it runs until
        convergence.
343
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
344
345
346
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: ``2``)
        Number of coordinates per vertex.
Tiago Peixoto's avatar
Tiago Peixoto committed
347
348
349

    Returns
    -------
350
    pos : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
351
352
353
354
355
356
357
358
359
360
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
    This algorithm is defined in [geipel-self-organization-2007]_, and has
    complexity :math:`O(V^2)`.

    Examples
    --------
361
362
363
364
365
366
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
367
368
    >>> g = gt.price_network(300)
    >>> pos = gt.arf_layout(g, max_iter=0)
369
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-arf.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
370
371
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
372
    .. testcleanup::
373

Tiago Peixoto's avatar
Tiago Peixoto committed
374
       conv_png("graph-draw-arf.pdf")
375

Tiago Peixoto's avatar
Tiago Peixoto committed
376
377
378
    .. figure:: graph-draw-arf.png
       :align: center
       :width: 60%
Tiago Peixoto's avatar
Tiago Peixoto committed
379

Tiago Peixoto's avatar
Tiago Peixoto committed
380
       ARF layout of a Price network.
Tiago Peixoto's avatar
Tiago Peixoto committed
381
382
383
384
385
386
387
388
389
390
391

    References
    ----------
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
       applied to Dynamic Network Layout", International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549,
       :doi:`10.1142/S0129183107011558`, :arxiv:`0704.1748v5`
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

    if pos is None:
392
        pos = random_layout(g, dim=dim)
Tiago Peixoto's avatar
Tiago Peixoto committed
393
394
395
396
397
398
399
400
401
    _check_prop_vector(pos, name="pos", floating=True)

    ug = GraphView(g, directed=False)
    libgraph_tool_layout.arf_layout(ug._Graph__graph, _prop("v", g, pos),
                                    _prop("e", g, weight), d, a, dt, max_iter,
                                    epsilon, dim)
    return pos


402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
def _coarse_graph(g, vweight, eweight, mivs=False, groups=None):
    if groups is None:
        if mivs:
            mivs = max_independent_vertex_set(g, high_deg=True)
            u = GraphView(g, vfilt=mivs, directed=False)
            c = label_components(u)[0]
            c.fa += 1
            u = GraphView(g, directed=False)
            infect_vertex_property(u, c,
                                   list(range(1, c.fa.max() + 1)))
            c = g.own_property(c)
        else:
            mivs = None
            m = max_cardinality_matching(GraphView(g, directed=False),
                                         heuristic=True, weight=eweight,
417
                                         minimize=False, edges=True)
418
419
420
421
            u = GraphView(g, efilt=m, directed=False)
            c = label_components(u)[0]
            c = g.own_property(c)
            u = GraphView(g, directed=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
422
423
    else:
        mivs = None
424
        c = groups
425
    cg, cc, vcount, ecount = condensation_graph(g, c, vweight, eweight)[:4]
Tiago Peixoto's avatar
Tiago Peixoto committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    return cg, cc, vcount, ecount, c, mivs


def _propagate_pos(g, cg, c, cc, cpos, delta, mivs):
    pos = g.new_vertex_property(cpos.value_type())

    if mivs is not None:
        g = GraphView(g, vfilt=mivs)
    libgraph_tool_layout.propagate_pos(g._Graph__graph,
                                       cg._Graph__graph,
                                       _prop("v", g, c),
                                       _prop("v", cg, cc),
                                       _prop("v", g, pos),
                                       _prop("v", cg, cpos),
                                       delta if mivs is None else 0,
441
                                       _get_rng())
442

Tiago Peixoto's avatar
Tiago Peixoto committed
443
444
445
446
447
448
449
    if mivs is not None:
        g = g.base
        u = GraphView(g, directed=False)
        try:
            libgraph_tool_layout.propagate_pos_mivs(u._Graph__graph,
                                                    _prop("v", u, mivs),
                                                    _prop("v", u, pos),
450
                                                    delta, _get_rng())
Tiago Peixoto's avatar
Tiago Peixoto committed
451
452
453
454
455
456
        except ValueError:
            graph_draw(u, mivs, vertex_fillcolor=mivs)
    return pos


def _avg_edge_distance(g, pos):
457
    libgraph_tool_layout.sanitize_pos(g._Graph__graph, _prop("v", g, pos))
458
    ad = libgraph_tool_layout.avg_dist(g._Graph__graph, _prop("v", g, pos))
459
    if numpy.isnan(ad) or ad == 0:
460
461
        ad = 1.
    return ad
Tiago Peixoto's avatar
Tiago Peixoto committed
462
463
464


def coarse_graphs(g, method="hybrid", mivs_thres=0.9, ec_thres=0.75,
465
                  weighted_coarse=False, eweight=None, vweight=None,
466
                  groups=None, verbose=False):
Tiago Peixoto's avatar
Tiago Peixoto committed
467
    cg = [[g, None, None, None, None, None]]
468
469
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
Tiago Peixoto's avatar
Tiago Peixoto committed
470
471
    mivs = not (method in ["hybrid", "ec"])
    while True:
472
473
        u = _coarse_graph(cg[-1][0], cg[-1][2], cg[-1][3], mivs, groups)
        groups = None
474
475
476
        thres = mivs_thres if mivs else ec_thres
        if u[0].num_vertices() >= thres * cg[-1][0].num_vertices():
            if method == "hybrid" and not mivs:
Tiago Peixoto's avatar
Tiago Peixoto committed
477
478
479
480
481
482
483
                mivs = True
            else:
                break
        if u[0].num_vertices() <= 2:
            break
        cg.append(u)
        if verbose:
484
485
486
            print("Coarse level (%s):" % ("MIVS" if mivs else "EC"), end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u[0].num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
487
488
489
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
490
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
491
492
493
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
494
495
            if K == 0:
                K = 1.
Tiago Peixoto's avatar
Tiago Peixoto committed
496
497
498
499
500
501
502
503
504
505
506
507
508
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

509
    for i in range(len(cg)):
Tiago Peixoto's avatar
Tiago Peixoto committed
510
511
512
513
        u, cc, vcount, ecount, c, mivs = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
514
            print("avg edge distance:", _avg_edge_distance(u, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
515
516
517

        if i < len(cg) - 1:
            if verbose:
518
519
                print("propagating...", end=' ')
                print(mivs.a.sum() if mivs is not None else "")
Tiago Peixoto's avatar
Tiago Peixoto committed
520
            pos = _propagate_pos(cg[i + 1][0], u, c, cc, pos,
521
                                 Ks[i] / 1000., mivs)
Tiago Peixoto's avatar
Tiago Peixoto committed
522

523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
def coarse_graph_stack(g, c, coarse_stack, eweight=None, vweight=None,
                       weighted_coarse=True, verbose=False):
    cg = [[g, c, None, None]]
    if weighted_coarse:
        cg[-1][2], cg[-1][3] = vweight, eweight
    for u in coarse_stack:
        c = u.vp["b"]
        vcount = u.vp["count"]
        ecount = u.ep["count"]
        cg.append((u, c, vcount, ecount))
        if verbose:
            print("Coarse level:", end=' ')
            print(len(cg), " num vertices:", end=' ')
            print(u.num_vertices())
    cg.reverse()
    Ks = []
    pos = random_layout(cg[0][0], dim=2)
    for i in range(len(cg)):
        if i == 0:
            u = cg[i][0]
            K = _avg_edge_distance(u, pos)
            if K == 0:
                K = 1.
            Ks.append(K)
            continue
        if weighted_coarse:
            gamma = 1.
        else:
            #u = cg[i - 1][0]
            #w = cg[i][0]
            #du = pseudo_diameter(u)[0]
            #dw = pseudo_diameter(w)[0]
            #gamma = du / float(max(dw, du))
            gamma = 0.75
        Ks.append(Ks[-1] * gamma)

    for i in range(len(cg)):
        u, c, vcount, ecount = cg[i]
        yield u, pos, Ks[i], vcount, ecount

        if verbose:
            print("avg edge distance:", _avg_edge_distance(u, pos))

        if i < len(cg) - 1:
            if verbose:
                print("propagating...")
            pos = _propagate_pos(cg[i + 1][0], u, c, u.vertex_index.copy("int"),
                                 pos, Ks[i] / 1000., None)

Tiago Peixoto's avatar
Tiago Peixoto committed
572

573
def sfdp_layout(g, vweight=None, eweight=None, pin=None, groups=None, C=0.2,
574
                K=None, p=2., theta=0.6, max_level=15, gamma=1., mu=0., mu_p=1.,
575
                init_step=None, cooling_step=0.95, adaptive_cooling=True,
576
                epsilon=1e-2, max_iter=0, pos=None, multilevel=None,
577
578
                coarse_method="hybrid", mivs_thres=0.9, ec_thres=0.75,
                coarse_stack=None, weighted_coarse=False, verbose=False):
579
    r"""Obtain the SFDP spring-block layout of the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
580

581
582
    Parameters
    ----------
583
    g : :class:`~graph_tool.Graph`
584
        Graph to be used.
585
    vweight : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
586
        A vertex property map with the respective weights.
587
    eweight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
588
        An edge property map with the respective weights.
589
    pin : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
590
591
        A vertex property map with boolean values, which, if given,
        specify the vertices which will not have their positions modified.
592
    groups : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
593
594
        A vertex property map with group assignments. Vertices belonging to the
        same group will be put close together.
595
596
597
598
599
600
601
602
    C : float (optional, default: ``0.2``)
        Relative strength of repulsive forces.
    K : float (optional, default: ``None``)
        Optimal edge length. If not provided, it will be taken to be the average
        edge distance in the initial layout.
    p : float (optional, default: ``2``)
        Repulsive force exponent.
    theta : float (optional, default: ``0.6``)
603
        Quadtree opening parameter, a.k.a. Barnes-Hut opening criterion.
604
    max_level : int (optional, default: ``15``)
605
606
        Maximum quadtree level.
    gamma : float (optional, default: ``1.0``)
607
608
609
610
611
612
613
614
        Strength of the attractive force between connected components, or group
        assignments.
    mu : float (optional, default: ``0.0``)
        Strength of the attractive force between vertices of the same connected
        component, or group assignment.
    mu_p : float (optional, default: ``1.0``)
        Scaling exponent of the attractive force between vertices of the same
        connected component, or group assignment.
615
616
    init_step : float (optional, default: ``None``)
        Initial update step. If not provided, it will be chosen automatically.
617
    cooling_step : float (optional, default: ``0.95``)
618
619
620
        Cooling update step.
    adaptive_cooling : bool (optional, default: ``True``)
        Use an adaptive cooling scheme.
621
    epsilon : float (optional, default: ``0.01``)
622
623
        Relative convergence criterion.
    max_iter : int (optional, default: ``0``)
624
        Maximum number of iterations. If this value is ``0``, it runs until
625
        convergence.
626
    pos : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
        Initial vertex layout. If not provided, it will be randomly chosen.
    multilevel : bool (optional, default: ``None``)
        Use a multilevel layout algorithm. If ``None`` is given, it will be
        activated based on the size of the graph.
    coarse_method : str (optional, default: ``"hybrid"``)
        Coarsening method used if ``multilevel == True``. Allowed methods are
        ``"hybrid"``, ``"mivs"`` and ``"ec"``.
    mivs_thres : float (optional, default: ``0.9``)
        If the relative size of the MIVS coarse graph is above this value, the
        coarsening stops.
    ec_thres : float (optional, default: ``0.75``)
        If the relative size of the EC coarse graph is above this value, the
        coarsening stops.
    weighted_coarse : bool (optional, default: ``False``)
        Use weighted coarse graphs.
    verbose : bool (optional, default: ``False``)
        Provide verbose information.
644
645
646

    Returns
    -------
647
    pos : :class:`~graph_tool.VertexPropertyMap`
648
649
        A vector-valued vertex property map with the coordinates of the
        vertices.
650
651
652

    Notes
    -----
653
654
    This algorithm is defined in [hu-multilevel-2005]_, and has
    complexity :math:`O(V\log V)`.
655
656
657

    Examples
    --------
658
659
660
661
662
663
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

664
665
666
    >>> g = gt.price_network(3000)
    >>> pos = gt.sfdp_layout(g)
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-sfdp.pdf")
667
668
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
669
    .. testcleanup::
670

Tiago Peixoto's avatar
Tiago Peixoto committed
671
       conv_png("graph-draw-sfdp.pdf")
672

Tiago Peixoto's avatar
Tiago Peixoto committed
673
674
675
    .. figure:: graph-draw-sfdp.png
       :align: center
       :width: 60%
676

Tiago Peixoto's avatar
Tiago Peixoto committed
677
       SFDP layout of a Price network.
678
679
680

    References
    ----------
681
682
683
    .. [hu-multilevel-2005] Yifan Hu, "Efficient and High Quality Force-Directed
       Graph", Mathematica Journal, vol. 10, Issue 1, pp. 37-71, (2005)
       http://www.mathematica-journal.com/issue/v10i1/graph_draw.html
684
685
    """

686
    if pos is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
687
        pos = random_layout(g, dim=2)
688
689
    _check_prop_vector(pos, name="pos", floating=True)

690
    g_ = g
Tiago Peixoto's avatar
Tiago Peixoto committed
691
692
    g = GraphView(g, directed=False)

693
694
695
696
697
    if pin is not None:
        if pin.value_type() != "bool":
            raise ValueError("'pin' property must be of type 'bool'.")
    else:
        pin = g.new_vertex_property("bool")
Tiago Peixoto's avatar
Tiago Peixoto committed
698
699

    if K is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
700
        K = _avg_edge_distance(g, pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
701
702

    if init_step is None:
703
        init_step = 2 * max(_avg_edge_distance(g, pos), K)
Tiago Peixoto's avatar
Tiago Peixoto committed
704
705
706
707
708

    if multilevel is None:
        multilevel = g.num_vertices() > 1000

    if multilevel:
709
710
        if eweight is not None or vweight is not None:
            weighted_coarse = True
711
712
713
714
715
716
717
718
719
720
721
722
723
        if coarse_stack is None:
            cgs = coarse_graphs(g, method=coarse_method,
                                mivs_thres=mivs_thres,
                                ec_thres=ec_thres,
                                weighted_coarse=weighted_coarse,
                                eweight=eweight,
                                vweight=vweight,
                                groups=groups,
                                verbose=verbose)
        else:
            cgs = coarse_graph_stack(g, coarse_stack[0], coarse_stack[1],
                                     eweight=eweight, vweight=vweight,
                                     verbose=verbose)
724
        for count, (u, pos, K, vcount, ecount) in enumerate(cgs):
Tiago Peixoto's avatar
Tiago Peixoto committed
725
            if verbose:
726
727
                print("Positioning level:", count, u.num_vertices(), end=' ')
                print("with K =", K, "...")
Tiago Peixoto's avatar
Tiago Peixoto committed
728
729
730
731
                count += 1
            pos = sfdp_layout(u, pos=pos,
                              vweight=vcount if weighted_coarse else None,
                              eweight=ecount if weighted_coarse else None,
732
                              groups=None if u.num_vertices() < g.num_vertices() else groups,
Tiago Peixoto's avatar
Tiago Peixoto committed
733
                              C=C, K=K, p=p,
734
735
                              theta=theta, gamma=gamma, mu=mu, mu_p=mu_p,
                              epsilon=epsilon,
Tiago Peixoto's avatar
Tiago Peixoto committed
736
737
738
                              max_iter=max_iter,
                              cooling_step=cooling_step,
                              adaptive_cooling=False,
739
740
                              # init_step=max(2 * K,
                              #               _avg_edge_distance(u, pos)),
Tiago Peixoto's avatar
Tiago Peixoto committed
741
742
                              multilevel=False,
                              verbose=False)
743
        pos = g_.own_property(pos)
Tiago Peixoto's avatar
Tiago Peixoto committed
744
745
746
747
748
749
750
751
752
753
754
        return pos

    if g.num_vertices() <= 1:
        return pos
    if g.num_vertices() == 2:
        vs = [g.vertex(0, False), g.vertex(1, False)]
        pos[vs[0]] = [0, 0]
        pos[vs[1]] = [1, 1]
        return pos
    if g.num_vertices() <= 50:
        max_level = 0
755
756
757
758
    if groups is None:
        groups = label_components(g)[0]
    elif groups.value_type() != "int32_t":
        raise ValueError("'groups' property must be of type 'int32_t'.")
759
    libgraph_tool_layout.sanitize_pos(g._Graph__graph, _prop("v", g, pos))
Tiago Peixoto's avatar
Tiago Peixoto committed
760
761
762
    libgraph_tool_layout.sfdp_layout(g._Graph__graph, _prop("v", g, pos),
                                     _prop("v", g, vweight),
                                     _prop("e", g, eweight),
763
                                     _prop("v", g, pin),
764
                                     (C, K, p, gamma, mu, mu_p, _prop("v", g, groups)),
765
                                     theta, init_step, cooling_step, max_level,
Tiago Peixoto's avatar
Tiago Peixoto committed
766
                                     epsilon, max_iter, not adaptive_cooling,
767
                                     verbose, _get_rng())
768
    pos = g_.own_property(pos)
769
    return pos
Tiago Peixoto's avatar
Tiago Peixoto committed
770

771
772
def radial_tree_layout(g, root, rel_order=None, rel_order_leaf=False,
                       weighted=False, node_weight=None, r=1.):
Tiago Peixoto's avatar
Tiago Peixoto committed
773
774
775
776
777
778
779
780
781
    r"""Computes a radial layout of the graph according to the minimum spanning
    tree centered at the ``root`` vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex` or ``int``
        The root of the radial tree.
782
    rel_order : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
783
        Relative order of the nodes at each respective branch.
784
785
786
    rel_order_leaf : ``bool`` (optional, default: ``False``)
        If ``True``, the relative order of the leafs will propagate to the
        root. Otherwise they will propagate in the opposite direction.
Tiago Peixoto's avatar
Tiago Peixoto committed
787
788
789
    weighted : ``bool`` (optional, default: ``False``)
        If true, the angle between the child branches will be computed according
        to weight of the entire sub-branches.
790
    node_weight : :class:`~graph_tool.VertexPropertyMap` (optional, default: ``None``)
791
792
        If given, the relative spacing between leafs will correspond to the node
        weights.
Tiago Peixoto's avatar
Tiago Peixoto committed
793
794
795
796
797
    r : ``float`` (optional, default: ``1.``)
        Layer spacing.

    Returns
    -------
798
    pos : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
799
800
801
802
803
        A vector-valued vertex property map with the coordinates of the
        vertices.

    Notes
    -----
804
805
    This algorithm has complexity :math:`O(V + E)`, or :math:`O(V\log V + E)` if
    ``rel_order`` is given.
Tiago Peixoto's avatar
Tiago Peixoto committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819

    Examples
    --------
    .. testcode::
       :hide:

       np.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.price_network(1000)
    >>> pos = gt.radial_tree_layout(g, g.vertex(0))
    >>> gt.graph_draw(g, pos=pos, output="graph-draw-radial.pdf")
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
820
    .. testcleanup::
Tiago Peixoto's avatar
Tiago Peixoto committed
821

Tiago Peixoto's avatar
Tiago Peixoto committed
822
       conv_png("graph-draw-radial.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
823

Tiago Peixoto's avatar
Tiago Peixoto committed
824
825
826
    .. figure:: graph-draw-radial.png
       :align: center
       :width: 60%
Tiago Peixoto's avatar
Tiago Peixoto committed
827

Tiago Peixoto's avatar
Tiago Peixoto committed
828
       Radial tree layout of a Price network.
Tiago Peixoto's avatar
Tiago Peixoto committed
829
830
831
832
833
834
835
836

    """

    levels, pred_map = shortest_distance(GraphView(g, directed=False), root,
                                         pred_map=True)
    t = predecessor_tree(g, pred_map)
    pos = t.new_vertex_property("vector<double>")
    levels = t.own_property(levels)
837
838
    if rel_order is None:
        rel_order = g.vertex_index.copy("int")
839
840
841
842
    if node_weight is None:
        node_weight = g.new_vertex_property("double", 1)
    elif node_weight.value_type() != "double":
        node_weight = node_weight.copy("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
843
    libgraph_tool_layout.get_radial(t._Graph__graph,
844
845
                                    _prop("v", t, pos),
                                    _prop("v", t, levels),
846
                                    _prop("v", g, rel_order),
847
                                    _prop("v", g, node_weight),
848
849
                                    int(root), weighted, r,
                                    rel_order_leaf)
Tiago Peixoto's avatar
Tiago Peixoto committed
850
851
    return g.own_property(pos)

852
853
854
855
856
857
def prop_to_size(prop, mi=0, ma=5, log=False, power=0.5):
    r"""Convert property map values to be more useful as a vertex size, or edge
    width. The new values are taken to be

    .. math::

858
        y = mi + (ma - mi) \left(\frac{x_i - \min(x)} {\max(x) - \min(x)}\right)^\text{power}
859

860
    If ``log=True``, the natural logarithm of the property values is used instead.
861
862
863
864
865
866
867
868

    """
    prop = prop.copy(value_type="double")
    if log:
        vals = numpy.log(prop.fa)
    else:
        vals = prop.fa

869
    delta = vals.max() - vals.min()
870
871
872
873
    if delta == 0:
        delta = 1
    prop.fa = mi + (ma - mi) * ((vals - vals.min()) / delta) ** power
    return prop
874
875

try:
876
    from . cairo_draw import graph_draw, cairo_draw, get_hierarchy_control_points, default_cm
877
878
879
880
except ImportError:
    pass

try:
881
    from . cairo_draw import GraphWidget, GraphWindow, \
882
883
884
885
886
887
        interactive_window, draw_hierarchy
    __all__ += ["interactive_window", "GraphWidget", "GraphWindow", "draw_hierarchy"]
except ImportError:
    pass

try:
888
   from . graphviz_draw import graphviz_draw
889
890
except ImportError:
   pass