graph_motifs.hh 12.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
// graph-tool -- a general graph modification and manipulation thingy
//
// Copyright (C) 2007  Tiago de Paula Peixoto <tiago@forked.de>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 3
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef GRAPH_MOTIFS_HH
#define GRAPH_MOTIFS_HH

#ifdef USING_OPENMP
#include <omp.h>
#endif

#include <boost/functional/hash.hpp>
#include <boost/graph/copy.hpp>
#include <boost/graph/isomorphism.hpp>
#include <tr1/unordered_map>
29
#include <tr1/random>
30
31
32
33
34
#include <algorithm>

namespace graph_tool
{

35
typedef tr1::mt19937 rng_t;
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

template <class Value>
void insert_sorted(vector<Value>& v, const Value& val)
{
    typeof(v.begin()) iter = lower_bound(v.begin(), v.end(), val);
    if (iter != v.end() && *iter == val)
        return; // no repetitions
    v.insert(iter, val);
}

template <class Value>
bool has_val(vector<Value>& v, const Value& val)
{
    typeof(v.begin()) iter = lower_bound(v.begin(), v.end(), val);
    if (iter == v.end())
        return false;
    return *iter == val;
}

55
// gets all the subgraphs starting from vertex v and store it in subgraphs.
56
template <class Graph, class Sampler>
57
void get_subgraphs(Graph& g, typename graph_traits<Graph>::vertex_descriptor v,
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
                   size_t n,
                   vector<vector<typename graph_traits<Graph>::vertex_descriptor> >& subgraphs,
                   Sampler sampler)
{
    typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;

    // extension and subgraph stack
    vector<vector<vertex_t> > ext_stack(1);
    vector<vector<vertex_t> > sub_stack(1);
    vector<vector<vertex_t> > sub_neighbours_stack(1);

    sub_stack[0].push_back(v);
    typename graph_traits<Graph>::out_edge_iterator e, e_end;
    for (tie(e, e_end) = out_edges(v, g); e != e_end; ++e)
    {
        typename graph_traits<Graph>::vertex_descriptor u = target(*e, g);
        if (u > v && !has_val(ext_stack[0], u))
        {
            insert_sorted(ext_stack[0], u);
            insert_sorted(sub_neighbours_stack[0],u);
        }
    }

    while (!sub_stack.empty())
    {
        vector<vertex_t>& ext = ext_stack.back();
        vector<vertex_t>& sub = sub_stack.back();
        vector<vertex_t>& sub_neighbours = sub_neighbours_stack.back();

        if (sub.size() == n)
        {
            // found a subgraph of the desired size; put it in the list and go
            // back a level
            subgraphs.push_back(sub);
            sub_stack.pop_back();
            ext_stack.pop_back();
            sub_neighbours_stack.pop_back();
            continue;
        }

        if (ext.empty())
        {
            // no where else to go
            ext_stack.pop_back();
            sub_stack.pop_back();
            sub_neighbours_stack.pop_back();
            continue;
        }
        else
        {
            // extend subgraph
            vector<vertex_t> new_ext, new_sub = sub,
                new_sub_neighbours = sub_neighbours;

            // remove w from ext
            vertex_t w = ext.back();
            ext.pop_back();

            // insert w in subgraph
            insert_sorted(new_sub, w);

            // update new_ext
            new_ext = ext;
            for (tie(e, e_end) = out_edges(w, g); e != e_end; ++e)
            {
                vertex_t u = target(*e,g);
                if (u > v)
                {
                    if (!has_val(sub_neighbours, u))
                        insert_sorted(new_ext, u);
                    insert_sorted(new_sub_neighbours, u);
                }
            }

            sampler(new_ext, ext_stack.size());

            ext_stack.push_back(new_ext);
            sub_stack.push_back(new_sub);
            sub_neighbours_stack.push_back(new_sub_neighbours);
        }
    }
}

141
142
// sampling selectors

143
144
145
146
147
148
149
150
151
152
153
154
155
156
struct sample_all
{
    template <class val_type>
    void operator()(vector<val_type>&, size_t) {}
};

struct sample_some
{
    sample_some(vector<double>& p, rng_t& rng): _p(&p), _rng(&rng) {}
    sample_some() {}

    template <class val_type>
    void operator()(vector<val_type>& extend, size_t d)
    {
157
158
159
        typedef tr1::uniform_real<double> rdist_t;
        tr1::variate_generator<rng_t, rdist_t> random(*_rng, rdist_t());

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        double pd = (*_p)[d+1];
        size_t nc = extend.size();
        double u = nc*pd - floor(nc*pd);
        size_t n;
        double r;
        {
            #pragma omp critical
            r = random();
        }
        if (r < u)
            n = ceil(nc*pd);
        else
            n = floor(nc*pd);

        if (n == extend.size())
            return;
        if (n == 0)
        {
            extend.clear();
            return;
        }

182
        typedef tr1::uniform_int<size_t> idist_t;
183
184
        for (size_t i = 0; i < n; ++i)
        {
185
186
            tr1::variate_generator<rng_t, idist_t>
                random_v(*_rng, idist_t(0, extend.size()-i-1));
187
188
189
            size_t j;
            {
                #pragma omp critical
190
                j = i + random_v();
191
192
193
194
195
196
197
198
199
200
201
            }
            swap(extend[i], extend[j]);
        }
        extend.resize(n);
    }

    vector<double>* _p;
    rng_t* _rng;
};


202
// build the actual induced subgraph from the vertex list
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
template <class Graph, class GraphSG>
void make_subgraph
    (vector<typename graph_traits<Graph>::vertex_descriptor>& vlist,
     Graph& g, GraphSG& sub)
{
    for (size_t i = 0; i < vlist.size(); ++i)
        add_vertex(sub);
    for (size_t i = 0; i < vlist.size(); ++i)
    {
        typename graph_traits<Graph>::vertex_descriptor ov = vlist[i], ot;
        typename graph_traits<GraphSG>::vertex_descriptor nv = vertex(i,sub);
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(ov, g); e != e_end; ++e)
        {
            ot = target(*e, g);
            typeof(vlist.begin()) viter =
                lower_bound(vlist.begin(), vlist.end(), ot);
            size_t ot_index = viter - vlist.begin();
            if (viter != vlist.end() && vlist[ot_index] == ot &&
                (is_directed::apply<Graph>::type::value || ot < ov))
                add_edge(nv, vertex(ot_index, sub), sub);
        }
    }
}

228
// compare two graphs for labeled exactness (not isomorphism)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
template <class Graph>
bool graph_cmp(Graph& g1, Graph& g2)
{
    if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
        return false;

    typename graph_traits<Graph>::vertex_iterator v1, v1_end;
    typename graph_traits<Graph>::vertex_iterator v2, v2_end;
    tie(v2, v2_end) = vertices(g2);
    for (tie(v1, v1_end) = vertices(g1); v1 != v1_end; ++v1)
    {
        if (out_degree(*v1, g1) != out_degree(*v2, g2))
            return false;
        if (in_degreeS()(*v1, g1) != in_degreeS()(*v2, g2))
            return false;

        vector<typename graph_traits<Graph>::vertex_iterator> out1, out2;
        typename graph_traits<Graph>::out_edge_iterator e, e_end;
        for (tie(e, e_end) = out_edges(*v1, g1); e != e_end; ++e)
            out1.push_back(target(*e, g1));
        for (tie(e, e_end) = out_edges(*v2, g2); e != e_end; ++e)
            out2.push_back(target(*e, g2));
        sort(out1.begin(), out1.end());
        sort(out2.begin(), out2.end());
        if (out1 != out2)
            return false;
    }
    return true;
}

259
// short hand for both types of subgraphs
260
261
262
typedef adjacency_list<vecS,vecS,bidirectionalS> d_graph_t;
typedef adjacency_list<vecS,vecS,undirectedS> u_graph_t;

263
// we need this wrap to use the UndirectedAdaptor only on directed graphs
264
265
266
267
268
269
270
271
272
273
274
struct wrap_undirected
{
    template <class Graph>
    struct apply
    {
        typedef typename mpl::if_<typename is_directed::apply<Graph>::type,
                                  UndirectedAdaptor<Graph>,
                                  Graph&>::type type;
    };
};

275
// gets (or samples) all the subgraphs in graph g
276
277
278
struct get_all_motifs
{
    template <class Graph, class Sampler>
279
    void operator()(Graph& g, size_t k, boost::any& list,
280
                    vector<size_t>& hist, Sampler sampler, double p,
281
                    bool comp_iso, bool fill_list, rng_t& rng) const
282
283
284
285
286
    {
        typedef typename mpl::if_<typename is_directed::apply<Graph>::type,
                                  d_graph_t,
                                  u_graph_t>::type graph_sg_t;

287
        // the main subgraph lists
288
289
290
291
292
293
294
        vector<graph_sg_t>& subgraph_list =
            any_cast<vector<graph_sg_t>&>(list);

        tr1::unordered_map<size_t, vector<pair<size_t, graph_sg_t> > > sub_list;
        for (size_t i = 0; i < subgraph_list.size(); ++i)
            sub_list[num_edges(subgraph_list[i])].\
                push_back(make_pair(i,subgraph_list[i]));
295
296

        // the subgraph count
297
298
        hist.resize(subgraph_list.size());

299
        // the set of vertices V to be sampled (filled only if p < 1)
300
        vector<size_t> V;
301
        if (p < 1)
302
        {
303
304
305
306
            typename graph_traits<Graph>::vertex_iterator v, v_end;
            for (tie(v, v_end) = vertices(g); v != v_end; ++v)
                V.push_back(*v);

307
308
            typedef tr1::uniform_real<double> rdist_t;
            tr1::variate_generator<rng_t, rdist_t> random(rng, rdist_t());
309

310
            size_t n;
311
312
313
314
315
            if (random() < p)
                n = ceil(V.size()*p);
            else
                n = floor(V.size()*p);

316
            typedef tr1::uniform_int<size_t> idist_t;
317
318
            for (size_t i = 0; i < n; ++i)
            {
319
320
321
322
                tr1::variate_generator<rng_t, idist_t>
                    random_v(rng, idist_t(0, V.size()-i-1));

                size_t j = i + random_v();
323
324
325
326
327
328
329
330
331
332
                swap(V[i], V[j]);
            }
            V.resize(n);
        }

        #ifdef USING_OPENMP
        omp_lock_t lock;
        omp_init_lock(&lock);
        #endif

333
334
        int i, N = (p < 1) ? V.size() : num_vertices(g);
        #pragma omp parallel for default(shared) private(i)  schedule(dynamic)
335
336
        for (i = 0; i < N; ++i)
        {
337
338
339
340
341
342
            vector<vector<typename graph_traits<Graph>::vertex_descriptor> >
                subgraphs;
            typename graph_traits<Graph>::vertex_descriptor v =
                (p < 1) ? V[i] : vertex(i, g);
            if (v == graph_traits<Graph>::null_vertex())
                continue;
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

            typename wrap_undirected::apply<Graph>::type ug(g);
            get_subgraphs(ug, v, k, subgraphs, sampler);

            for (size_t j = 0; j < subgraphs.size(); ++j)
            {
                graph_sg_t sub;
                make_subgraph(subgraphs[j], g, sub);

                #ifdef USING_OPENMP
                if (fill_list)
                    omp_set_lock(&lock);
                #endif

                bool found = false;
                for (size_t l = 0; l < sub_list[num_edges(sub)].size(); ++l)
                {
                    graph_sg_t& motif = sub_list[num_edges(sub)][l].second;
361
362
363
364
365
366
367
368
369
370
371
                    if (comp_iso)
                    {
                        if (isomorphism(motif, sub))
                            found = true;
                    }
                    else
                    {
                        if (graph_cmp(motif, sub))
                            found = true;
                    }

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
                    if (found)
                    {
                        #pragma omp critical
                        hist[sub_list[num_edges(sub)][l].first]++;
                        break;
                    }
                }

                if (found == false && fill_list)
                {
                    subgraph_list.push_back(sub);
                    sub_list[num_edges(sub)].
                        push_back(make_pair(subgraph_list.size()-1,sub));
                    hist.push_back(1);
                }

                #ifdef USING_OPENMP
                if (fill_list)
                    omp_unset_lock(&lock);
                #endif
            }
        }
        #ifdef USING_OPENMP
        omp_destroy_lock(&lock);
        #endif
    }
};

} //graph-tool namespace

#endif // GRAPH_MOTIFS_HH