__init__.py 8.6 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

"""
``graph_tool.spectral`` - Spectral properties
---------------------------------------------
24
25
26
27
28
29
30
31
32
33
34
35
36

Summary
+++++++

.. autosummary::
   :nosignatures:

   adjacency
   laplacian
   incidence

Contents
++++++++
Tiago Peixoto's avatar
Tiago Peixoto committed
37
38
"""

39
40
from __future__ import division, absolute_import, print_function

41
from .. import _degree, _prop, Graph, _limit_args
Tiago Peixoto's avatar
Tiago Peixoto committed
42
43
44
45
46
47
from numpy import *
import scipy.sparse


__all__ = ["adjacency", "laplacian", "incidence"]

48

Tiago Peixoto's avatar
Tiago Peixoto committed
49
def adjacency(g, sparse=True, weight=None):
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    r"""Return the adjacency matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.
    weight : PropertyMap (optional, default: True)
        Edge property map with the edge weights.

    Returns
    -------
    a : matrix
        The adjacency matrix.

    Notes
    -----
    The adjacency matrix is defined as

    .. math::

        a_{i,j} =
        \begin{cases}
            1 & \text{if } v_i \text{ is adjacent to } v_j, \\
            0 & \text{otherwise}
        \end{cases}

    In the case of weighted edges, the value 1 is replaced the weight of the
    respective edge.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (10,10))
    >>> m = gt.adjacency(g)
87
    >>> print(m.todense())
Tiago Peixoto's avatar
Tiago Peixoto committed
88
    [[ 0.  0.  0. ...,  0.  0.  0.]
89
     [ 0.  0.  0. ...,  0.  0.  0.]
90
     [ 0.  0.  0. ...,  0.  0.  0.]
Tiago Peixoto's avatar
Tiago Peixoto committed
91
92
93
94
     ..., 
     [ 0.  0.  0. ...,  0.  0.  1.]
     [ 0.  0.  1. ...,  0.  0.  0.]
     [ 0.  1.  0. ...,  0.  0.  0.]]
95
96
97

    References
    ----------
98
    .. [wikipedia-adjacency] http://en.wikipedia.org/wiki/Adjacency_matrix
99
100
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
101
102
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
103
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
104
105
106
107
108
            index[v] = i
    else:
        index = g.vertex_index
    N = g.num_vertices()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
109
        m = scipy.sparse.lil_matrix((N, N))
Tiago Peixoto's avatar
Tiago Peixoto committed
110
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
111
        m = matrix(zeros((N, N)))
Tiago Peixoto's avatar
Tiago Peixoto committed
112
113
    for v in g.vertices():
        for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
114
            m[index[v], index[e.target()]] = 1 if weight == None else weight[e]
Tiago Peixoto's avatar
Tiago Peixoto committed
115
116
117
118
    if sparse:
        m = m.tocsr()
    return m

Tiago Peixoto's avatar
Tiago Peixoto committed
119

Tiago Peixoto's avatar
Tiago Peixoto committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def _get_deg(v, deg, weight):
    if deg == "total":
        if weight == None:
            d = v.in_degree() + v.out_degree()
        else:
            d = sum(weight[e] for e in v.all_edges())
    elif deg == "in":
        if weight == None:
            d = v.in_degree()
        else:
            d = sum(weight[e] for e in v.in_edges())
    else:
        if weight == None:
            d = v.out_degree()
        else:
            d = sum(weight[e] for e in v.out_edges())
    return d

Tiago Peixoto's avatar
Tiago Peixoto committed
138
139

@_limit_args({"deg": ["total", "in", "out"]})
Tiago Peixoto's avatar
Tiago Peixoto committed
140
def laplacian(g, deg="total", normalized=True, sparse=True, weight=None):
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    r"""Return the Laplacian matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    deg : str (optional, default: "total")
        Degree to be used, in case of a directed graph.
    normalized : bool (optional, default: True)
        Whether to compute the normalized Laplacian.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.
    weight : PropertyMap (optional, default: True)
        Edge property map with the edge weights.

    Returns
    -------
    l : matrix
        The Laplacian matrix.

    Notes
    -----
    The Laplacian matrix is defined as

    .. math::

        \ell_{i,j} =
        \begin{cases}
        \Gamma(v_i) & \text{if } i = j \\
        -1          & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
        0           & \text{otherwise}.
        \end{cases}

    Where :math:`\Gamma(v_i)` is the degree of vertex :math:`v_i`. The
    normalized version is

    .. math::

        \ell_{i,j} =
        \begin{cases}
        1         & \text{ if } i = j \text{ and } \Gamma(v_i) \neq 0 \\
       -\frac{1}{\sqrt{\Gamma(v_i)\Gamma(v_j)}} & \text{ if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
        0         & \text{otherwise}.
        \end{cases}

    In the case of weighted edges, the value 1 is replaced the weight of the
    respective edge.

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (10,10))
    >>> m = gt.laplacian(g)
195
    >>> print(m.todense())
Tiago Peixoto's avatar
Tiago Peixoto committed
196
    [[ 1.    0.    0.   ...,  0.    0.    0.  ]
Tiago Peixoto's avatar
Tiago Peixoto committed
197
     [ 0.    1.    0.   ...,  0.    0.    0.  ]
Tiago Peixoto's avatar
Tiago Peixoto committed
198
     [ 0.    0.    1.   ...,  0.    0.    0.  ]
199
     ..., 
Tiago Peixoto's avatar
Tiago Peixoto committed
200
201
202
     [ 0.    0.    0.   ...,  1.    0.    0.05]
     [ 0.    0.    0.05 ...,  0.    1.    0.  ]
     [ 0.    0.05  0.   ...,  0.    0.    1.  ]]
203
204
205

    References
    ----------
206
    .. [wikipedia-laplacian] http://en.wikipedia.org/wiki/Laplacian_matrix
207
208
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
209
210
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
211
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
212
213
214
215
216
            index[v] = i
    else:
        index = g.vertex_index
    N = g.num_vertices()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
217
        m = scipy.sparse.lil_matrix((N, N))
Tiago Peixoto's avatar
Tiago Peixoto committed
218
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
219
        m = matrix(zeros((N, N)))
Tiago Peixoto's avatar
Tiago Peixoto committed
220
221
222
223
224
225
226
227
    for v in g.vertices():
        d = _get_deg(v, deg, weight)
        if not normalized:
            m[index[v], index[v]] = d
        elif d > 0:
            m[index[v], index[v]] = 1
        for e in v.out_edges():
            if not normalized:
Tiago Peixoto's avatar
Tiago Peixoto committed
228
229
                m[index[v], index[e.target()]] = (-1 if weight == None
                                                  else -weight[e])
Tiago Peixoto's avatar
Tiago Peixoto committed
230
            else:
Tiago Peixoto's avatar
Tiago Peixoto committed
231
232
                val = (d * _get_deg(e.target(), deg, weight)) ** (-0.5)
                m[index[v], index[e.target()]] = val
Tiago Peixoto's avatar
Tiago Peixoto committed
233
234
235
236
    if sparse:
        m = m.tocsr()
    return m

Tiago Peixoto's avatar
Tiago Peixoto committed
237

Tiago Peixoto's avatar
Tiago Peixoto committed
238
def incidence(g, sparse=True):
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    r"""Return the incidence matrix of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    sparse : bool (optional, default: True)
        Build a :mod:`~scipy.sparse` matrix.

    Returns
    -------
    a : matrix
        The adjacency matrix.

    Notes
    -----
    For undirected graphs, the incidence matrix is defined as

    .. math::

        b_{i,j} =
        \begin{cases}
            1 & \text{if vertex } v_i \text{and edge } e_j \text{ are incident}, \\
            0 & \text{otherwise}
        \end{cases}

    For directed graphs, the definition is

    .. math::

        b_{i,j} =
        \begin{cases}
            1 & \text{if edge } e_j \text{ enters vertex } v_i, \\
            -1 & \text{if edge } e_j \text{ leaves vertex } v_i, \\
            0 & \text{otherwise}
        \end{cases}

    Examples
    --------
    >>> from numpy.random import seed, random
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (2,2))
    >>> m = gt.incidence(g)
282
    >>> print(m.todense())
283
284
    [[ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
285
     [ 0.  0.  0. ...,  0.  0.  0.]
286
287
288
289
290
291
292
     ..., 
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]]

    References
    ----------
293
    .. [wikipedia-incidence] http://en.wikipedia.org/wiki/Incidence_matrix
294
295
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
296
297
    if g.get_vertex_filter()[0] != None:
        index = g.new_vertex_property("int64_t")
Tiago Peixoto's avatar
Tiago Peixoto committed
298
        for i, v in enumerate(g.vertices()):
Tiago Peixoto's avatar
Tiago Peixoto committed
299
300
301
302
303
304
305
306
307
308
309
            index[v] = i
    else:
        index = g.vertex_index

    eindex = g.new_edge_property("int64_t")
    for i, e in enumerate(g.edges()):
        eindex[e] = i

    N = g.num_vertices()
    E = g.num_edges()
    if sparse:
Tiago Peixoto's avatar
Tiago Peixoto committed
310
        m = scipy.sparse.lil_matrix((N, E))
Tiago Peixoto's avatar
Tiago Peixoto committed
311
    else:
Tiago Peixoto's avatar
Tiago Peixoto committed
312
        m = matrix(zeros((N, E)))
Tiago Peixoto's avatar
Tiago Peixoto committed
313
314
315
    for v in g.vertices():
        if g.is_directed():
            for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
316
                m[index[v], eindex[e]] += -1
Tiago Peixoto's avatar
Tiago Peixoto committed
317
            for e in v.in_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
318
                m[index[v], eindex[e]] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
319
320
        else:
            for e in v.out_edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
321
                m[index[v], eindex[e]] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
322
323
324
    if sparse:
        m = m.tocsr()
    return m
325