__init__.py 40.2 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4 5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2020 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24 25

This module includes centrality-related algorithms.
26 27 28 29 30 31 32 33 34 35

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
Tiago Peixoto's avatar
Tiago Peixoto committed
36
   closeness
37
   eigenvector
Tiago Peixoto's avatar
Tiago Peixoto committed
38
   katz
39
   hits
40
   eigentrust
41
   trust_transitivity
42 43 44

Contents
++++++++
45 46
"""

47 48
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
49
from .. dl_import import dl_import
50
dl_import("from . import libgraph_tool_centrality")
Tiago Peixoto's avatar
Tiago Peixoto committed
51

52
from .. import _prop, ungroup_vector_property, Vector_size_t
53
from .. topology import shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
54 55
import sys
import numpy
56
import numpy.linalg
Tiago Peixoto's avatar
Tiago Peixoto committed
57

Tiago Peixoto's avatar
Tiago Peixoto committed
58 59
__all__ = ["pagerank", "betweenness", "central_point_dominance", "closeness",
           "eigentrust", "eigenvector", "katz", "hits", "trust_transitivity"]
Tiago Peixoto's avatar
Tiago Peixoto committed
60

Tiago Peixoto's avatar
Tiago Peixoto committed
61

62 63
def pagerank(g, damping=0.85, pers=None, weight=None, prop=None, epsilon=1e-6,
             max_iter=None, ret_iter=False):
64
    r"""Calculate the PageRank of each vertex.
65 66 67

    Parameters
    ----------
68
    g : :class:`~graph_tool.Graph`
69
        Graph to be used.
70
    damping : float, optional (default: 0.85)
71
        Damping factor.
72
    pers : :class:`~graph_tool.VertexPropertyMap`, optional (default: None)
73 74
        Personalization vector. If omitted, a constant value of :math:`1/N`
        will be used.
75
    weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
76
        Edge weights. If omitted, a constant value of 1 will be used.
77
    prop : :class:`~graph_tool.VertexPropertyMap`, optional (default: None)
78 79
        Vertex property map to store the PageRank values. If supplied, it will
        be used uninitialized.
Tiago Peixoto's avatar
Tiago Peixoto committed
80
    epsilon : float, optional (default: 1e-6)
81 82 83 84 85 86 87 88 89
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
90
    pagerank : :class:`~graph_tool.VertexPropertyMap`
91
        A vertex property map containing the PageRank values.
92 93 94 95 96

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
97
    eigenvector: eigenvector centrality
98
    hits: authority and hub centralities
99
    trust_transitivity: pervasive trust transitivity
100 101 102

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
103 104
    The value of PageRank [pagerank-wikipedia]_ of vertex v, :math:`PR(v)`, is
    given iteratively by the relation:
105 106

    .. math::
107

108 109
        PR(v) = \frac{1-d}{N} + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}
110

111 112
    where :math:`\Gamma^{-}(v)` are the in-neighbors of v, :math:`d^{+}(u)` is
    the out-degree of u, and d is a damping factor.
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    If a personalization property :math:`p(v)` is given, the definition becomes:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}

    If edge weights are also given, the equation is then generalized to:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u) w_{u\to v}}{d^{+}(u)}

    where :math:`d^{+}(u)=\sum_{y}A_{u,y}w_{u\to y}` is redefined to be the sum
    of the weights of the out-going edges from u.

131 132 133 134
    If a node has out-degree zero, it is assumed to connect to every other node
    with a weight proportional to :math:`p(v)` or a constant if no
    personalization is given.

135
    The implemented algorithm progressively iterates the above equations, until
Tiago Peixoto's avatar
Tiago Peixoto committed
136
    it no longer changes, according to the parameter epsilon. It has a
137 138 139 140 141 142
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
143

Tiago Peixoto's avatar
Tiago Peixoto committed
144 145 146 147
    .. testsetup:: pagerank

       import matplotlib

148 149 150 151 152 153 154
    .. doctest:: pagerank

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> pr = gt.pagerank(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
       ...               vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
155 156
       ...               vorder=pr, vcmap=matplotlib.cm.gist_heat,
       ...               output="polblogs_pr.pdf")
157 158
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
159
    .. figure:: polblogs_pr.png
160
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
161
       :width: 80%
162 163

       PageRank values of the a political blogs network of [adamic-polblogs]_.
164 165 166

    Now with a personalization vector, and edge weights:

167 168 169 170 171 172 173 174 175
    .. doctest:: pagerank

       >>> d = g.degree_property_map("total")
       >>> periphery = d.a <= 2
       >>> p = g.new_vertex_property("double")
       >>> p.a[periphery] = 100
       >>> pr = gt.pagerank(g, pers=p)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=pr,
       ...               vertex_size=gt.prop_to_size(pr, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
176 177
       ...               vorder=pr, vcmap=matplotlib.cm.gist_heat,
       ...               output="polblogs_pr_pers.pdf")
178 179
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
180
    .. testcleanup:: pagerank
181

Tiago Peixoto's avatar
Tiago Peixoto committed
182 183
       conv_png("polblogs_pr.pdf")
       conv_png("polblogs_pr_pers.pdf")
184 185


Tiago Peixoto's avatar
Tiago Peixoto committed
186
    .. figure:: polblogs_pr_pers.png
187
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
188
       :width: 80%
189 190 191 192

       Personalized PageRank values of the a political blogs network of
       [adamic-polblogs]_, where vertices with very low degree are given
       artificially high scores.
193 194 195

    References
    ----------
196 197
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
198
       "The pagerank citation ranking: Bringing order to the web", Technical
199
       report, Stanford University, 1998
200 201 202
    .. [Langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
203 204 205
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
206 207
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
208
    if max_iter is None:
209
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
210
    if prop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
211
        prop = g.new_vertex_property("double")
212 213
        N = len(prop.fa)
        prop.fa = pers.fa[:N] if pers is not None else 1. / g.num_vertices()
Tiago Peixoto's avatar
Tiago Peixoto committed
214
    ic = libgraph_tool_centrality.\
215 216 217
            get_pagerank(g._Graph__graph, _prop("v", g, prop),
                         _prop("v", g, pers), _prop("e", g, weight),
                         damping, epsilon, max_iter)
Tiago Peixoto's avatar
Tiago Peixoto committed
218 219 220 221 222
    if ret_iter:
        return prop, ic
    else:
        return prop

Tiago Peixoto's avatar
Tiago Peixoto committed
223

224 225
def betweenness(g, pivots=None, vprop=None, eprop=None, weight=None, norm=True):
    r"""Calculate the betweenness centrality for each vertex and edge.
226 227 228

    Parameters
    ----------
229
    g : :class:`~graph_tool.Graph`
230
        Graph to be used.
231 232 233 234 235
    pivots : list or :class:`~numpy.ndarray`, optional (default: None)
        If provided, the betweenness will be estimated using the vertices in
        this list as pivots. If the list contains all nodes (the default) the
        algorithm will be exact, and if the vertices are randomly chosen the
        result will be an unbiased estimator.
236
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: None)
237
        Vertex property map to store the vertex betweenness values.
238
    eprop : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
239
        Edge property map to store the edge betweenness values.
240
    weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
241 242 243 244 245 246
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
Tiago Peixoto's avatar
Tiago Peixoto committed
247 248
    vertex_betweenness : A vertex property map with the vertex betweenness values.
    edge_betweenness : An edge property map with the edge betweenness values.
249 250 251 252 253 254

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
255
    eigenvector: eigenvector centrality
256
    hits: authority and hub centralities
257
    trust_transitivity: pervasive trust transitivity
258 259 260 261 262

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

263 264
    .. math::

265 266 267
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

268 269 270 271 272
    where :math:`\sigma_{st}` is the number of shortest paths from s to t, and
    :math:`\sigma_{st}(v)` is the number of shortest paths from s to t that pass
    through a vertex :math:`v`. This may be normalised by dividing through the
    number of pairs of vertices not including v, which is :math:`(n-1)(n-2)/2`,
    for undirected graphs, or :math:`(n-1)(n-2)` for directed ones.
273

274
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
275 276 277 278 279 280
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE +
    V(V+E)\log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If the ``pivots`` parameter is given, the complexity will be instead
    :math:`O(PE)` for unweighted graphs and :math:`O(PE + P(V+E)\log V)` for
    weighted graphs, where :math:`P` is the number of pivot vertices.
281 282 283 284 285

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
286

Tiago Peixoto's avatar
Tiago Peixoto committed
287 288 289 290
    .. testsetup:: betweenness

       import matplotlib

291 292 293 294 295 296 297 298
    .. doctest:: betweenness

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> vp, ep = gt.betweenness(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=vp,
       ...               vertex_size=gt.prop_to_size(vp, mi=5, ma=15),
       ...               edge_pen_width=gt.prop_to_size(ep, mi=0.5, ma=5),
Tiago Peixoto's avatar
Tiago Peixoto committed
299
       ...               vcmap=matplotlib.cm.gist_heat,
300 301 302
       ...               vorder=vp, output="polblogs_betweenness.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
303
    .. testcleanup:: betweenness
304

Tiago Peixoto's avatar
Tiago Peixoto committed
305
       conv_png("polblogs_betweenness.pdf")
306

Tiago Peixoto's avatar
Tiago Peixoto committed
307
    .. figure:: polblogs_betweenness.png
308
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
309
       :width: 80%
310 311

       Betweenness values of the a political blogs network of [adamic-polblogs]_.
312 313 314

    References
    ----------
315 316
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
Tiago Peixoto's avatar
Tiago Peixoto committed
317
       centrality", Journal of Mathematical Sociology, 2001, :doi:`10.1080/0022250X.2001.9990249`
318 319 320
    .. [brandes-centrality-2007] U. Brandes, C. Pich, "Centrality estimation in
       large networks", Int. J. Bifurcation Chaos 17, 2303 (2007).
       :DOI:`10.1142/S0218127407018403`
321 322 323
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
324

325
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
326
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
327
        vprop = g.new_vertex_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
328
    if eprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
329
        eprop = g.new_edge_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
330
    if weight is not None and weight.value_type() != eprop.value_type():
Tiago Peixoto's avatar
Tiago Peixoto committed
331 332 333
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
334 335 336 337 338 339
    if pivots is not None:
        pivots = numpy.asarray(pivots, dtype="uint64")
    else:
        pivots = g.get_vertices()
    vpivots = Vector_size_t(len(pivots))
    vpivots.a = pivots
Tiago Peixoto's avatar
Tiago Peixoto committed
340
    libgraph_tool_centrality.\
341
            get_betweenness(g._Graph__graph, vpivots, _prop("e", g, weight),
Tiago Peixoto's avatar
Tiago Peixoto committed
342 343 344
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

Tiago Peixoto's avatar
Tiago Peixoto committed
345 346 347 348 349 350 351 352
def closeness(g, weight=None, source=None, vprop=None, norm=True, harmonic=False):
    r"""
    Calculate the closeness centrality for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
353
    weight : :class:`~graph_tool.EdgePropertyMap`, optional (default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
354 355 356
        Edge property map corresponding to the weight value of each edge.
    source : :class:`~graph_tool.Vertex`, optional (default: ``None``)
        If specified, the centrality is computed for this vertex alone.
357
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
358 359 360 361 362 363 364 365 366
        Vertex property map to store the vertex centrality values.
    norm : bool, optional (default: ``True``)
        Whether or not the centrality values should be normalized.
    harmonic : bool, optional (default: ``False``)
        If true, the sum of the inverse of the distances will be computed,
        instead of the inverse of the sum.

    Returns
    -------
367
    vertex_closeness : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
368 369 370 371 372 373 374 375
        A vertex property map with the vertex closeness values.

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
    eigenvector: eigenvector centrality
376
    hits: authority and hub centralities
Tiago Peixoto's avatar
Tiago Peixoto committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    trust_transitivity: pervasive trust transitivity

    Notes
    -----
    The closeness centrality of a vertex :math:`i` is defined as,

    .. math::

        c_i = \frac{1}{\sum_j d_{ij}}

    where :math:`d_{ij}` is the (possibly directed and/or weighted) distance
    from :math:`i` to :math:`j`. In case there is no path between the two
    vertices, here the distance is taken to be zero.

    If ``harmonic == True``, the definition becomes

    .. math::

        c_i = \sum_j\frac{1}{d_{ij}},

    but now, in case there is no path between the two vertices, we take
    :math:`d_{ij} \to\infty` such that :math:`1/d_{ij}=0`.

    If ``norm == True``, the values of :math:`c_i` are normalized by
    :math:`n_i-1` where :math:`n_i` is the size of the (out-) component of
    :math:`i`. If ``harmonic == True``, they are instead simply normalized by
403
    :math:`V-1`.
Tiago Peixoto's avatar
Tiago Peixoto committed
404

405
    The algorithm complexity of :math:`O(V(V + E))` for unweighted graphs and
Tiago Peixoto's avatar
Tiago Peixoto committed
406
    :math:`O(V(V+E) \log V)` for weighted graphs. If the option ``source`` is
407
    specified, this drops to :math:`O(V + E)` and :math:`O((V+E)\log V)`
Tiago Peixoto's avatar
Tiago Peixoto committed
408 409 410 411 412 413 414
    respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------

Tiago Peixoto's avatar
Tiago Peixoto committed
415 416 417 418
    .. testsetup:: closeness

       import matplotlib

Tiago Peixoto's avatar
Tiago Peixoto committed
419 420 421 422 423 424 425
    .. doctest:: closeness

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> c = gt.closeness(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=c,
       ...               vertex_size=gt.prop_to_size(c, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
426
       ...               vcmap=matplotlib.cm.gist_heat,
Tiago Peixoto's avatar
Tiago Peixoto committed
427 428 429
       ...               vorder=c, output="polblogs_closeness.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
430
    .. testcleanup:: closeness
Tiago Peixoto's avatar
Tiago Peixoto committed
431

Tiago Peixoto's avatar
Tiago Peixoto committed
432
       conv_png("polblogs_closeness.pdf")
Tiago Peixoto's avatar
Tiago Peixoto committed
433

Tiago Peixoto's avatar
Tiago Peixoto committed
434
    .. figure:: polblogs_closeness.png
Tiago Peixoto's avatar
Tiago Peixoto committed
435
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
436
       :width: 80%
Tiago Peixoto's avatar
Tiago Peixoto committed
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451

       Closeness values of the a political blogs network of [adamic-polblogs]_.

    References
    ----------
    .. [closeness-wikipedia] https://en.wikipedia.org/wiki/Closeness_centrality
    .. [opsahl-node-2010] Opsahl, T., Agneessens, F., Skvoretz, J., "Node
       centrality in weighted networks: Generalizing degree and shortest
       paths". Social Networks 32, 245-251, 2010 :DOI:`10.1016/j.socnet.2010.03.006`
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`

    """
    if source is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
452
        if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
453 454 455 456 457 458 459
            vprop = g.new_vertex_property("double")
        libgraph_tool_centrality.\
            closeness(g._Graph__graph, _prop("e", g, weight),
                      _prop("v", g, vprop), harmonic, norm)
        return vprop
    else:
        max_dist = g.num_vertices() + 1
460
        dist = shortest_distance(g, source=source, weights=weight,
Tiago Peixoto's avatar
Tiago Peixoto committed
461
                                 max_dist=max_dist)
462
        dists = dist.fa[(dist.fa < max_dist) * (dist.fa > 0)]
Tiago Peixoto's avatar
Tiago Peixoto committed
463 464 465 466 467 468 469
        if harmonic:
            c = (1. / dists).sum()
            if norm:
                c /= g.num_vertices() - 1
        else:
            c = 1. / dists.sum()
            if norm:
470 471
                c *= len(dists)
        return c
Tiago Peixoto's avatar
Tiago Peixoto committed
472

Tiago Peixoto's avatar
Tiago Peixoto committed
473

Tiago Peixoto's avatar
Tiago Peixoto committed
474
def central_point_dominance(g, betweenness):
475
    r"""Calculate the central point dominance of the graph, given the betweenness
476 477 478 479
    centrality of each vertex.

    Parameters
    ----------
480
    g : :class:`~graph_tool.Graph`
481
        Graph to be used.
482
    betweenness : :class:`~graph_tool.VertexPropertyMap`
483 484 485 486 487
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
488 489
    cp : float
        The central point dominance.
490 491 492 493 494 495 496 497

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
498
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
499 500
    as:

501 502
    .. math::

503 504 505 506 507 508 509 510 511
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
512 513 514 515 516

    >>> g = gt.collection.data["polblogs"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> vp, ep = gt.betweenness(g)
    >>> print(gt.central_point_dominance(g, vp))
Tiago Peixoto's avatar
Tiago Peixoto committed
517
    0.116106...
518 519 520

    References
    ----------
521
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
522 523
       Based on Betweenness", Sociometry, Vol. 40, No. 1, pp. 35-41, 1977,
       :doi:`10.2307/3033543`
524 525
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
526
    return libgraph_tool_centrality.\
527
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
528 529
                                       _prop("v", g, betweenness))

530

531 532 533 534 535 536 537 538 539
def eigenvector(g, weight=None, vprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the eigenvector centrality of each vertex in the graph, as well as
    the largest eigenvalue.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
540
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
541
        Edge property map with the edge weights.
542
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
543 544
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
545 546 547 548 549 550 551 552 553 554
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eigenvalue : float
        The largest eigenvalue of the (weighted) adjacency matrix.
555
    eigenvector : :class:`~graph_tool.VertexPropertyMap`
556 557 558 559 560 561
        A vertex property map containing the eigenvector values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
562
    hits: authority and hub centralities
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The eigenvector centrality :math:`\mathbf{x}` is the eigenvector of the
    (weighted) adjacency matrix with the largest eigenvalue :math:`\lambda`,
    i.e. it is the solution of

    .. math::

        \mathbf{A}\mathbf{x} = \lambda\mathbf{x},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda` is the largest eigenvalue.

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) adjacency matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
Tiago Peixoto's avatar
Tiago Peixoto committed
590

591 592 593
    .. testsetup:: eigenvector

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
594
       import matplotlib
595 596 597 598 599 600 601 602 603 604

    .. doctest:: eigenvector

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a)) * 42
       >>> ee, x = gt.eigenvector(g, w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
605
       ...               vcmap=matplotlib.cm.gist_heat,
606 607 608
       ...               vorder=x, output="polblogs_eigenvector.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
609
    .. testcleanup:: eigenvector
610

Tiago Peixoto's avatar
Tiago Peixoto committed
611
       conv_png("polblogs_eigenvector.pdf")
612

Tiago Peixoto's avatar
Tiago Peixoto committed
613
    .. figure:: polblogs_eigenvector.png
614
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
615
       :width: 80%
616 617 618

       Eigenvector values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.
619 620 621 622 623 624 625 626 627

    References
    ----------

    .. [eigenvector-centrality] http://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
    .. [langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
628 629 630
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
631 632 633

    """

634
    if vprop is None:
635
        vprop = g.new_vertex_property("double")
636
        vprop.fa = 1. / g.num_vertices()
637 638 639 640 641 642 643 644
    if max_iter is None:
        max_iter = 0
    ee = libgraph_tool_centrality.\
         get_eigenvector(g._Graph__graph, _prop("e", g, weight),
                         _prop("v", g, vprop), epsilon, max_iter)
    return ee, vprop


645 646
def katz(g, alpha=0.01, beta=None, weight=None, vprop=None, epsilon=1e-6,
         max_iter=None, norm=True):
Tiago Peixoto's avatar
Tiago Peixoto committed
647
    r"""
Tiago Peixoto's avatar
Tiago Peixoto committed
648
    Calculate the Katz centrality of each vertex in the graph.
Tiago Peixoto's avatar
Tiago Peixoto committed
649 650 651 652 653

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
654
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
655 656
        Edge property map with the edge weights.
    alpha : float, optional (default: ``0.01``)
657 658
        Free parameter :math:`\alpha`. This must be smaller than the inverse of
        the largest eigenvalue of the adjacency matrix.
659
    beta : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
660 661
        Vertex property map where the local personalization values. If not
        provided, the global value of 1 will be used.
662
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
Tiago Peixoto's avatar
Tiago Peixoto committed
663 664 665 666 667 668 669
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.
670 671
    norm : bool, optional (default: ``True``)
        Whether or not the centrality values should be normalized.
Tiago Peixoto's avatar
Tiago Peixoto committed
672 673 674

    Returns
    -------
675
    centrality : :class:`~graph_tool.VertexPropertyMap`
Tiago Peixoto's avatar
Tiago Peixoto committed
676 677 678 679 680 681 682
        A vertex property map containing the Katz centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
    eigenvector: eigenvector centrality
683
    hits: authority and hub centralities
Tiago Peixoto's avatar
Tiago Peixoto committed
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Katz centrality :math:`\mathbf{x}` is the solution of the nonhomogeneous
    linear system

    .. math::

        \mathbf{x} = \alpha\mathbf{A}\mathbf{x} + \mathbf{\beta},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\mathbf{\beta}` is the personalization vector (if not supplied,
    :math:`\mathbf{\beta} = \mathbf{1}` is assumed).

    The algorithm uses successive iterations of the equation above, which has a
    topology-dependent convergence complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
708 709 710
    .. testsetup:: katz

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
711
       import matplotlib
712 713 714 715 716 717

    .. doctest:: katz

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
Tiago Peixoto's avatar
Tiago Peixoto committed
718
       >>> w.a = np.random.random(len(w.a))
719 720 721
       >>> x = gt.katz(g, weight=w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
722
       ...               vcmap=matplotlib.cm.gist_heat,
723 724 725
       ...               vorder=x, output="polblogs_katz.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
726
    .. testcleanup:: katz
727

Tiago Peixoto's avatar
Tiago Peixoto committed
728
       conv_png("polblogs_katz.pdf")
729

Tiago Peixoto's avatar
Tiago Peixoto committed
730
    .. figure:: polblogs_katz.png
731
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
732
       :width: 80%
733 734 735

       Katz centrality values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.
Tiago Peixoto's avatar
Tiago Peixoto committed
736 737 738 739 740 741 742

    References
    ----------

    .. [katz-centrality] http://en.wikipedia.org/wiki/Katz_centrality
    .. [katz-new] L. Katz, "A new status index derived from sociometric analysis",
       Psychometrika 18, Number 1, 39-43, 1953, :DOI:`10.1007/BF02289026`
743 744 745
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
Tiago Peixoto's avatar
Tiago Peixoto committed
746 747
    """

748
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
749 750 751
        vprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
752
    libgraph_tool_centrality.\
Tiago Peixoto's avatar
Tiago Peixoto committed
753
         get_katz(g._Graph__graph, _prop("e", g, weight), _prop("v", g, vprop),
754 755 756
                  _prop("v", g, beta), float(alpha), epsilon, max_iter)
    if norm:
        vprop.fa = vprop.fa / numpy.linalg.norm(vprop.fa)
Tiago Peixoto's avatar
Tiago Peixoto committed
757 758 759
    return vprop


760 761 762 763 764 765 766 767
def hits(g, weight=None, xprop=None, yprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the authority and hub centralities of each vertex in the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
768
    weight : :class:`~graph_tool.EdgePropertyMap` (optional, default: ``None``)
769
        Edge property map with the edge weights.
770
    xprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
771
        Vertex property map where the authority centrality must be stored.
772
    yprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
773 774 775 776 777 778 779 780 781 782 783
        Vertex property map where the hub centrality must be stored.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eig : `float`
        The largest eigenvalue of the cocitation matrix.
784
    x : :class:`~graph_tool.VertexPropertyMap`
785
        A vertex property map containing the authority centrality values.
786
    y : :class:`~graph_tool.VertexPropertyMap`
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        A vertex property map containing the hub centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    eigenvector: eigenvector centrality
    pagerank: PageRank centrality
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Hyperlink-Induced Topic Search (HITS) centrality assigns hub
    (:math:`\mathbf{y}`) and authority (:math:`\mathbf{x}`) centralities to the
    vertices, following:

    .. math::

        \begin{align}
            \mathbf{x} &= \alpha\mathbf{A}\mathbf{y} \\
            \mathbf{y} &= \beta\mathbf{A}^T\mathbf{x}
        \end{align}


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda = 1/(\alpha\beta)` is the largest eigenvalue of the
    cocitation matrix, :math:`\mathbf{A}\mathbf{A}^T`. (Without loss of
    generality, we set :math:`\beta=1` in the algorithm.)

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) cocitation matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
826

Tiago Peixoto's avatar
Tiago Peixoto committed
827 828 829 830
    .. testsetup:: hits

       import matplotlib

831 832 833 834 835 836 837
    .. doctest:: hits

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> ee, x, y = gt.hits(g)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=x,
       ...               vertex_size=gt.prop_to_size(x, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
838
       ...               vcmap=matplotlib.cm.gist_heat,
839 840 841 842
       ...               vorder=x, output="polblogs_hits_auths.pdf")
       <...>
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=y,
       ...               vertex_size=gt.prop_to_size(y, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
843
       ...               vcmap=matplotlib.cm.gist_heat,
844 845 846
       ...               vorder=y, output="polblogs_hits_hubs.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
847
    .. testcleanup:: hits
848

Tiago Peixoto's avatar
Tiago Peixoto committed
849 850
       conv_png("polblogs_hits_auths.pdf")
       conv_png("polblogs_hits_hubs.pdf")
851

Tiago Peixoto's avatar
Tiago Peixoto committed
852
    .. figure:: polblogs_hits_auths.png
Tiago Peixoto's avatar
Tiago Peixoto committed
853
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
854
       :width: 80%
855 856 857 858

       HITS authority values of the a political blogs network of
       [adamic-polblogs]_.

Tiago Peixoto's avatar
Tiago Peixoto committed
859
    .. figure:: polblogs_hits_hubs.png
Tiago Peixoto's avatar
Tiago Peixoto committed
860
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
861
       :width: 80%
862 863

       HITS hub values of the a political blogs network of [adamic-polblogs]_.
864 865 866 867 868 869

    References
    ----------

    .. [hits-algorithm] http://en.wikipedia.org/wiki/HITS_algorithm
    .. [kleinberg-authoritative] J. Kleinberg, "Authoritative sources in a
870
       hyperlinked environment", Journal of the ACM 46 (5): 604-632, 1999,
871 872
       :DOI:`10.1145/324133.324140`.
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
873 874 875
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
876 877 878 879 880 881 882 883 884 885 886 887 888 889
    """

    if xprop is None:
        xprop = g.new_vertex_property("double")
    if yprop is None:
        yprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
    l = libgraph_tool_centrality.\
         get_hits(g._Graph__graph, _prop("e", g, weight), _prop("v", g, xprop),
                  _prop("v", g, yprop), epsilon, max_iter)
    return 1. / l, xprop, yprop


Tiago Peixoto's avatar
Tiago Peixoto committed
890
def eigentrust(g, trust_map, vprop=None, norm=False, epsilon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
891
               ret_iter=False):
892 893 894 895 896
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
897
    g : :class:`~graph_tool.Graph`
898
        Graph to be used.
899
    trust_map : :class:`~graph_tool.EdgePropertyMap`
900
        Edge property map with the values of trust associated with each
901
        edge. The values must lie in the range [0,1].
902
    vprop : :class:`~graph_tool.VertexPropertyMap`, optional (default: ``None``)
903
        Vertex property map where the values of eigentrust must be stored.
904
    norm : bool, optional (default:  ``False``)
905
        Norm eigentrust values so that the total sum equals 1.
906
    epsilon : float, optional (default: ``1e-6``)
907 908
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
909
    max_iter : int, optional (default: ``None``)
910
        If supplied, this will limit the total number of iterations.
911
    ret_iter : bool, optional (default: ``False``)
912 913 914 915
        If true, the total number of iterations is also returned.

    Returns
    -------
916
    eigentrust : :class:`~graph_tool.VertexPropertyMap`
917
        A vertex property map containing the eigentrust values.
918 919 920 921 922

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
923
    trust_transitivity: pervasive trust transitivity
924 925 926

    Notes
    -----
927
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
928 929
    following limit

930 931
    .. math::

932 933 934 935 936
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

937 938
    .. math::

939 940 941 942 943 944 945 946
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
947 948 949 950

    .. testsetup:: eigentrust

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
951
       import matplotlib
952 953 954 955 956 957 958 959 960 961

    .. doctest:: eigentrust

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a)) * 42
       >>> t = gt.eigentrust(g, w)
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
       ...               vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
962
       ...               vcmap=matplotlib.cm.gist_heat,
963 964 965
       ...               vorder=t, output="polblogs_eigentrust.pdf")
       <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
966
    .. testcleanup:: eigentrust
967

Tiago Peixoto's avatar
Tiago Peixoto committed
968
       conv_png("polblogs_eigentrust.pdf")
969

Tiago Peixoto's avatar
Tiago Peixoto committed
970
    .. figure:: polblogs_eigentrust.png
971
       :align: center
Tiago Peixoto's avatar
Tiago Peixoto committed
972
       :width: 80%
973 974 975 976

       Eigentrust values of the a political blogs network of
       [adamic-polblogs]_, with random weights attributed to the edges.

977 978 979

    References
    ----------
980
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
981 982
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
Tiago Peixoto's avatar
Tiago Peixoto committed
983
       Pages: 640 - 651, 2003, :doi:`10.1145/775152.775242`
984 985 986
    .. [adamic-polblogs] L. A. Adamic and N. Glance, "The political blogosphere
       and the 2004 US Election", in Proceedings of the WWW-2005 Workshop on the
       Weblogging Ecosystem (2005). :DOI:`10.1145/1134271.1134277`
987 988
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
989
    if vprop is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
990
        vprop = g.new_vertex_property("double")
991 992
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
Tiago Peixoto's avatar
Tiago Peixoto committed
993
                          _prop("v", g, vprop), epsilon, max_iter)
994 995 996 997 998 999 1000 1001
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1002

1003
def trust_transitivity(g, trust_map, source=None, target=None, vprop=None):
1004
    r"""
1005 1006
    Calculate the pervasive trust transitivity between chosen (or all) vertices
    in the graph.
1007 1008 1009

    Parameters
    ----------
1010
    g : :class:`~graph_tool.Graph`
1011
        Graph to be used.
1012
    trust_map : :class:`~graph_tool.EdgePropertyMap`
1013 1014
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
Tiago Peixoto's avatar
Tiago Peixoto committed
1015
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1016
        Source vertex. All trust values are computed relative to this vertex.
1017
        If left unspecified, the trust values for all sources are computed.
Tiago Peixoto's avatar
Tiago Peixoto committed
1018
    target : :class:`~graph_tool.Vertex` (optional, default: None)
1019 1020
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
1021
    vprop : :class:`~graph_tool.VertexPropertyMap` (optional, default: None)
1022 1023
        A vertex property map where the values of transitive trust must be
        stored.
1024 1025 1026

    Returns
    -------
1027
    trust_transitivity : :class:`~graph_tool.VertexPropertyMap` or float
1028 1029 1030 1031 1032 1033 1034
        A vertex vector property map containing, for each source vertex, a
        vector with the trust values for the other vertices. If only one of
        `source` or `target` is specified, this will be a single-valued vertex
        property map containing the trust vector from/to the source/target
        vertex to/from the rest of the network. If both `source` and `target`
        are specified, the result is a single float, with the corresponding
        trust value for the target.
1035

1036 1037 1038 1039 1040 1041 1042 1043
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
1044
    The pervasive trust transitivity between vertices i and j is defined as
1045

1046 1047
    .. math::

1048 1049
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
1050

1051 1052 1053
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
1054

1055 1056
    .. math::

1057
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
1058

1059
    The algorithm measures the transitive trust by finding the paths with
1060
    maximum weight, using Dijkstra's algorithm, to all in-neighbors of a given
1061
    target. This search needs to be performed repeatedly for every target, since
1062
    it needs to be removed from the graph first. For each given source, the
1063 1064 1065
    resulting complexity is therefore :math:`O(V^2\log V)` for all targets, and
    :math:`O(V\log V)` for a single target. For a given target, the complexity
    for obtaining the trust from all given sources is :math:`O(kV\log V)`, where
1066
    :math:`k` is the in-degree of the target. Thus, the complexity for obtaining
1067
    the complete trust matrix is :math:`O(EV\log V)`, where :math:`E` is the
1068
    number of edges in the network.
1069 1070 1071 1072 1073

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
1074 1075 1076
    .. testsetup:: trust_transitivity

       np.random.seed(42)
Tiago Peixoto's avatar
Tiago Peixoto committed
1077
       import matplotlib
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

    .. doctest:: trust_transitivity

       >>> g = gt.collection.data["polblogs"]
       >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
       >>> g = gt.Graph(g, prune=True)
       >>> w = g.new_edge_property("double")
       >>> w.a = np.random.random(len(w.a))
       >>> t = gt.trust_transitivity(g, w, source=g.vertex(42))
       >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=t,
       ...               vertex_size=gt.prop_to_size(t, mi=5, ma=15),
Tiago Peixoto's avatar
Tiago Peixoto committed
1089
       ...               vcmap=matplotlib.cm.gist_heat,
1090 1091 1092
       ...               vorder=t, output="polblogs_trust_transitivity.pdf")
       <...>