__init__.py 41.3 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4 5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2007-2012 Tiago de Paula Peixoto <tiago@skewed.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7 8 9 10 11 12 13 14 15 16 17 18 19 20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22 23
``graph_tool.centrality`` - Centrality measures
-----------------------------------------------
24 25

This module includes centrality-related algorithms.
26 27 28 29 30 31 32 33 34 35

Summary
+++++++

.. autosummary::
   :nosignatures:

   pagerank
   betweenness
   central_point_dominance
36
   eigenvector
Tiago Peixoto's avatar
Tiago Peixoto committed
37
   katz
38
   hits
39
   eigentrust
40
   trust_transitivity
41 42 43

Contents
++++++++
44 45
"""

46 47
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
48
from .. dl_import import dl_import
49
dl_import("from . import libgraph_tool_centrality")
Tiago Peixoto's avatar
Tiago Peixoto committed
50

51
from .. import _prop, ungroup_vector_property
Tiago Peixoto's avatar
Tiago Peixoto committed
52 53
import sys
import numpy
Tiago Peixoto's avatar
Tiago Peixoto committed
54 55

__all__ = ["pagerank", "betweenness", "central_point_dominance", "eigentrust",
Tiago Peixoto's avatar
Tiago Peixoto committed
56
           "eigenvector", "katz", "hits", "trust_transitivity"]
Tiago Peixoto's avatar
Tiago Peixoto committed
57

Tiago Peixoto's avatar
Tiago Peixoto committed
58

59 60
def pagerank(g, damping=0.85, pers=None, weight=None, prop=None, epsilon=1e-6,
             max_iter=None, ret_iter=False):
61 62 63 64 65
    r"""
    Calculate the PageRank of each vertex.

    Parameters
    ----------
66
    g : :class:`~graph_tool.Graph`
67
        Graph to be used.
68
    damping : float, optional (default: 0.85)
69
        Damping factor.
70 71 72 73 74
    pers : :class:`~graph_tool.PropertyMap`, optional (default: None)
        Personalization vector. If omitted, a constant value of :math:`1/N`
        will be used.
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
        Edge weights. If omitted, a constant value of 1 will be used.
75
    prop : :class:`~graph_tool.PropertyMap`, optional (default: None)
76
        Vertex property map to store the PageRank values.
Tiago Peixoto's avatar
Tiago Peixoto committed
77
    epsilon : float, optional (default: 1e-6)
78 79 80 81 82 83 84 85 86
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: None)
        If supplied, this will limit the total number of iterations.
    ret_iter : bool, optional (default: False)
        If true, the total number of iterations is also returned.

    Returns
    -------
87 88
    pagerank : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the PageRank values.
89 90 91 92 93

    See Also
    --------
    betweenness: betweenness centrality
    eigentrust: eigentrust centrality
94 95
    eigenvector: eigenvector centrality
    hits: hubs and authority centralities
96
    trust_transitivity: pervasive trust transitivity
97 98 99

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
100 101
    The value of PageRank [pagerank-wikipedia]_ of vertex v, :math:`PR(v)`, is
    given iteratively by the relation:
102 103

    .. math::
104

105 106
        PR(v) = \frac{1-d}{N} + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}
107 108 109 110

    where :math:`\Gamma^{-}(v)` are the in-neighbours of v, :math:`d^{+}(w)` is
    the out-degree of w, and d is a damping factor.

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    If a personalization property :math:`p(v)` is given, the definition becomes:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u)}{d^{+}(u)}

    If edge weights are also given, the equation is then generalized to:

    .. math::

        PR(v) = (1-d)p(v) + d \sum_{u \in \Gamma^{-}(v)}
                \frac{PR (u) w_{u\to v}}{d^{+}(u)}

    where :math:`d^{+}(u)=\sum_{y}A_{u,y}w_{u\to y}` is redefined to be the sum
    of the weights of the out-going edges from u.

    The implemented algorithm progressively iterates the above equations, until
Tiago Peixoto's avatar
Tiago Peixoto committed
129
    it no longer changes, according to the parameter epsilon. It has a
130 131 132 133 134 135
    topology-dependent running time.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
136
    >>> from numpy.random import random, poisson, seed
137
    >>> seed(42)
138
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
139
    >>> pr = gt.pagerank(g)
140
    >>> print(pr.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    [ 0.00865316  0.0054067   0.00406312  0.00426668  0.0015      0.00991696
      0.00550065  0.00936397  0.00347917  0.00731864  0.00689843  0.00286274
      0.00508731  0.01020047  0.00562247  0.00584915  0.02457086  0.00438568
      0.0057385   0.00621745  0.001755    0.0045073   0.0015      0.00225167
      0.00698342  0.00206302  0.01094466  0.001925    0.00710093  0.00519877
      0.00460646  0.00994648  0.01005248  0.00904629  0.00676221  0.00789208
      0.00933103  0.00301154  0.00264951  0.00842812  0.0015      0.00191034
      0.00594069  0.00884372  0.00453417  0.00388987  0.00317433  0.0086067
      0.00385394  0.00672702  0.00258411  0.01468262  0.00454     0.00381159
      0.00402607  0.00451133  0.00480966  0.00811557  0.00571949  0.00317433
      0.00856838  0.00280517  0.00280563  0.00906324  0.00614421  0.0015
      0.00292034  0.00479769  0.00552694  0.00604799  0.0115922   0.0015
      0.00676183  0.00695336  0.01023352  0.01737541  0.00451443  0.00197688
      0.00553866  0.00486233  0.0078653   0.00867599  0.01248092  0.0015
      0.00399605  0.00399605  0.00881571  0.00638008  0.01056944  0.00353724
      0.00249869  0.00684919  0.00241374  0.01061397  0.00673569  0.00590937
      0.01004638  0.00331612  0.00926359  0.00460809]
158 159 160 161 162 163 164 165 166

    Now with a personalization vector, and edge weights:

    >>> w = g.new_edge_property("double")
    >>> w.a = random(g.num_edges())
    >>> p = g.new_vertex_property("double")
    >>> p.a = random(g.num_vertices())
    >>> p.a /= p.a.sum()
    >>> pr = gt.pagerank(g, pers=p, weight=w)
167
    >>> print(pr.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    [ 0.00712999  0.00663336  0.00685722  0.00402663  0.00092715  0.01021926
      0.00269502  0.0073301   0.00449892  0.00582793  0.00580542  0.00275149
      0.00676363  0.01157972  0.00486918  0.00616345  0.02506695  0.00607967
      0.00553375  0.00359075  0.00293808  0.00362247  0.00250025  0.00186946
      0.00895516  0.00318147  0.01489786  0.00312436  0.0074751   0.0040342
      0.006254    0.00687051  0.0098073   0.01076278  0.00887077  0.00806759
      0.00969532  0.00252648  0.00278688  0.00972144  0.00148972  0.00215428
      0.00713602  0.00559849  0.00495517  0.00457118  0.00323767  0.01257406
      0.00120179  0.00514838  0.00130655  0.01724465  0.00343819  0.00420962
      0.00297617  0.00588287  0.00657206  0.00775082  0.00758217  0.00433776
      0.00576829  0.00464595  0.00307274  0.00585795  0.00745881  0.00238803
      0.00230431  0.00437046  0.00492464  0.00275414  0.01524646  0.00300867
      0.00816665  0.00548853  0.00874738  0.01871498  0.00216776  0.00245196
      0.00308878  0.00646323  0.01287978  0.00911384  0.01628604  0.0009367
      0.00222119  0.00864202  0.01199119  0.01126539  0.01086846  0.00309224
      0.0020319   0.00659422  0.00226965  0.0134399   0.01094141  0.00732916
      0.00489314  0.0030402   0.00783914  0.00278588]
185 186 187

    References
    ----------
188 189
    .. [pagerank-wikipedia] http://en.wikipedia.org/wiki/Pagerank
    .. [lawrence-pagerank-1998] P. Lawrence, B. Sergey, M. Rajeev, W. Terry,
190
       "The pagerank citation ranking: Bringing order to the web", Technical
191
       report, Stanford University, 1998
192 193 194
    .. [Langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`
195 196 197 198
    """

    if max_iter == None:
        max_iter = 0
Tiago Peixoto's avatar
Tiago Peixoto committed
199 200 201
    if prop == None:
        prop = g.new_vertex_property("double")
    ic = libgraph_tool_centrality.\
202 203 204
            get_pagerank(g._Graph__graph, _prop("v", g, prop),
                         _prop("v", g, pers), _prop("e", g, weight),
                         damping, epsilon, max_iter)
Tiago Peixoto's avatar
Tiago Peixoto committed
205 206 207 208 209
    if ret_iter:
        return prop, ic
    else:
        return prop

Tiago Peixoto's avatar
Tiago Peixoto committed
210

211 212 213 214 215 216
def betweenness(g, vprop=None, eprop=None, weight=None, norm=True):
    r"""
    Calculate the betweenness centrality for each vertex and edge.

    Parameters
    ----------
217
    g : :class:`~graph_tool.Graph`
218
        Graph to be used.
219
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
220
        Vertex property map to store the vertex betweenness values.
221
    eprop : :class:`~graph_tool.PropertyMap`, optional (default: None)
222
        Edge property map to store the edge betweenness values.
223
    weight : :class:`~graph_tool.PropertyMap`, optional (default: None)
224 225 226 227 228 229
        Edge property map corresponding to the weight value of each edge.
    norm : bool, optional (default: True)
        Whether or not the betweenness values should be normalized.

    Returns
    -------
Tiago Peixoto's avatar
Tiago Peixoto committed
230 231
    vertex_betweenness : A vertex property map with the vertex betweenness values.
    edge_betweenness : An edge property map with the edge betweenness values.
232 233 234 235 236 237

    See Also
    --------
    central_point_dominance: central point dominance of the graph
    pagerank: PageRank centrality
    eigentrust: eigentrust centrality
238 239
    eigenvector: eigenvector centrality
    hits: hubs and authority centralities
240
    trust_transitivity: pervasive trust transitivity
241 242 243 244 245

    Notes
    -----
    Betweenness centrality of a vertex :math:`C_B(v)` is defined as,

246 247
    .. math::

248 249 250 251 252 253 254 255 256
        C_B(v)= \sum_{s \neq v \neq t \in V \atop s \neq t}
                \frac{\sigma_{st}(v)}{\sigma_{st}}

    where :math:`\sigma_{st}` is the number of shortest geodesic paths from s to
    t, and :math:`\sigma_{st}(v)` is the number of shortest geodesic paths from
    s to t that pass through a vertex v.  This may be normalised by dividing
    through the number of pairs of vertices not including v, which is
    :math:`(n-1)(n-2)/2`.

257
    The algorithm used here is defined in [brandes-faster-2001]_, and has a
258 259 260 261 262 263 264
    complexity of :math:`O(VE)` for unweighted graphs and :math:`O(VE + V(V+E)
    \log V)` for weighted graphs. The space complexity is :math:`O(VE)`.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
265 266
    >>> from numpy.random import poisson, seed
    >>> seed(42)
267
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
268
    >>> vb, eb = gt.betweenness(g)
269
    >>> print(vb.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    [ 0.04889806  0.07181892  0.0256799   0.02885791  0.          0.05060927
      0.04490836  0.03763462  0.02033383  0.03163202  0.02641248  0.03171598
      0.03771112  0.02194663  0.0374907   0.01072567  0.          0.03079281
      0.05409258  0.00163434  0.00051978  0.01045902  0.          0.00796784
      0.0494527   0.00647576  0.03708252  0.00304503  0.0663657   0.03903257
      0.03305169  0.          0.07787098  0.03938866  0.08577116  0.020183
      0.06024004  0.01004935  0.0443127   0.06397736  0.          0.00363548
      0.01742486  0.03216543  0.01918144  0.02059159  0.          0.01476213
      0.          0.0466751   0.01072612  0.10288046  0.00563973  0.03850413
      0.00629595  0.01292137  0.0537963   0.04454985  0.01227018  0.00729488
      0.02092959  0.02308238  0.00712703  0.02193975  0.03823342  0.
      0.00995364  0.04023839  0.0312708   0.0111312   0.00228516  0.
      0.09659583  0.01327402  0.05792071  0.08606828  0.0143541   0.00221604
      0.02144698  0.          0.04023879  0.00715758  0.          0.
      0.02348452  0.00760922  0.01486521  0.08132792  0.0382674   0.03078318
      0.00430209  0.01772787  0.02280666  0.0373011   0.03077511  0.02871265
      0.          0.01044655  0.04415432  0.04447525]
287 288 289

    References
    ----------
290 291
    .. [betweenness-wikipedia] http://en.wikipedia.org/wiki/Centrality#Betweenness_centrality
    .. [brandes-faster-2001] U. Brandes, "A faster algorithm for betweenness
Tiago Peixoto's avatar
Tiago Peixoto committed
292
       centrality", Journal of Mathematical Sociology, 2001, :doi:`10.1080/0022250X.2001.9990249`
293
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
294 295 296 297 298 299 300 301 302 303 304 305 306
    if vprop == None:
        vprop = g.new_vertex_property("double")
    if eprop == None:
        eprop = g.new_edge_property("double")
    if weight != None and weight.value_type() != eprop.value_type():
        nw = g.new_edge_property(eprop.value_type())
        g.copy_property(weight, nw)
        weight = nw
    libgraph_tool_centrality.\
            get_betweenness(g._Graph__graph, _prop("e", g, weight),
                            _prop("e", g, eprop), _prop("v", g, vprop), norm)
    return vprop, eprop

Tiago Peixoto's avatar
Tiago Peixoto committed
307

Tiago Peixoto's avatar
Tiago Peixoto committed
308
def central_point_dominance(g, betweenness):
309 310 311 312 313 314
    r"""
    Calculate the central point dominance of the graph, given the betweenness
    centrality of each vertex.

    Parameters
    ----------
315
    g : :class:`~graph_tool.Graph`
316
        Graph to be used.
317
    betweenness : :class:`~graph_tool.PropertyMap`
318 319 320 321 322
        Vertex property map with the betweenness centrality values. The values
        must be normalized.

    Returns
    -------
323 324
    cp : float
        The central point dominance.
325 326 327 328 329 330 331 332

    See Also
    --------
    betweenness: betweenness centrality

    Notes
    -----
    Let :math:`v^*` be the vertex with the largest relative betweenness
333
    centrality; then, the central point dominance [freeman-set-1977]_ is defined
334 335
    as:

336 337
    .. math::

338 339 340 341 342 343 344 345 346
        C'_B = \frac{1}{|V|-1} \sum_{v} C_B(v^*) - C_B(v)

    where :math:`C_B(v)` is the normalized betweenness centrality of vertex
    v. The value of :math:`C_B` lies in the range [0,1].

    The algorithm has a complexity of :math:`O(V)`.

    Examples
    --------
347 348
    >>> from numpy.random import poisson, seed
    >>> seed(42)
349
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
350
    >>> vb, eb = gt.betweenness(g)
351
    >>> print(gt.central_point_dominance(g, vb))
Tiago Peixoto's avatar
Tiago Peixoto committed
352
    0.0766473408634
353 354 355

    References
    ----------
356
    .. [freeman-set-1977] Linton C. Freeman, "A Set of Measures of Centrality
Tiago Peixoto's avatar
Tiago Peixoto committed
357 358
       Based on Betweenness", Sociometry, Vol. 40, No. 1,  pp. 35-41, 1977,
       `http://www.jstor.org/stable/3033543 <http://www.jstor.org/stable/3033543>`_
359 360
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
361
    return libgraph_tool_centrality.\
362
           get_central_point_dominance(g._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
363 364
                                       _prop("v", g, betweenness))

365

366 367 368 369 370 371 372 373 374
def eigenvector(g, weight=None, vprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the eigenvector centrality of each vertex in the graph, as well as
    the largest eigenvalue.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
375
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        Edge property map with the edge weights.
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the values of eigenvector must be stored.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eigenvalue : float
        The largest eigenvalue of the (weighted) adjacency matrix.
    eigenvector : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the eigenvector values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
396
    hits: hubs and authority centralities
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The eigenvector centrality :math:`\mathbf{x}` is the eigenvector of the
    (weighted) adjacency matrix with the largest eigenvalue :math:`\lambda`,
    i.e. it is the solution of

    .. math::

        \mathbf{A}\mathbf{x} = \lambda\mathbf{x},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda` is the largest eigenvalue.

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) adjacency matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> w = g.new_edge_property("double")
    >>> w.a = random(g.num_edges()) * 42
    >>> x = gt.eigenvector(g, w)
430
    >>> print(x[0])
Tiago Peixoto's avatar
Tiago Peixoto committed
431
    0.0160851991895
432
    >>> print(x[1].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    [ 0.1376411   0.07207366  0.02727508  0.05805304  0.          0.10690994
      0.04315491  0.01040908  0.02300252  0.08874163  0.04968119  0.06718114
      0.05526028  0.20449371  0.02337425  0.07581173  0.19993899  0.14718912
      0.08464664  0.08474977  0.          0.04843894  0.          0.0089388
      0.16831573  0.00138653  0.11741616  0.          0.13455019  0.03642682
      0.06729803  0.06229526  0.08937098  0.05693976  0.0793375   0.04076743
      0.22176891  0.07717256  0.00518048  0.05722748  0.          0.00055799
      0.04541778  0.06420469  0.06189998  0.08011859  0.05377224  0.29979873
      0.01211309  0.15503588  0.02804072  0.1692873   0.01420732  0.02507
      0.02959899  0.02702304  0.1652933   0.01434992  0.1073001   0.04582697
      0.04618913  0.0220902   0.01421926  0.09891276  0.04522928  0.
      0.00236599  0.07686829  0.03243909  0.00346715  0.1954776   0.
      0.25583217  0.11710921  0.07804282  0.21188464  0.04800656  0.00321866
      0.0552824   0.11204116  0.11420818  0.24071304  0.15451676  0.
      0.00475456  0.10680434  0.17054333  0.18945499  0.15673649  0.03405238
      0.01653319  0.02563015  0.00186129  0.12061027  0.11449362  0.11114196
      0.06779788  0.00595725  0.09127559  0.02380386]
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472

    References
    ----------

    .. [eigenvector-centrality] http://en.wikipedia.org/wiki/Centrality#Eigenvector_centrality
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
    .. [langville-survey-2005] A. N. Langville, C. D. Meyer, "A Survey of
       Eigenvector Methods for Web Information Retrieval", SIAM Review, vol. 47,
       no. 1, pp. 135-161, 2005, :DOI:`10.1137/S0036144503424786`


    """

    if vprop == None:
        vprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
    ee = libgraph_tool_centrality.\
         get_eigenvector(g._Graph__graph, _prop("e", g, weight),
                         _prop("v", g, vprop), epsilon, max_iter)
    return ee, vprop


Tiago Peixoto's avatar
Tiago Peixoto committed
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
def katz(g, alpha=0.01, beta=None, weight=None, vprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the eigenvector centrality of each vertex in the graph, as well as
    the largest eigenvalue.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map with the edge weights.
    alpha : float, optional (default: ``0.01``)
        Free parameter :math:`\alpha`. This must be smaller than the largest
        eigenvalue of the adjacency matrix.
    beta : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the local personalization values. If not
        provided, the global value of 1 will be used.
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the values of eigenvector must be stored. If
        provided, it will be used uninitialized.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    centrality : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the Katz centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
    eigenvector: eigenvector centrality
    hits: hubs and authority centralities
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Katz centrality :math:`\mathbf{x}` is the solution of the nonhomogeneous
    linear system

    .. math::

        \mathbf{x} = \alpha\mathbf{A}\mathbf{x} + \mathbf{\beta},


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\mathbf{\beta}` is the personalization vector (if not supplied,
    :math:`\mathbf{\beta} = \mathbf{1}` is assumed).

    The algorithm uses successive iterations of the equation above, which has a
    topology-dependent convergence complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> w = g.new_edge_property("double")
    >>> w.a = random(g.num_edges()) * 42
    >>> beta = g.new_vertex_property("double")
    >>> beta.a = random(g.num_vertices())
    >>> x = gt.katz(g, 1.2, beta, w)
    >>> print(x.a)
    [  1.37641115e-01   7.20736590e-02   2.72750802e-02   5.80530330e-02
       2.01730812e-46   1.06909945e-01   4.31549123e-02   1.04090757e-02
       2.30025193e-02   8.87416158e-02   4.96811868e-02   6.71811510e-02
       5.52602884e-02   2.04493707e-01   2.33742500e-02   7.58117387e-02
       1.99938991e-01   1.47189139e-01   8.46466442e-02   8.47497818e-02
       1.51237905e-45   4.84389342e-02   5.44009790e-46   8.93879711e-03
       1.68315739e-01   1.38653230e-03   1.17416178e-01   5.86769582e-45
       1.34550186e-01   3.64268155e-02   6.72980215e-02   6.22952571e-02
       8.93709730e-02   5.69397613e-02   7.93375017e-02   4.07674261e-02
       2.21768916e-01   7.71725431e-02   5.18047531e-03   5.72274765e-02
       3.24137925e-46   5.57993342e-04   4.54177794e-02   6.42046867e-02
       6.18999821e-02   8.01185834e-02   5.37722396e-02   2.99798712e-01
       1.21130890e-02   1.55035898e-01   2.80407226e-02   1.69287315e-01
       1.42073265e-02   2.50699989e-02   2.95989919e-02   2.70230452e-02
       1.65293284e-01   1.43499144e-02   1.07300107e-01   4.58269685e-02
       4.61891303e-02   2.20902054e-02   1.42192559e-02   9.89127698e-02
       4.52292816e-02   5.19593979e-46   2.36598546e-03   7.68682863e-02
       3.24390891e-02   3.46714702e-03   1.95477600e-01   6.54634726e-46
       2.55832162e-01   1.17109207e-01   7.80428298e-02   2.11884617e-01
       4.80065642e-02   3.21866466e-03   5.52824029e-02   1.12041157e-01
       1.14208195e-01   2.40713033e-01   1.54516765e-01   2.03810664e-46
       4.75455657e-03   1.06804336e-01   1.70543325e-01   1.89454987e-01
       1.56736484e-01   3.40523749e-02   1.65331867e-02   2.56301436e-02
       1.86129309e-03   1.20610273e-01   1.14493631e-01   1.11141961e-01
       6.77978870e-02   5.95724763e-03   9.12755850e-02   2.38038610e-02]

    References
    ----------

    .. [katz-centrality] http://en.wikipedia.org/wiki/Katz_centrality
    .. [katz-new] L. Katz, "A new status index derived from sociometric analysis",
       Psychometrika 18, Number 1, 39-43, 1953, :DOI:`10.1007/BF02289026`
    """

    if vprop == None:
        vprop = g.new_vertex_property("double")
        N = len(vprop.a)
        vprop.a = beta.a[:N] if beta is not None else 1.
    if max_iter is None:
        max_iter = 0
    ee = libgraph_tool_centrality.\
         get_katz(g._Graph__graph, _prop("e", g, weight), _prop("v", g, vprop),
         _prop("v", beta, vprop), float(alpha), epsilon, max_iter)
    return vprop


589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
def hits(g, weight=None, xprop=None, yprop=None, epsilon=1e-6, max_iter=None):
    r"""
    Calculate the authority and hub centralities of each vertex in the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weight : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Edge property map with the edge weights.
    xprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the authority centrality must be stored.
    yprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
        Vertex property map where the hub centrality must be stored.
    epsilon : float, optional (default: ``1e-6``)
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
    max_iter : int, optional (default: ``None``)
        If supplied, this will limit the total number of iterations.

    Returns
    -------
    eig : `float`
        The largest eigenvalue of the cocitation matrix.
    x : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the authority centrality values.
    y : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the hub centrality values.

    See Also
    --------
    betweenness: betweenness centrality
    eigenvector: eigenvector centrality
    pagerank: PageRank centrality
    trust_transitivity: pervasive trust transitivity

    Notes
    -----

    The Hyperlink-Induced Topic Search (HITS) centrality assigns hub
    (:math:`\mathbf{y}`) and authority (:math:`\mathbf{x}`) centralities to the
    vertices, following:

    .. math::

        \begin{align}
            \mathbf{x} &= \alpha\mathbf{A}\mathbf{y} \\
            \mathbf{y} &= \beta\mathbf{A}^T\mathbf{x}
        \end{align}


    where :math:`\mathbf{A}` is the (weighted) adjacency matrix and
    :math:`\lambda = 1/(\alpha\beta)` is the largest eigenvalue of the
    cocitation matrix, :math:`\mathbf{A}\mathbf{A}^T`. (Without loss of
    generality, we set :math:`\beta=1` in the algorithm.)

    The algorithm uses the power method which has a topology-dependent complexity of
    :math:`O\left(N\times\frac{-\log\epsilon}{\log|\lambda_1/\lambda_2|}\right)`,
    where :math:`N` is the number of vertices, :math:`\epsilon` is the ``epsilon``
    parameter, and :math:`\lambda_1` and :math:`\lambda_2` are the largest and
    second largest eigenvalues of the (weighted) cocitation matrix, respectively.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> w = g.new_edge_property("double")
    >>> w.a = random(g.num_edges()) * 42
    >>> l, x, y = gt.hits(g, w)
    >>> print(l)
    8.1281860004e-05
    >>> print(x.a)
    [  3.24207627e-02   9.86207526e-02   1.35737601e-03   2.81221883e-03
       0.00000000e+00   3.50637929e-02   6.07494974e-03   1.73442186e-02
       7.70292609e-02   3.16281170e-02   6.23685289e-03   5.33251236e-03
       3.90261094e-03   1.39799492e-01   3.32727532e-03   2.75600277e-02
       4.17864911e-03   1.35434601e-01   1.12371826e-01   3.14487794e-02
       1.56239625e-03   1.53154844e-02   0.00000000e+00   9.76595823e-03
       6.84470944e-02   3.99230637e-03   1.61380128e-02   6.30396302e-03
       6.03036275e-02   1.32849969e-02   3.04151276e-02   5.42617854e-02
       2.08833632e-02   2.28460202e-02   7.57731579e-02   1.83496779e-02
       4.73479252e-01   9.24456456e-02   6.05629566e-04   6.52238551e-02
       0.00000000e+00   8.29910892e-03   1.13757465e-02   4.83645107e-02
       2.71118703e-02   5.49281707e-02   1.26313788e-03   1.55217802e-01
       1.19145685e-02   5.68602825e-02   4.09272093e-02   6.21803861e-02
       2.79433626e-03   6.33529895e-03   1.74347486e-02   4.77049040e-02
       2.29321775e-01   9.82639314e-05   1.33196598e-01   1.07649933e-03
       2.24082303e-02   2.90035582e-03   4.40055377e-03   1.81697665e-01
       7.04846456e-03   0.00000000e+00   7.86454159e-03   7.11419961e-02
       2.56300819e-02   2.56393002e-03   1.38263616e-01   0.00000000e+00
       2.97294623e-01   3.87958584e-01   1.57869881e-02   1.78305749e-02
       4.25241895e-02   8.25617611e-04   9.42672676e-03   1.12595761e-01
       5.96375228e-02   3.60860657e-01   2.13119143e-02   0.00000000e+00
       1.17954701e-04   2.64968422e-03   5.35828471e-65   1.82261998e-01
       2.23512354e-01   1.18366359e-01   5.23661102e-02   1.33577328e-04
       1.38032617e-02   5.00359873e-02   7.12945214e-03   4.82585969e-03
       8.28225880e-02   2.45545154e-02   3.93940652e-02   2.36085882e-02]
    >>> print(y.a)
    [  1.19518911e+01   4.24393415e+01   1.99799643e+00   2.21936973e+00
       4.05229016e+00   1.96921433e+00   5.28773128e+01   3.07583159e+00
       3.84349214e+00   1.43864706e-01   1.15485811e+01   3.88897379e+01
       1.25350058e+01   8.23442356e-01   5.16533892e+00   5.82076701e-01
       0.00000000e+00   2.49809577e+01   3.01041295e+00   1.62691697e-01
       2.07143530e+00   3.04855423e-01   4.29357896e+00   6.67497836e-01
       6.87288592e-01   4.79338810e+00   1.91391421e+00   9.79201735e-01
       5.05465736e+00   6.14454206e+00   1.74858481e+00   0.00000000e+00
       3.73904255e+00   5.60767290e-01   1.09558455e+01   8.41912714e+00
       1.43428505e+00   2.08906862e+01   2.95186438e+00   1.21143763e+00
       1.57869686e+01   3.59363866e+00   1.64801081e-03   2.99040323e+00
       7.22166777e-02   3.08057330e+00   0.00000000e+00   6.03006855e-63
       0.00000000e+00   2.52297825e+01   3.54764499e+00   8.31117522e-01
       1.79062457e+00   1.33432369e+01   8.55091617e-04   6.34751541e+00
       2.59640589e+00   6.62572431e+00   8.55178204e-02   5.27425893e-01
       4.33163271e+00   1.12133638e+00   1.34099527e+00   1.71416121e+01
       1.24989675e+01   2.76622179e+00   2.88210334e-01   8.36393997e+00
       2.93852144e-01   9.31043745e-01   9.47642397e-02   7.38290147e+00
       5.91868714e+00   4.66993445e-01   1.98366671e+00   9.30041719e+00
       4.53580404e-01   1.45961552e+00   1.07607675e+01   0.00000000e+00
       1.50664001e+01   3.05884574e+00   0.00000000e+00   7.37716446e-01
       8.67607706e-01   3.96919920e-01   6.28437918e-01   4.05469431e+01
       1.05754629e+00   7.36234170e+00   7.89914973e+00   9.30338044e-02
       5.47835232e+00   7.54663318e+00   2.48594880e+00   5.16658324e-01
       0.00000000e+00   6.17005885e+00   9.42499389e+00   1.45784289e+00]

    References
    ----------

    .. [hits-algorithm] http://en.wikipedia.org/wiki/HITS_algorithm
    .. [kleinberg-authoritative] J. Kleinberg, "Authoritative sources in a
       hyperlinked environment", Journal of the ACM 46 (5): 604–632, 1999,
       :DOI:`10.1145/324133.324140`.
    .. [power-method] http://en.wikipedia.org/wiki/Power_iteration
    """

    if xprop is None:
        xprop = g.new_vertex_property("double")
    if yprop is None:
        yprop = g.new_vertex_property("double")
    if max_iter is None:
        max_iter = 0
    l = libgraph_tool_centrality.\
         get_hits(g._Graph__graph, _prop("e", g, weight), _prop("v", g, xprop),
                  _prop("v", g, yprop), epsilon, max_iter)
    return 1. / l, xprop, yprop


Tiago Peixoto's avatar
Tiago Peixoto committed
738
def eigentrust(g, trust_map, vprop=None, norm=False, epsilon=1e-6, max_iter=0,
Tiago Peixoto's avatar
Tiago Peixoto committed
739
               ret_iter=False):
740 741 742 743 744
    r"""
    Calculate the eigentrust centrality of each vertex in the graph.

    Parameters
    ----------
745
    g : :class:`~graph_tool.Graph`
746
        Graph to be used.
747
    trust_map : :class:`~graph_tool.PropertyMap`
748
        Edge property map with the values of trust associated with each
749
        edge. The values must lie in the range [0,1].
750
    vprop : :class:`~graph_tool.PropertyMap`, optional (default: ``None``)
751
        Vertex property map where the values of eigentrust must be stored.
752
    norm : bool, optional (default:  ``False``)
753
        Norm eigentrust values so that the total sum equals 1.
754
    epsilon : float, optional (default: ``1e-6``)
755 756
        Convergence condition. The iteration will stop if the total delta of all
        vertices are below this value.
757
    max_iter : int, optional (default: ``None``)
758
        If supplied, this will limit the total number of iterations.
759
    ret_iter : bool, optional (default: ``False``)
760 761 762 763
        If true, the total number of iterations is also returned.

    Returns
    -------
764 765
    eigentrust : :class:`~graph_tool.PropertyMap`
        A vertex property map containing the eigentrust values.
766 767 768 769 770

    See Also
    --------
    betweenness: betweenness centrality
    pagerank: PageRank centrality
771
    trust_transitivity: pervasive trust transitivity
772 773 774

    Notes
    -----
775
    The eigentrust [kamvar-eigentrust-2003]_ values :math:`t_i` correspond the
776 777
    following limit

778 779
    .. math::

780 781 782 783 784
        \mathbf{t} = \lim_{n\to\infty} \left(C^T\right)^n \mathbf{c}

    where :math:`c_i = 1/|V|` and the elements of the matrix :math:`C` are the
    normalized trust values:

785 786
    .. math::

787 788 789 790 791 792 793 794 795 796
        c_{ij} = \frac{\max(s_{ij},0)}{\sum_{j} \max(s_{ij}, 0)}

    The algorithm has a topology-dependent complexity.

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
797
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
798
    >>> trust = g.new_edge_property("double")
799
    >>> trust.a = random(g.num_edges())*42
800
    >>> t = gt.eigentrust(g, trust, norm=True)
801
    >>> print(t.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
    [  1.12095562e-02   3.97280231e-03   1.31675503e-02   9.61282478e-03
       0.00000000e+00   1.73295741e-02   3.53395497e-03   1.06203582e-02
       1.36906165e-03   8.64587777e-03   1.12049516e-02   3.18891993e-03
       9.28265221e-03   2.25294315e-02   3.24795656e-03   9.16555333e-03
       5.68412465e-02   6.79686311e-03   6.37474649e-03   6.04696712e-03
       0.00000000e+00   8.51131034e-03   0.00000000e+00   1.09336777e-03
       1.49885187e-02   1.09327367e-04   3.73928902e-02   0.00000000e+00
       1.74638522e-02   8.21101864e-03   5.79876899e-03   1.34905262e-02
       1.71525132e-02   2.25425503e-02   1.04184903e-02   1.05537922e-02
       1.34096247e-02   2.82760533e-03   4.31713918e-04   7.39114668e-03
       0.00000000e+00   2.21328121e-05   8.79050007e-03   7.08148889e-03
       5.88651144e-03   7.45401425e-03   5.66098580e-03   2.80738199e-02
       2.41472197e-03   1.00673881e-02   2.29910658e-03   3.23790630e-02
       3.02136064e-03   2.25030440e-03   3.53325357e-03   6.90672383e-03
       1.01692058e-02   1.03783022e-02   1.22476413e-02   4.82453065e-03
       1.15878890e-02   3.41943633e-03   1.57958469e-03   6.56648121e-03
       1.28152141e-02   0.00000000e+00   1.29192164e-03   9.35867476e-03
       3.89329603e-03   1.78002682e-03   2.81987911e-02   0.00000000e+00
       1.74943514e-02   6.24079508e-03   1.57572103e-02   3.77119257e-02
       4.78552984e-03   3.30463136e-04   5.60118687e-03   5.75656186e-03
       2.65412905e-02   1.59663210e-02   2.88844192e-02   0.00000000e+00
       7.87754853e-04   1.76957899e-02   3.19907905e-02   1.94650690e-02
       1.32052233e-02   3.57577093e-03   7.09968545e-04   8.70787481e-03
       1.24901391e-04   2.61215462e-02   2.25923034e-02   1.10928239e-02
       9.39210737e-03   5.61073138e-04   1.59987179e-02   3.02799309e-03]
827 828 829

    References
    ----------
830
    .. [kamvar-eigentrust-2003] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina
831 832
       "The eigentrust algorithm for reputation management in p2p networks",
       Proceedings of the 12th international conference on World Wide Web,
Tiago Peixoto's avatar
Tiago Peixoto committed
833
       Pages: 640 - 651, 2003, :doi:`10.1145/775152.775242`
834 835
    """

Tiago Peixoto's avatar
Tiago Peixoto committed
836 837
    if vprop == None:
        vprop = g.new_vertex_property("double")
838 839
    i = libgraph_tool_centrality.\
           get_eigentrust(g._Graph__graph, _prop("e", g, trust_map),
Tiago Peixoto's avatar
Tiago Peixoto committed
840
                          _prop("v", g, vprop), epsilon, max_iter)
841 842 843 844 845 846 847 848
    if norm:
        vprop.get_array()[:] /= sum(vprop.get_array())

    if ret_iter:
        return vprop, i
    else:
        return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
849

850
def trust_transitivity(g, trust_map, source=None, target=None, vprop=None):
851
    r"""
852 853
    Calculate the pervasive trust transitivity between chosen (or all) vertices
    in the graph.
854 855 856

    Parameters
    ----------
857
    g : :class:`~graph_tool.Graph`
858
        Graph to be used.
859
    trust_map : :class:`~graph_tool.PropertyMap`
860 861
        Edge property map with the values of trust associated with each
        edge. The values must lie in the range [0,1].
Tiago Peixoto's avatar
Tiago Peixoto committed
862
    source : :class:`~graph_tool.Vertex` (optional, default: None)
863
        Source vertex. All trust values are computed relative to this vertex.
864
        If left unspecified, the trust values for all sources are computed.
Tiago Peixoto's avatar
Tiago Peixoto committed
865
    target : :class:`~graph_tool.Vertex` (optional, default: None)
866 867 868
        The only target for which the trust value will be calculated. If left
        unspecified, the trust values for all targets are computed.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
869 870
        A vertex property map where the values of transitive trust must be
        stored.
871 872 873

    Returns
    -------
874 875 876 877 878 879 880 881
    trust_transitivity : :class:`~graph_tool.PropertyMap` or float
        A vertex vector property map containing, for each source vertex, a
        vector with the trust values for the other vertices. If only one of
        `source` or `target` is specified, this will be a single-valued vertex
        property map containing the trust vector from/to the source/target
        vertex to/from the rest of the network. If both `source` and `target`
        are specified, the result is a single float, with the corresponding
        trust value for the target.
882

883 884 885 886 887 888 889 890
    See Also
    --------
    eigentrust: eigentrust centrality
    betweenness: betweenness centrality
    pagerank: PageRank centrality

    Notes
    -----
Tiago Peixoto's avatar
Tiago Peixoto committed
891
    The pervasive trust transitivity between vertices i and j is defined as
892

893 894
    .. math::

895 896
        t_{ij} = \frac{\sum_m A_{m,j} w^2_{G\setminus\{j\}}(i\to m)c_{m,j}}
                 {\sum_m A_{m,j} w_{G\setminus\{j\}}(i\to m)}
897

898 899 900
    where :math:`A_{ij}` is the adjacency matrix, :math:`c_{ij}` is the direct
    trust from i to j, and :math:`w_G(i\to j)` is the weight of the path with
    maximum weight from i to j, computed as
Tiago Peixoto's avatar
Tiago Peixoto committed
901

902 903
    .. math::

904
       w_G(i\to j) = \prod_{e\in i\to j} c_e.
905

906 907
    The algorithm measures the transitive trust by finding the paths with
    maximum weight, using Dijkstra's algorithm, to all in-neighbours of a given
908
    target. This search needs to be performed repeatedly for every target, since
909 910 911 912 913 914 915
    it needs to be removed from the graph first. For each given source, the
    resulting complexity is therefore :math:`O(N^2\log N)` for all targets, and
    :math:`O(N\log N)` for a single target. For a given target, the complexity
    for obtaining the trust from all given sources is :math:`O(kN\log N)`, where
    :math:`k` is the in-degree of the target. Thus, the complexity for obtaining
    the complete trust matrix is :math:`O(EN\log N)`, where :math:`E` is the
    number of edges in the network.
916 917 918 919 920 921 922

    If enabled during compilation, this algorithm runs in parallel.

    Examples
    --------
    >>> from numpy.random import poisson, random, seed
    >>> seed(42)
923
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
924
    >>> trust = g.new_edge_property("double")
925
    >>> trust.a = random(g.num_edges())
926
    >>> t = gt.trust_transitivity(g, trust, source=g.vertex(0))
927
    >>> print(t.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
    [  1.00000000e+00   9.59916062e-02   4.27717883e-02   7.70755875e-02
       0.00000000e+00   2.04476926e-01   5.55315822e-02   2.82854665e-02
       5.08479257e-02   1.68128402e-01   3.28567434e-02   7.39525583e-02
       1.34463196e-01   8.83740756e-02   1.79990535e-01   7.08809615e-02
       6.37757645e-02   7.24187957e-02   4.83082241e-02   9.90676983e-02
       0.00000000e+00   6.50497060e-02   0.00000000e+00   1.77344948e-02
       1.08677897e-01   1.00958718e-03   4.49524961e-02   0.00000000e+00
       1.64902280e-01   4.31492976e-02   2.19446085e-01   3.00890381e-02
       6.86750847e-02   2.72460575e-02   3.57314594e-02   4.87776483e-02
       4.11748930e-01   7.91396467e-02   2.54835127e-03   3.01711432e-01
       0.00000000e+00   4.14406224e-04   4.24794624e-02   9.14096554e-02
       4.17528677e-01   3.79112573e-02   1.16489950e-01   5.18112902e-02
       8.49111259e-03   5.26399996e-02   2.45690139e-02   7.51435125e-02
       5.62381854e-02   2.90115777e-02   2.72543383e-02   1.46877163e-01
       7.81446822e-02   1.24417763e-02   1.01337976e-01   9.92776442e-02
       3.14622176e-02   1.20097319e-01   3.30335980e-02   4.61757040e-02
       1.01085599e-01   0.00000000e+00   4.44660446e-03   6.31066845e-02
       1.94702084e-02   8.45343379e-04   4.82190327e-02   0.00000000e+00
       6.60346087e-02   7.44581695e-02   6.19535229e-02   1.82072422e-01
       1.45366611e-02   2.59020075e-02   2.52208295e-02   6.80519730e-02
       6.74671969e-02   1.14198914e-01   5.12493343e-02   0.00000000e+00
       6.33427008e-03   1.42290348e-01   6.90459437e-02   1.00565411e-01
       5.88966867e-02   3.28157280e-02   2.80046903e-02   2.41520032e-01
       8.45879329e-04   6.76633672e-02   6.05080467e-02   9.12575826e-02
       1.97789973e-02   6.40885493e-02   4.80934526e-02   1.28787181e-02]
Tiago Peixoto's avatar
Tiago Peixoto committed
953 954 955

    References
    ----------
956 957 958
    .. [richters-trust-2010] Oliver Richters and Tiago P. Peixoto, "Trust
       Transitivity in Social Networks," PLoS ONE 6, no. 4:
       e1838 (2011), :doi:`10.1371/journal.pone.0018384`
Tiago Peixoto's avatar
Tiago Peixoto committed
959

960
    """
Tiago Peixoto's avatar
Tiago Peixoto committed
961 962

    if vprop == None:
963
        vprop = g.new_vertex_property("vector<double>")
964

965 966 967 968
    if target == None:
        target = -1
    else:
        target = g.vertex_index[target]
969

970 971 972 973 974
    if source == None:
        source = -1
    else:
        source = g.vertex_index[source]

975
    libgraph_tool_centrality.\
976 977 978 979
            get_trust_transitivity(g._Graph__graph, source, target,
                                   _prop("e", g, trust_map),
                                   _prop("v", g, vprop))
    if target != -1 or source != -1:
980
        vprop = ungroup_vector_property(vprop, [0])[0]
981
    if target != -1 and source != -1:
982
        return vprop.a[target]
983
    return vprop
984