__init__.py 21.9 KB
Newer Older
Tiago Peixoto's avatar
Tiago Peixoto committed
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
Tiago Peixoto's avatar
Tiago Peixoto committed
3
#
4
5
6
# graph_tool -- a general graph manipulation python module
#
# Copyright (C) 2007-2010 Tiago de Paula Peixoto <tiago@forked.de>
Tiago Peixoto's avatar
Tiago Peixoto committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
``graph_tool.draw`` - Graph drawing
23
-----------------------------------
24
25
26
27
28
29
30
31
32
33
34
35
36

Summary
+++++++

.. autosummary::
   :nosignatures:

   graph_draw
   arf_layout
   random_layout

Contents
++++++++
37
38
"""

39
import sys, os, os.path, time, warnings, tempfile
40
41
42
from .. core import _degree, _prop, PropertyMap, _check_prop_vector,\
     _check_prop_scalar, _check_prop_writable, group_vector_property,\
     ungroup_vector_property
Tiago Peixoto's avatar
Tiago Peixoto committed
43
from .. decorators import _limit_args
44
import numpy.random
45
46
47
48
from numpy import *

from .. dl_import import dl_import
dl_import("import libgraph_tool_layout")
49
50
51
52
53
54

try:
    import gv
except ImportError:
    warnings.warn("error importing gv module... graph_draw() will not work.",
                  ImportWarning)
55
56
57
try:
    import matplotlib.cm
    import matplotlib.colors
58
    from pylab import imread
59
60
61
except ImportError:
    warnings.warn("error importing matplotlib module... " + \
                  "graph_draw() will not work.", ImportWarning)
Tiago Peixoto's avatar
Tiago Peixoto committed
62

63
64
__all__ = ["graph_draw", "arf_layout", "random_layout"]

Tiago Peixoto's avatar
Tiago Peixoto committed
65
66
67

def graph_draw(g, pos=None, size=(15, 15), pin=False, layout="neato",
               maxiter=None, ratio="fill", overlap="prism", sep=None,
68
69
               splines=False, vsize=0.1, penwidth=1.0, elen=None, gprops={},
               vprops={}, eprops={}, vcolor=None, ecolor=None,
Tiago Peixoto's avatar
Tiago Peixoto committed
70
               vcmap=matplotlib.cm.jet, vnorm=True, ecmap=matplotlib.cm.jet,
Tiago Peixoto's avatar
Tiago Peixoto committed
71
               enorm=True, output="", output_format="auto", returngv=False,
72
               fork=False, return_bitmap=False, seed=0):
73
74
75
76
77
78
    r"""Draw a graph using graphviz.

    Parameters
    ----------
    g : Graph
        Graph to be used.
79
    pos : PropertyMap or tuple of PropertyMaps (optional, default: None)
80
81
82
83
84
85
86
        Vertex property maps containing the x and y coordinates of the vertices.
    size : tuple of scalars (optional, default: (15,15))
        Size (in centimeters) of the canvas.
    pin : bool (default: False)
        If True, the vertices are not moved from their initial position.
    layout : string (default: "neato")
        Layout engine to be used. Possible values are "neato", "fdp", "dot",
87
        "circo", "twopi" and "arf".
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    maxiter : int (default: None)
        If specified, limits the maximum number of iterations.
    ratio : string or float (default: "fill")
        Sets the aspect ratio (drawing height/drawing width) for the
        drawing. Note that this is adjusted before the 'size' attribute
        constraints are enforced.

        If ratio is numeric, it is taken as the desired aspect ratio. Then, if
        the actual aspect ratio is less than the desired ratio, the drawing
        height is scaled up to achieve the desired ratio; if the actual ratio is
        greater than that desired ratio, the drawing width is scaled up.

        If ratio = "fill" and the size attribute is set, node positions are
        scaled, separately in both x and y, so that the final drawing exactly
        fills the specified size.

        If ratio = "compress" and the size attribute is set, dot attempts to
        compress the initial layout to fit in the given size. This achieves a
        tighter packing of nodes but reduces the balance and symmetry.
        This feature only works in dot.

        If ratio = "expand", the size attribute is set, and both the width and
        the height of the graph are less than the value in size, node positions
        are scaled uniformly until at least one dimension fits size exactly.
        Note that this is distinct from using size as the desired size, as here
        the drawing is expanded before edges are generated and all node and text
        sizes remain unchanged.

        If ratio = "auto", the page attribute is set and the graph cannot be
117
        drawn on a single page, then size is set to an "ideal" value. In
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        particular, the size in a given dimension will be the smallest integral
        multiple of the page size in that dimension which is at least half the
        current size. The two dimensions are then scaled independently to the
        new size. This feature only works in dot.
    overlap : bool or string (default: "prism")
        Determines if and how node overlaps should be removed. Nodes are first
        enlarged using the sep attribute. If True, overlaps are retained. If
        the value is "scale", overlaps are removed by uniformly scaling in x and
        y. If the value is False, node overlaps are removed by a Voronoi-based
        technique. If the value is "scalexy", x and y are separately scaled to
        remove overlaps.

        If sfdp is available, one can set overlap to "prism" to use a proximity
        graph-based algorithm for overlap removal. This is the preferred
        technique, though "scale" and False can work well with small graphs.
        This technique starts with a small scaling up, controlled by the
        overlap_scaling attribute, which can remove a significant portion of the
        overlap. The prism option also accepts an optional non-negative integer
        suffix. This can be used to control the number of attempts made at
        overlap removal. By default, overlap="prism" is equivalent to
        overlap="prism1000". Setting overlap="prism0" causes only the scaling
        phase to be run.

        If the value is "compress", the layout will be scaled down as much as
        possible without introducing any overlaps, obviously assuming there are
        none to begin with.
    sep : float (default: None)
        Specifies margin to leave around nodes when removing node overlap. This
        guarantees a minimal non-zero distance between nodes.
    splines : bool (default: False)
        If True, the edges are drawn as splines and routed around the vertices.
149
150
151
152
    vsize : float, PropertyMap, or tuple (default: 0.1)
        Default vertex size (width and height). If a tuple is specified, the
        first value should be a property map, and the second is a scale factor.
    penwidth : float, PropertyMap or tuple (default: 1.0)
153
154
        Specifies the width of the pen, in points, used to draw lines and
        curves, including the boundaries of edges and clusters. It has no effect
Tiago Peixoto's avatar
Tiago Peixoto committed
155
156
        on text. If a tuple is specified, the first value should be a property
        map, and the second is a scale factor.
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    elen : float or PropertyMap (default: None)
        Preferred edge length, in inches.
    gprops : dict (default: {})
        Additional graph properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string.
    vprops : dict (default: {})
        Additional vertex properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or vertex property
        maps, with values convertible to strings.
    eprops : dict (default: {})
        Additional edge properties, as a dictionary. The keys are the property
        names, and the values must be convertible to string, or edge property
        maps, with values convertible to strings.
    vcolor : string or PropertyMap (default: None)
        Drawing color for vertices. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
        the 'vcmap' argument.
    ecolor : string or PropertyMap (default: None)
        Drawing color for edges. If the valued supplied is a property map,
        the values must be scalar types, whose color values are obtained from
        the 'ecmap' argument.
    vcmap : matplotlib.colors.Colormap (default: matplotlib.cm.jet)
        Vertex color map.
    vnorm : bool (default: True)
        Normalize vertex color values to the [0,1] range.
    ecmap : matplotlib.colors.Colormap (default: matplotlib.cm.jet)
        Edge color map.
    enorm : bool (default: True)
        Normalize edge color values to the [0,1] range.
    output : string (default: "")
        Output file name.
    output_format : string (default: "auto")
        Output file format. Possible values are "auto", "xlib", "ps", "svg",
        "svgz", "fig", "mif", "hpgl", "pcl", "png", "gif", "dia", "imap",
        "cmapx". If the value is "auto", the format is guessed from the 'output'
192
193
        parameter, or 'xlib' if it is empty. If the value is None, no output is
        produced.
194
195
196
    returngv : bool (default: False)
        Return the graph object used internally with the gv module.
    fork : bool (default: False)
197
        If True, the program is forked before drawing. This is used as a
198
199
200
        work-around for a bug in graphviz, where the exit() function is called,
        which would cause the calling program to end. This is always assumed
        'True', if output_format = 'xlib'.
201
202
203
    return_bitmap : bool (default: False)
        If True, a bitmap (:class:`~numpy.ndarray`) of the rendered graph is
        returned.
204
205
206

    Returns
    -------
207
208
    pos : PropertyMap
        Vector vertex property map with the x and y coordinates of the vertices.
209
210
211
212
213
214
    gv : gv.digraph or gv.graph (optional, only if returngv == True)
        Internally used graphviz graph.


    Notes
    -----
215
    This function is a wrapper for the [graphviz] python
216
217
218
219
220
221
    routines. Extensive additional documentation for the graph, vertex and edge
    properties is available at: http://www.graphviz.org/doc/info/attrs.html.


    Examples
    --------
222
    >>> from numpy import *
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.random_graph(1000, lambda: min(zipf(2.4), 40),
    ...                     lambda i,j: exp(abs(i-j)), directed=False)
    >>> # extract largest component
    >>> comp = gt.label_components(g)
    >>> h = gt.vertex_hist(g, comp)
    >>> max_comp = h[1][list(h[0]).index(max(h[0]))]
    >>> g.remove_vertex_if(lambda v: comp[v] != max_comp)
    >>>
    >>> deg = g.degree_property_map("out")
    >>> deg.get_array()[:] = 2*(sqrt(deg.get_array()[:])*0.5 + 0.4)
    >>> ebet = gt.betweenness(g)[1]
    >>> ebet.get_array()[:] *= 4000
    >>> ebet.get_array()[:] += 10
    >>> gt.graph_draw(g, vsize=deg, vcolor=deg, elen=10, ecolor=ebet,
    ...               penwidth=ebet, overlap="prism", output="graph-draw.png")
240
    <...>
241
242
243
244
245
246
247
248
249
250
251

    .. figure:: graph-draw.png
        :align: center

        Kamada-Kawai force-directed layout of a graph with a power-law degree
        distribution, and dissortative degree correlation. The vertex size and
        color indicate the degree, and the edge color and width the edge
        betweeness centrality.

    References
    ----------
252
    .. [graphviz] http://www.graphviz.org
253
254

    """
Tiago Peixoto's avatar
Tiago Peixoto committed
255

256
    if output != "" and output != None:
257
        output = os.path.expanduser(output)
258
        # check opening file for writing, since graphviz will bork if it is not
259
260
261
262
263
        # possible to open file
        if os.path.dirname(output) != "" and \
               not os.access(os.path.dirname(output), os.W_OK):
            raise IOError("cannot write to " + os.path.dirname(output))

Tiago Peixoto's avatar
Tiago Peixoto committed
264
265
266
267
268
    if g.is_directed():
        gvg = gv.digraph("G")
    else:
        gvg = gv.graph("G")

269
270
271
272
273
    if layout == "arf":
        layout = "neato"
        pos = arf_layout(g, pos=pos)
        pin = True

274
275
    if pos != None:
        # copy user-supplied property
276
277
278
279
        if isinstance(pos, PropertyMap):
            pos = ungroup_vector_property(g, pos, [0,1])
        else:
            pos = (g.copy_property(pos[0]), g.copy_property(pos[1]))
280

281
282
283
284
285
286
287
    if type(vsize) == tuple:
        s = g.new_vertex_property("double")
        g.copy_property(vsize[0], s)
        s.a *= vsize[1]
        vsize = s

    if type(penwidth) == tuple:
288
        s = g.new_edge_property("double")
289
290
291
292
        g.copy_property(penwidth[0], s)
        s.a *= penwidth[1]
        penwidth = s

Tiago Peixoto's avatar
Tiago Peixoto committed
293
    # main graph properties
Tiago Peixoto's avatar
Tiago Peixoto committed
294
295
    gv.setv(gvg, "outputorder", "edgesfirst")
    gv.setv(gvg, "mode", "major")
296
    if overlap == False:
297
        overlap = "false"
298
299
    else:
        overlap = "true"
Tiago Peixoto's avatar
Tiago Peixoto committed
300
301
    if isinstance(overlap, str):
        gv.setv(gvg, "overlap", overlap)
302
    if sep != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
303
        gv.setv(gvg, "sep", str(sep))
Tiago Peixoto's avatar
Tiago Peixoto committed
304
    if splines:
Tiago Peixoto's avatar
Tiago Peixoto committed
305
306
307
308
        gv.setv(gvg, "splines", "true")
    gv.setv(gvg, "ratio", str(ratio))
    # size is in centimeters... convert to inches
    gv.setv(gvg, "size", "%f,%f" % (size[0] / 2.54, size[1] / 2.54))
Tiago Peixoto's avatar
Tiago Peixoto committed
309
    if maxiter != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
310
        gv.setv(gvg, "maxiter", str(maxiter))
311

312
313
    seed = numpy.random.randint(sys.maxint)
    gv.setv(gvg, "start", "%d" % seed)
Tiago Peixoto's avatar
Tiago Peixoto committed
314
315

    # apply all user supplied properties
Tiago Peixoto's avatar
Tiago Peixoto committed
316
    for k, val in gprops.iteritems():
Tiago Peixoto's avatar
Tiago Peixoto committed
317
318
319
320
321
322
323
324
325
326
        if isinstance(val, PropertyMap):
            gv.setv(gvg, k, str(val[g]))
        else:
            gv.setv(gvg, k, str(val))

    # normalize color properties
    if vcolor != None and not isinstance(vcolor, str):
        minmax = [float("inf"), -float("inf")]
        for v in g.vertices():
            c = vcolor[v]
Tiago Peixoto's avatar
Tiago Peixoto committed
327
328
            minmax[0] = min(c, minmax[0])
            minmax[1] = max(c, minmax[1])
329
330
        if minmax[0] == minmax[1]:
            minmax[1] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
331
332
        if vnorm:
            vnorm = matplotlib.colors.normalize(vmin=minmax[0], vmax=minmax[1])
333
334
        else:
            vnorm = lambda x: x
Tiago Peixoto's avatar
Tiago Peixoto committed
335
336
337
338

    if ecolor != None and not isinstance(ecolor, str):
        minmax = [float("inf"), -float("inf")]
        for e in g.edges():
339
            c = ecolor[e]
Tiago Peixoto's avatar
Tiago Peixoto committed
340
341
            minmax[0] = min(c, minmax[0])
            minmax[1] = max(c, minmax[1])
342
343
        if minmax[0] == minmax[1]:
            minmax[1] += 1
Tiago Peixoto's avatar
Tiago Peixoto committed
344
345
        if enorm:
            enorm = matplotlib.colors.normalize(vmin=minmax[0], vmax=minmax[1])
346
347
        else:
            enorm = lambda x: x
Tiago Peixoto's avatar
Tiago Peixoto committed
348

349
    nodes = {}
Tiago Peixoto's avatar
Tiago Peixoto committed
350
351
352

    # add nodes
    for v in g.vertices():
Tiago Peixoto's avatar
Tiago Peixoto committed
353
        n = gv.node(gvg, str(g.vertex_index[v]))
354
355
356

        if type(vsize) == PropertyMap:
            vw = vh = vsize[v]
357
        else:
358
            vw = vh = vsize
359
360
361

        gv.setv(n, "width", "%g" % vw)
        gv.setv(n, "height", "%g" % vh)
Tiago Peixoto's avatar
Tiago Peixoto committed
362
363
364
365
        gv.setv(n, "style", "filled")
        gv.setv(n, "color", "black")
        # apply color
        if vcolor != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
366
            if isinstance(vcolor, str):
Tiago Peixoto's avatar
Tiago Peixoto committed
367
368
                gv.setv(n, "fillcolor", vcolor)
            else:
Tiago Peixoto's avatar
Tiago Peixoto committed
369
                color = tuple([int(c * 255.0) for c in vcmap(vnorm(vcolor[v]))])
Tiago Peixoto's avatar
Tiago Peixoto committed
370
371
372
373
374
375
376
                gv.setv(n, "fillcolor", "#%.2x%.2x%.2x%.2x" % color)
        else:
            gv.setv(n, "fillcolor", "red")
        gv.setv(n, "label", "")

        # user supplied position
        if pos != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
377
            gv.setv(n, "pos", "%f,%f" % (pos[0][v], pos[1][v]))
Tiago Peixoto's avatar
Tiago Peixoto committed
378
379
380
            gv.setv(n, "pin", str(pin))

        # apply all user supplied properties
Tiago Peixoto's avatar
Tiago Peixoto committed
381
        for k, val in vprops.iteritems():
Tiago Peixoto's avatar
Tiago Peixoto committed
382
383
384
385
            if isinstance(val, PropertyMap):
                gv.setv(n, k, str(val[v]))
            else:
                gv.setv(n, k, str(val))
386
        nodes[v] = n
387

Tiago Peixoto's avatar
Tiago Peixoto committed
388
    for e in g.edges():
389
390
        ge = gv.edge(nodes[e.source()],
                     nodes[e.target()])
Tiago Peixoto's avatar
Tiago Peixoto committed
391
        gv.setv(ge, "arrowsize", "0.3")
392
393
        if g.is_directed():
            gv.setv(ge, "arrowhead", "vee")
394

Tiago Peixoto's avatar
Tiago Peixoto committed
395
396
        # apply color
        if ecolor != None:
Tiago Peixoto's avatar
Tiago Peixoto committed
397
            if isinstance(ecolor, str):
Tiago Peixoto's avatar
Tiago Peixoto committed
398
399
                gv.setv(ge, "color", ecolor)
            else:
Tiago Peixoto's avatar
Tiago Peixoto committed
400
                color = tuple([int(c * 255.0) for c in ecmap(enorm(ecolor[e]))])
Tiago Peixoto's avatar
Tiago Peixoto committed
401
402
                gv.setv(ge, "color", "#%.2x%.2x%.2x%.2x" % color)

403
404
405
406
        # apply edge length
        if elen != None:
            if isinstance(elen, PropertyMap):
                gv.setv(ge, "len", str(elen[e]))
Tiago Peixoto's avatar
Tiago Peixoto committed
407
            else:
408
                gv.setv(ge, "len", str(elen))
Tiago Peixoto's avatar
Tiago Peixoto committed
409
410

        # apply width
411
412
413
        if penwidth != None:
            if isinstance(penwidth, PropertyMap):
                gv.setv(ge, "penwidth", str(penwidth[e]))
Tiago Peixoto's avatar
Tiago Peixoto committed
414
            else:
415
                gv.setv(ge, "penwidth", str(penwidth))
Tiago Peixoto's avatar
Tiago Peixoto committed
416
417

        # apply all user supplied properties
Tiago Peixoto's avatar
Tiago Peixoto committed
418
        for k, v in eprops.iteritems():
Tiago Peixoto's avatar
Tiago Peixoto committed
419
420
421
422
            if isinstance(v, PropertyMap):
                gv.setv(ge, k, str(v[e]))
            else:
                gv.setv(ge, k, str(v))
423

Tiago Peixoto's avatar
Tiago Peixoto committed
424
    gv.layout(gvg, layout)
Tiago Peixoto's avatar
Tiago Peixoto committed
425
    gv.render(gvg, "dot", "/dev/null")  # retrieve positions
Tiago Peixoto's avatar
Tiago Peixoto committed
426
427
428

    if pos == None:
        pos = (g.new_vertex_property("double"), g.new_vertex_property("double"))
429
430
    for n, n_gv in nodes.iteritems():
        p = gv.getv(n_gv, "pos")
Tiago Peixoto's avatar
Tiago Peixoto committed
431
        p = p.split(",")
432
433
        pos[0][n] = float(p[0])
        pos[1][n] = float(p[1])
434

435
    # I don't get this, but it seems necessary
436
437
    pos[0].a /= 100
    pos[1].a /= 100
438

439
440
    pos = group_vector_property(g, pos)

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    if return_bitmap:
        # This is a not-so-nice hack which obtains an image buffer from a png
        # file. It is a pity that graphviz does not give access to its internal
        # buffers.
        tmp = tempfile.mkstemp(suffix=".png")[1]
        gv.render(gvg, "png", tmp)
        img = imread(tmp)
        os.remove(tmp)
    else:
        if output_format == "auto":
            if output == "":
                output_format = "xlib"
            elif output != None:
                output_format = output.split(".")[-1]

        # if using xlib we need to fork the process, otherwise good ol' graphviz
        # will call exit() when the window is closed
        if output_format == "xlib" or fork:
            pid = os.fork()
            if pid == 0:
                gv.render(gvg, output_format, output)
Tiago Peixoto's avatar
Tiago Peixoto committed
462
                os._exit(0)  # since we forked, it's good to be sure
463
464
465
466
467
468
469
470
471
            if output_format != "xlib":
                os.wait()
        elif output != None:
            gv.render(gvg, output_format, output)

    ret = [pos]
    if return_bitmap:
        ret.append(img)

472
    if returngv:
473
        ret.append(gv)
474
475
    else:
        gv.rm(gvg)
476
        del gvg
477
478
479
480
481

    if len(ret) > 1:
        return tuple(ret)
    else:
        return ret[0]
482

Tiago Peixoto's avatar
Tiago Peixoto committed
483

484
def random_layout(g, shape=None, pos=None, dim=2):
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    r"""Performs a random layout of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    shape : tuple (optional, default: None)
        Rectangular shape of the bounding area. If None, a square of linear size
        :math:`\sqrt{N}` is used.
    pos : PropertyMap (optional, default: None)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: 2)
        Number of coordinates per vertex.

    Returns
    -------
    pos : A vector vertex property map
        Vertex property map with the coordinates of the vertices.

    Notes
    -----
    This algorithm has complexity :math:`O(V)`.
    """

509
510
511
512
513
514
515
    if pos == None:
        pos = [g.new_vertex_property("double") for i in xrange(dim)]

    if isinstance(pos, PropertyMap) and "vector" in pos.value_type():
        pos = ungroup_vector_property(pos)

    if shape == None:
Tiago Peixoto's avatar
Tiago Peixoto committed
516
        shape = [sqrt(g.num_vertices())] * dim
517
518
519
520
521

    for i in xrange(dim):
        _check_prop_scalar(pos[i], name="pos[%d]" % i)
        _check_prop_writable(pos[i], name="pos[%d]" % i)
        a = pos[i].get_array()
Tiago Peixoto's avatar
Tiago Peixoto committed
522
        a[:] = numpy.random.random(len(a)) * shape[i]
523
524
525
526

    pos = group_vector_property(g, pos)
    return pos

Tiago Peixoto's avatar
Tiago Peixoto committed
527

528
529
def arf_layout(g, weight=None, d=0.1, a=10, dt=0.001, epsilon=1e-6,
               max_iter=1000, pos=None, dim=2):
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    r"""Calculate the ARF spring-block layout of the graph.

    Parameters
    ----------
    g : Graph
        Graph to be used.
    weight : PropertyMap (optional, default: None)
        An edge property map with the respective weights.
    d : float (optional, default: 0.1)
        Opposing force between vertices.
    a : float (optional, default: 10)
        Attracting force between adjacent vertices.
    dt : float (optional, default: 0.001)
        Iteration step size.
    epsilon : float (optional, default: 1e-6)
        Convergence criterion.
    max_iter : int (optional, default: 1000)
        Maximum number of iterations. If this value is 0, it runs until
        convergence.
    pos : PropertyMap (optional, default: None)
        Vector vertex property maps where the coordinates should be stored.
    dim : int (optional, default: 2)
        Number of coordinates per vertex.

    Returns
    -------
    pos : A vector vertex property map
        Vertex property map with the coordinates of the vertices.

    Notes
    -----
561
    This algorithm is defined in [geipel-self-organization-2007]_, and has
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
    complexity :math:`O(V^2)`.

    Examples
    --------
    >>> from numpy.random import seed, zipf
    >>> seed(42)
    >>> g = gt.random_graph(100, lambda: 3, directed=False)
    >>> t = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(t)
    >>> pos = gt.graph_draw(g, output=None) # initial configuration
    >>> pos = gt.arf_layout(g, pos=pos, max_iter=0)
    >>> gt.graph_draw(g, pos=pos, pin=True, output="graph-draw-arf.png")
    <...>

    .. figure:: graph-draw-arf.png
        :align: center

        ARF layout of a minimum spanning tree of a random graph.

    References
    ----------
583
    .. [geipel-self-organization-2007] Markus M. Geipel, "Self-Organization
584
585
586
587
588
       applied to Dynamic Network Layout" , International Journal of Modern
       Physics C vol. 18, no. 10 (2007), pp. 1537-1549, arXiv:0704.1748v5
    .. _arf: http://www.sg.ethz.ch/research/graphlayout
    """

589
    if pos == None:
590
591
592
593
        if dim != 2:
            pos = random_layout(g, dim=dim)
        else:
            pos = graph_draw(g, output=None)
594
595
596
    _check_prop_vector(pos, name="pos", floating=True)

    g.stash_filter(directed=True)
597
598
599
600
601
602
603
    try:
        g.set_directed(False)
        libgraph_tool_layout.arf_layout(g._Graph__graph, _prop("v", g, pos),
                                        _prop("e", g, weight), d, a, dt,
                                        max_iter, epsilon, dim)
    finally:
        g.pop_filter(directed=True)
604
    return pos