__init__.py 66.5 KB
Newer Older
1
#! /usr/bin/env python
2
# -*- coding: utf-8 -*-
3
#
4
5
# graph_tool -- a general graph manipulation python module
#
Tiago Peixoto's avatar
Tiago Peixoto committed
6
# Copyright (C) 2006-2014 Tiago de Paula Peixoto <tiago@skewed.de>
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

21
"""
22
23
``graph_tool.topology`` - Assessing graph topology
--------------------------------------------------
24
25
26
27
28
29
30

Summary
+++++++

.. autosummary::
   :nosignatures:

31
   shortest_distance
Tiago Peixoto's avatar
Tiago Peixoto committed
32
   shortest_path
Tiago Peixoto's avatar
Tiago Peixoto committed
33
   pseudo_diameter
34
   similarity
35
   isomorphism
36
37
   subgraph_isomorphism
   mark_subgraph
38
39
   max_cardinality_matching
   max_independent_vertex_set
40
   min_spanning_tree
41
   random_spanning_tree
42
43
44
   dominator_tree
   topological_sort
   transitive_closure
Tiago Peixoto's avatar
Tiago Peixoto committed
45
   tsp_tour
46
   sequential_vertex_coloring
47
48
   label_components
   label_biconnected_components
49
   label_largest_component
50
   label_out_component
Tiago Peixoto's avatar
Tiago Peixoto committed
51
   kcore_decomposition
52
   is_bipartite
Tiago Peixoto's avatar
Tiago Peixoto committed
53
   is_DAG
54
   is_planar
55
   make_maximal_planar
Tiago Peixoto's avatar
Tiago Peixoto committed
56
   edge_reciprocity
57
58
59

Contents
++++++++
60

61
62
"""

63
64
from __future__ import division, absolute_import, print_function

Tiago Peixoto's avatar
Tiago Peixoto committed
65
from .. dl_import import dl_import
66
dl_import("from . import libgraph_tool_topology")
67

68
from .. import _prop, Vector_int32_t, _check_prop_writable, \
69
     _check_prop_scalar, _check_prop_vector, Graph, PropertyMap, GraphView,\
Tiago Peixoto's avatar
Tiago Peixoto committed
70
     libcore, _get_rng, _degree
71
import random, sys, numpy
72
__all__ = ["isomorphism", "subgraph_isomorphism", "mark_subgraph",
73
           "max_cardinality_matching", "max_independent_vertex_set",
74
           "min_spanning_tree", "random_spanning_tree", "dominator_tree",
Tiago Peixoto's avatar
Tiago Peixoto committed
75
           "topological_sort", "transitive_closure", "tsp_tour",
76
77
           "sequential_vertex_coloring", "label_components",
           "label_largest_component", "label_biconnected_components",
Tiago Peixoto's avatar
Tiago Peixoto committed
78
79
80
           "label_out_component", "kcore_decomposition", "shortest_distance",
           "shortest_path", "pseudo_diameter", "is_bipartite", "is_DAG",
           "is_planar", "make_maximal_planar", "similarity", "edge_reciprocity"]
81
82
83
84
85
86
87
88
89
90


def similarity(g1, g2, label1=None, label2=None, norm=True):
    r"""Return the adjacency similarity between the two graphs.

    Parameters
    ----------
    g1 : :class:`~graph_tool.Graph`
        First graph to be compared.
    g2 : :class:`~graph_tool.Graph`
Tiago Peixoto's avatar
Tiago Peixoto committed
91
        Second graph to be compared.
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    label1 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the first graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    label2 : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex labels for the second graph to be used in comparison. If not
        supplied, the vertex indexes are used.
    norm : bool (optional, default: ``True``)
        If ``True``, the returned value is normalized by the total number of
        edges.

    Returns
    -------
    similarity : float
        Adjacency similarity value.

    Notes
    -----
    The adjacency similarity is the sum of equal entries in the adjacency
    matrix, given a vertex ordering determined by the vertex labels. In other
    words it counts the number of edges which have the same source and target
    labels in both graphs.

    The algorithm runs with complexity :math:`O(E_1 + V_1 + E_2 + V_2)`.

    Examples
    --------
118
119
120
121
122
123
124
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

125
126
127
128
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> u = g.copy()
    >>> gt.similarity(u, g)
    1.0
Tiago Peixoto's avatar
Tiago Peixoto committed
129
    >>> gt.random_rewire(u)
Tiago Peixoto's avatar
Tiago Peixoto committed
130
    19
131
    >>> gt.similarity(u, g)
Tiago Peixoto's avatar
Tiago Peixoto committed
132
    0.03
133
134
135
136
137
138
139
    """

    if label1 is None:
        label1 = g1.vertex_index
    if label2 is None:
        label2 = g2.vertex_index
    if label1.value_type() != label2.value_type():
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        try:
            label2 = label2.copy(label1.value_type())
        except ValueError:
            label1 = label1.copy(label2.value_type())
    try:
        _check_prop_scalar(label1, floating=False)
        _check_prop_scalar(label2, floating=False)
        if label1.fa is not None and label1.fa.max() >= g1.num_vertices():
            raise ValueError()
        if label2.fa is not None and label2.fa.max() >= g2.num_vertices():
            raise ValueError()
        s = libgraph_tool_topology.\
               similarity_fast(g1._Graph__graph, g2._Graph__graph,
                               _prop("v", g1, label1), _prop("v", g2, label2))
    except ValueError:
        s = libgraph_tool_topology.\
               similarity(g1._Graph__graph, g2._Graph__graph,
                          _prop("v", g1, label1), _prop("v", g2, label2))
158
159
160
161
162
    if not g1.is_directed() or not g2.is_directed():
        s /= 2
    if norm:
        s /= float(max(g1.num_edges(), g2.num_edges()))
    return s
163

Tiago Peixoto's avatar
Tiago Peixoto committed
164

165
def isomorphism(g1, g2, isomap=False):
166
167
168
169
170
171
172
    r"""Check whether two graphs are isomorphic.

    If `isomap` is True, a vertex :class:`~graph_tool.PropertyMap` with the
    isomorphism mapping is returned as well.

    Examples
    --------
173
174
175
176
177
178
179
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

180
181
182
183
184
185
186
187
188
    >>> g = gt.random_graph(100, lambda: (3,3))
    >>> g2 = gt.Graph(g)
    >>> gt.isomorphism(g, g2)
    True
    >>> g.add_edge(g.vertex(0), g.vertex(1))
    <...>
    >>> gt.isomorphism(g, g2)
    False

189
    """
190
191
    imap = g1.new_vertex_property("int32_t")
    iso = libgraph_tool_topology.\
192
           check_isomorphism(g1._Graph__graph, g2._Graph__graph,
Tiago Peixoto's avatar
Tiago Peixoto committed
193
                             _prop("v", g1, imap))
194
195
196
197
198
    if isomap:
        return iso, imap
    else:
        return iso

Tiago Peixoto's avatar
Tiago Peixoto committed
199

200
201
202
def subgraph_isomorphism(sub, g, max_n=0, vertex_label=None, edge_label=None,
                         random=False):
    r"""Obtain all subgraph isomorphisms of `sub` in `g` (or at most `max_n` subgraphs, if `max_n > 0`).
203

204

Tiago Peixoto's avatar
Tiago Peixoto committed
205
206
207
208
209
210
    Parameters
    ----------
    sub : :class:`~graph_tool.Graph`
        Subgraph for which to be searched.
    g : :class:`~graph_tool.Graph`
        Graph in which the search is performed.
211
    max_n : int (optional, default: `0`)
Tiago Peixoto's avatar
Tiago Peixoto committed
212
213
        Maximum number of matches to find. If `max_n == 0`, all matches are
        found.
214
215
216
217
218
219
220
221
    vertex_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify vertex labels
        which should match, in addition to the topological isomorphism.
    edge_label : pair of :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, this should be a pair of :class:`~graph_tool.PropertyMap`
        objects, belonging to `sub` and `g` (in this order), which specify edge labels
        which should match, in addition to the topological isomorphism.
Tiago Peixoto's avatar
Tiago Peixoto committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    random : bool (optional, default: False)
        If `True`, the vertices of `g` are indexed in random order before
        the search.

    Returns
    -------
    vertex_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing vertex property map objects which indicate different
        isomorphism mappings. The property maps vertices in `sub` to the
        corresponding vertex index in `g`.
    edge_maps : list of :class:`~graph_tool.PropertyMap` objects
        List containing edge property map objects which indicate different
        isomorphism mappings. The property maps edges in `sub` to the
        corresponding edge index in `g`.

    Notes
    -----
239
240
241
242
243
    Here "subgraph" does not mean "node-induced subgraph", i.e. there may exist
    an edge in the matched subgraph in `g` that does not exist in `sub`. For
    node-induced subgraph isomorphism, see the :func:`+graph_tool.clustering.motifs`
    function.

Tiago Peixoto's avatar
Tiago Peixoto committed
244
245
246
247
    The algorithm used is described in [ullmann-algorithm-1976]_. It has a
    worse-case complexity of :math:`O(N_g^{N_{sub}})`, but for random graphs it
    typically has a complexity of :math:`O(N_g^\gamma)` with :math:`\gamma`
    depending sub-linearly on the size of `sub`.
248
249
250

    Examples
    --------
251
252
253
254
255
256
257
258
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(44)
       gt.seed_rng(44)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
259
    >>> g = gt.random_graph(30, lambda: (poisson(6.1), poisson(6.1)))
260
    >>> sub = gt.random_graph(10, lambda: (poisson(1.9), poisson(1.9)))
261
    >>> vm, em = gt.subgraph_isomorphism(sub, g)
262
    >>> print(len(vm))
Tiago Peixoto's avatar
Tiago Peixoto committed
263
    35
264
    >>> for i in range(len(vm)):
265
266
267
268
269
270
271
272
273
274
    ...   g.set_vertex_filter(None)
    ...   g.set_edge_filter(None)
    ...   vmask, emask = gt.mark_subgraph(g, sub, vm[i], em[i])
    ...   g.set_vertex_filter(vmask)
    ...   g.set_edge_filter(emask)
    ...   assert(gt.isomorphism(g, sub))
    >>> g.set_vertex_filter(None)
    >>> g.set_edge_filter(None)
    >>> ewidth = g.copy_property(emask, value_type="double")
    >>> ewidth.a += 0.5
Tiago Peixoto's avatar
Tiago Peixoto committed
275
276
277
    >>> ewidth.a *= 2
    >>> gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
    ...               edge_pen_width=ewidth, output_size=(200, 200),
278
    ...               output="subgraph-iso-embed.pdf")
279
    <...>
Tiago Peixoto's avatar
Tiago Peixoto committed
280
    >>> gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.pdf")
281
282
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
283
284
285
286
287
288
289
290
    .. testcode::
       :hide:

       gt.graph_draw(g, vertex_fill_color=vmask, edge_color=emask,
                     edge_pen_width=ewidth, output_size=(200, 200),
                     output="subgraph-iso-embed.png")
       gt.graph_draw(sub, output_size=(200, 200), output="subgraph-iso.png")

Tiago Peixoto's avatar
Tiago Peixoto committed
291
292
    .. image:: subgraph-iso.*
    .. image:: subgraph-iso-embed.*
293

294

Tiago Peixoto's avatar
Tiago Peixoto committed
295
    **Left:** Subgraph searched, **Right:** One isomorphic subgraph found in main graph.
296
297
298

    References
    ----------
299
    .. [ullmann-algorithm-1976] Ullmann, J. R., "An algorithm for subgraph
300
       isomorphism", Journal of the ACM 23 (1): 31-42, 1976, :doi:`10.1145/321921.321925`
301
    .. [subgraph-isormophism-wikipedia] http://en.wikipedia.org/wiki/Subgraph_isomorphism_problem
302
303

    """
304
305
    if sub.num_vertices() == 0:
        raise ValueError("Cannot search for an empty subgraph.")
306
307
308
309
310
311
312
313
    if vertex_label is None:
        vertex_label = (None, None)
    elif vertex_label[0].value_type() != vertex_label[1].value_type():
        raise ValueError("Both vertex label property maps must be of the same type!")
    if edge_label is None:
        edge_label = (None, None)
    elif edge_label[0].value_type() != edge_label[1].value_type():
        raise ValueError("Both edge label property maps must be of the same type!")
314
315
    vmaps = []
    emaps = []
316
    if random:
317
        rng = _get_rng()
318
    else:
319
        rng = libcore.rng_t()
320
321
    libgraph_tool_topology.\
           subgraph_isomorphism(sub._Graph__graph, g._Graph__graph,
322
323
324
325
                                _prop("v", sub, vertex_label[0]),
                                _prop("v", g, vertex_label[1]),
                                _prop("e", sub, edge_label[0]),
                                _prop("e", g, edge_label[1]),
326
                                vmaps, emaps, max_n, rng)
327
    for i in range(len(vmaps)):
328
329
330
331
        vmaps[i] = PropertyMap(vmaps[i], sub, "v")
        emaps[i] = PropertyMap(emaps[i], sub, "e")
    return vmaps, emaps

Tiago Peixoto's avatar
Tiago Peixoto committed
332

333
334
335
336
337
338
339
340
341
342
def mark_subgraph(g, sub, vmap, emap, vmask=None, emask=None):
    r"""
    Mark a given subgraph `sub` on the graph `g`.

    The mapping must be provided by the `vmap` and `emap` parameters,
    which map vertices/edges of `sub` to indexes of the corresponding
    vertices/edges in `g`.

    This returns a vertex and an edge property map, with value type 'bool',
    indicating whether or not a vertex/edge in `g` corresponds to the subgraph
343
    `sub`.
344
    """
345
    if vmask is None:
346
        vmask = g.new_vertex_property("bool")
347
    if emask is None:
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        emask = g.new_edge_property("bool")

    vmask.a = False
    emask.a = False

    for v in sub.vertices():
        w = g.vertex(vmap[v])
        vmask[w] = True
        for ew in w.out_edges():
            for ev in v.out_edges():
                if emap[ev] == g.edge_index[ew]:
                    emask[ew] = True
                    break
    return vmask, emask
362

Tiago Peixoto's avatar
Tiago Peixoto committed
363

364
def min_spanning_tree(g, weights=None, root=None, tree_map=None):
365
366
367
368
369
370
371
    """
    Return the minimum spanning tree of a given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
372
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
373
374
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
375
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
376
        Root of the minimum spanning tree. If this is provided, Prim's algorithm
377
        is used. Otherwise, Kruskal's algorithm is used.
378
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The algorithm runs with :math:`O(E\log E)` complexity, or :math:`O(E\log V)`
    if `root` is specified.

    Examples
    --------
394
395
396
397
398
399
400
401
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
402
403
404
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
Tiago Peixoto's avatar
Tiago Peixoto committed
405
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
406
    >>> tree = gt.min_spanning_tree(g, weights=weight)
407
    >>> gt.graph_draw(g, pos=pos, output="triang_orig.pdf")
408
409
    <...>
    >>> g.set_edge_filter(tree)
410
    >>> gt.graph_draw(g, pos=pos, output="triang_min_span_tree.pdf")
411
412
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
413
414
415
416
417
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="triang_orig.png")
       gt.graph_draw(g, pos=pos, output="triang_min_span_tree.png")
418

419
    .. image:: triang_orig.*
Tiago Peixoto's avatar
Tiago Peixoto committed
420
        :width: 400px
421
    .. image:: triang_min_span_tree.*
Tiago Peixoto's avatar
Tiago Peixoto committed
422
        :width: 400px
423
424

    *Left:* Original graph, *Right:* The minimum spanning tree.
425
426
427
428
429

    References
    ----------
    .. [kruskal-shortest-1956] J. B. Kruskal.  "On the shortest spanning subtree
       of a graph and the traveling salesman problem",  In Proceedings of the
Tiago Peixoto's avatar
Tiago Peixoto committed
430
431
       American Mathematical Society, volume 7, pages 48-50, 1956.
       :doi:`10.1090/S0002-9939-1956-0078686-7`
432
433
434
435
436
    .. [prim-shortest-1957] R. Prim.  "Shortest connection networks and some
       generalizations",  Bell System Technical Journal, 36:1389-1401, 1957.
    .. [boost-mst] http://www.boost.org/libs/graph/doc/graph_theory_review.html#sec:minimum-spanning-tree
    .. [mst-wiki] http://en.wikipedia.org/wiki/Minimum_spanning_tree
    """
437
    if tree_map is None:
438
439
440
441
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

442
443
444
445
446
447
448
449
450
451
452
    u = GraphView(g, directed=False)
    if root is None:
        libgraph_tool_topology.\
               get_kruskal_spanning_tree(u._Graph__graph,
                                         _prop("e", g, weights),
                                         _prop("e", g, tree_map))
    else:
        libgraph_tool_topology.\
               get_prim_spanning_tree(u._Graph__graph, int(root),
                                      _prop("e", g, weights),
                                      _prop("e", g, tree_map))
453
    return tree_map
454

Tiago Peixoto's avatar
Tiago Peixoto committed
455

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
def random_spanning_tree(g, weights=None, root=None, tree_map=None):
    """
    Return a random spanning tree of a given graph, which can be directed or
    undirected.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights. If provided, the probability of a particular spanning
        tree being selected is the product of its edge weights.
    root : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Root of the spanning tree. If not provided, it will be selected randomly.
    tree_map : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        If provided, the edge tree map will be written in this property map.

    Returns
    -------
    tree_map : :class:`~graph_tool.PropertyMap`
        Edge property map with mark the tree edges: 1 for tree edge, 0
        otherwise.

    Notes
    -----
    The typical running time for random graphs is :math:`O(N\log N)`.

    Examples
    --------
485
486
487
488
489
490
491
492
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import random
493
494
495
496
497
498
499
500
    >>> g, pos = gt.triangulation(random((400, 2)) * 10, type="delaunay")
    >>> weight = g.new_edge_property("double")
    >>> for e in g.edges():
    ...    weight[e] = linalg.norm(pos[e.target()].a - pos[e.source()].a)
    >>> tree = gt.random_spanning_tree(g, weights=weight)
    >>> gt.graph_draw(g, pos=pos, output="rtriang_orig.pdf")
    <...>
    >>> g.set_edge_filter(tree)
Tiago Peixoto's avatar
Tiago Peixoto committed
501
    >>> gt.graph_draw(g, pos=pos, output="triang_random_span_tree.pdf")
502
503
    <...>

Tiago Peixoto's avatar
Tiago Peixoto committed
504
505
506
507
508
    .. testcode::
       :hide:

       gt.graph_draw(g, pos=pos, output="rtriang_orig.png")
       gt.graph_draw(g, pos=pos, output="triang_random_span_tree.png")
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

    .. image:: rtriang_orig.*
        :width: 400px
    .. image:: triang_random_span_tree.*
        :width: 400px

    *Left:* Original graph, *Right:* A random spanning tree.

    References
    ----------

    .. [wilson-generating-1996] David Bruce Wilson, "Generating random spanning
       trees more quickly than the cover time", Proceedings of the twenty-eighth
       annual ACM symposium on Theory of computing, Pages 296-303, ACM New York,
       1996, :doi:`10.1145/237814.237880`
    .. [boost-rst] http://www.boost.org/libs/graph/doc/random_spanning_tree.html
    """
    if tree_map is None:
        tree_map = g.new_edge_property("bool")
    if tree_map.value_type() != "bool":
        raise ValueError("edge property 'tree_map' must be of value type bool.")

    if root is None:
        root = g.vertex(numpy.random.randint(0, g.num_vertices()),
                        use_index=False)

    # we need to restrict ourselves to the in-component of root
    l = label_out_component(GraphView(g, reversed=True), root)
537
538
539
    u = GraphView(g, vfilt=l)
    if u.num_vertices() != g.num_vertices():
        raise ValueError("There must be a path from all vertices to the root vertex: %d" % int(root) )
540
541
542
543

    libgraph_tool_topology.\
        random_spanning_tree(g._Graph__graph, int(root),
                             _prop("e", g, weights),
544
                             _prop("e", g, tree_map), _get_rng())
545
546
547
    return tree_map


Tiago Peixoto's avatar
Tiago Peixoto committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
def dominator_tree(g, root, dom_map=None):
    """Return a vertex property map the dominator vertices for each vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.
    dom_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        If provided, the dominator map will be written in this property map.

    Returns
    -------
    dom_map : :class:`~graph_tool.PropertyMap`
        The dominator map. It contains for each vertex, the index of its
        dominator vertex.

    Notes
    -----
    A vertex u dominates a vertex v, if every path of directed graph from the
    entry to v must go through u.

    The algorithm runs with :math:`O((V+E)\log (V+E))` complexity.

    Examples
    --------
575
576
577
578
579
580
581
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
582
583
584
    >>> g = gt.random_graph(100, lambda: (2, 2))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
585
    >>> root = [v for v in g.vertices() if v.in_degree() == 0]
Tiago Peixoto's avatar
Tiago Peixoto committed
586
    >>> dom = gt.dominator_tree(g, root[0])
587
    >>> print(dom.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
588
    [ 0  0  0  0  0  0 62  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
589
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
Tiago Peixoto's avatar
Tiago Peixoto committed
590
591
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
      0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
Tiago Peixoto's avatar
Tiago Peixoto committed
592
593
594

    References
    ----------
595
    .. [dominator-bgl] http://www.boost.org/libs/graph/doc/lengauer_tarjan_dominator.htm
Tiago Peixoto's avatar
Tiago Peixoto committed
596
597

    """
598
    if dom_map is None:
Tiago Peixoto's avatar
Tiago Peixoto committed
599
600
601
        dom_map = g.new_vertex_property("int32_t")
    if dom_map.value_type() != "int32_t":
        raise ValueError("vertex property 'dom_map' must be of value type" +
602
603
                         " int32_t.")
    if not g.is_directed():
Tiago Peixoto's avatar
Tiago Peixoto committed
604
        raise ValueError("dominator tree requires a directed graph.")
605
    libgraph_tool_topology.\
Tiago Peixoto's avatar
Tiago Peixoto committed
606
607
608
               dominator_tree(g._Graph__graph, int(root),
                              _prop("v", g, dom_map))
    return dom_map
609

Tiago Peixoto's avatar
Tiago Peixoto committed
610

611
def topological_sort(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
612
613
614
615
616
617
618
619
620
621
622
623
624
625
    """
    Return the topological sort of the given graph. It is returned as an array
    of vertex indexes, in the sort order.

    Notes
    -----
    The topological sort algorithm creates a linear ordering of the vertices
    such that if edge (u,v) appears in the graph, then v comes before u in the
    ordering. The graph must be a directed acyclic graph (DAG).

    The time complexity is :math:`O(V + E)`.

    Examples
    --------
626
627
628
629
630
631
632
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
633
634
635
636
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tree = gt.min_spanning_tree(g)
    >>> g.set_edge_filter(tree)
    >>> sort = gt.topological_sort(g)
637
    >>> print(sort)
Tiago Peixoto's avatar
Tiago Peixoto committed
638
639
    [ 1  7 17  0  9  2  3  4  5  6  8 10 11 12 13 25 16 23 27 28 19 29 14 15 18
     20 21 22 24 26]
Tiago Peixoto's avatar
Tiago Peixoto committed
640
641
642

    References
    ----------
643
    .. [topological-boost] http://www.boost.org/libs/graph/doc/topological_sort.html
Tiago Peixoto's avatar
Tiago Peixoto committed
644
645
646
647
    .. [topological-wiki] http://en.wikipedia.org/wiki/Topological_sorting

    """

648
    topological_order = Vector_int32_t()
Tiago Peixoto's avatar
Tiago Peixoto committed
649
650
651
652
653
    is_DAG = libgraph_tool_topology.\
        topological_sort(g._Graph__graph, topological_order)
    if not is_DAG:
        raise ValueError("Graph is not a directed acylic graph (DAG).");
    return topological_order.a.copy()
654

Tiago Peixoto's avatar
Tiago Peixoto committed
655

656
def transitive_closure(g):
Tiago Peixoto's avatar
Tiago Peixoto committed
657
658
659
660
661
662
663
664
665
666
667
668
669
    """Return the transitive closure graph of g.

    Notes
    -----
    The transitive closure of a graph G = (V,E) is a graph G* = (V,E*) such that
    E* contains an edge (u,v) if and only if G contains a path (of at least one
    edge) from u to v. The transitive_closure() function transforms the input
    graph g into the transitive closure graph tc.

    The time complexity (worst-case) is :math:`O(VE)`.

    Examples
    --------
670
671
672
673
674
675
676
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
677
678
679
680
681
    >>> g = gt.random_graph(30, lambda: (3, 3))
    >>> tc = gt.transitive_closure(g)

    References
    ----------
682
    .. [transitive-boost] http://www.boost.org/libs/graph/doc/transitive_closure.html
Tiago Peixoto's avatar
Tiago Peixoto committed
683
684
685
686
    .. [transitive-wiki] http://en.wikipedia.org/wiki/Transitive_closure

    """

687
688
689
690
691
692
693
    if not g.is_directed():
        raise ValueError("graph must be directed for transitive closure.")
    tg = Graph()
    libgraph_tool_topology.transitive_closure(g._Graph__graph,
                                              tg._Graph__graph)
    return tg

Tiago Peixoto's avatar
Tiago Peixoto committed
694

695
def label_components(g, vprop=None, directed=None, attractors=False):
696
    """
697
    Label the components to which each vertex in the graph belongs. If the
698
699
    graph is directed, it finds the strongly connected components.

700
701
702
    A property map with the component labels is returned, together with an
    histogram of component labels.

703
704
    Parameters
    ----------
705
    g : :class:`~graph_tool.Graph`
706
        Graph to be used.
707
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
708
709
        Vertex property to store the component labels. If none is supplied, one
        is created.
710
    directed : bool (optional, default: ``None``)
711
712
        Treat graph as directed or not, independently of its actual
        directionality.
713
714
715
716
    attractors : bool (optional, default: ``False``)
        If ``True``, and the graph is directed, an additional array with Boolean
        values is returned, specifying if the strongly connected components are
        attractors or not.
717
718
719

    Returns
    -------
720
    comp : :class:`~graph_tool.PropertyMap`
721
        Vertex property map with component labels.
722
723
    hist : :class:`~numpy.ndarray`
        Histogram of component labels.
724
725
726
727
    is_attractor : :class:`~numpy.ndarray`
        A Boolean array specifying if the strongly connected components are
        attractors or not. This returned only if ``attractors == True``, and the
        graph is directed.
728
729
730
731
732
733

    Notes
    -----
    The components are arbitrarily labeled from 0 to N-1, where N is the total
    number of components.

734
    The algorithm runs in :math:`O(V + E)` time.
735
736
737

    Examples
    --------
738
739
740
741
742
743
    .. testcode::
       :hide:

       numpy.random.seed(43)
       gt.seed_rng(43)

744
745
    >>> g = gt.random_graph(100, lambda: (poisson(2), poisson(2)))
    >>> comp, hist, is_attractor = gt.label_components(g, attractors=True)
746
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
747
    [14 15 14 14 14  5 14 14 18 14 14  8 14 14 13 14 14 21 14 14  6 23 10 14 14
Tiago Peixoto's avatar
Tiago Peixoto committed
748
     14 24  4 14 14  0 14 14 14 25 14 14  1 14 26 14 19  9 14 14  3 14 14 27 28
Tiago Peixoto's avatar
Tiago Peixoto committed
749
     29 14 14  7 14 14 14 30 14 14 20 14  2 14 22 33 34 14 14 14 35 14 14 16 14
Tiago Peixoto's avatar
Tiago Peixoto committed
750
     11 36 37 14 14 31 14 14 17 14 14 14 14 14  0 14 38 39 32 14 12 14 40 14 14]
751
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
752
753
    [ 2  1  1  1  1  1  1  1  1  1  1  1  1  1 59  1  1  1  1  1  1  1  1  1  1
      1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1]
754
    >>> print(is_attractor)
Tiago Peixoto's avatar
Tiago Peixoto committed
755
756
    [ True  True  True False False False  True  True False False False False
      True  True False False False False False False False False  True False
757
     False False False False False False False False False False False False
Tiago Peixoto's avatar
Tiago Peixoto committed
758
     False False False False False]
759
760
    """

761
    if vprop is None:
762
763
764
765
766
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")

767
768
    if directed is not None:
        g = GraphView(g, directed=directed)
769

770
771
    hist = libgraph_tool_topology.\
               label_components(g._Graph__graph, _prop("v", g, vprop))
772
773
774
775
776
777
778
779
780

    if attractors and g.is_directed() and directed != False:
        is_attractor = numpy.ones(len(hist), dtype="bool")
        libgraph_tool_topology.\
               label_attractors(g._Graph__graph, _prop("v", g, vprop),
                                is_attractor)
        return vprop, hist, is_attractor
    else:
        return vprop, hist
781
782
783
784


def label_largest_component(g, directed=None):
    """
785
786
    Label the largest component in the graph. If the graph is directed, then the
    largest strongly connected component is labelled.
787
788
789
790
791
792
793
794
795
796
797
798
799
800

    A property map with a boolean label is returned.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
801
         Boolean vertex property map which labels the largest component.
802
803
804
805
806
807
808

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
809
810
811
812
813
814
815
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

816
817
    >>> g = gt.random_graph(100, lambda: poisson(1), directed=False)
    >>> l = gt.label_largest_component(g)
818
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
819
820
821
    [0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
     0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0
     0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0]
822
    >>> u = gt.GraphView(g, vfilt=l)   # extract the largest component as a graph
823
    >>> print(u.num_vertices())
Tiago Peixoto's avatar
Tiago Peixoto committed
824
    22
825
826
827
828
    """

    label = g.new_vertex_property("bool")
    c, h = label_components(g, directed=directed)
829
    vfilt, inv = g.get_vertex_filter()
830
    label.fa = c.fa == h.argmax()
831
    return label
832

Tiago Peixoto's avatar
Tiago Peixoto committed
833

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
def label_out_component(g, root):
    """
    Label the out-component (or simply the component for undirected graphs) of a
    root vertex.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    root : :class:`~graph_tool.Vertex`
        The root vertex.

    Returns
    -------
    comp : :class:`~graph_tool.PropertyMap`
         Boolean vertex property map which labels the out-component.

    Notes
    -----
    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
857
858
859
860
861
862
863
864
865
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> g = gt.random_graph(100, lambda: poisson(2.2), directed=False)
    >>> l = gt.label_out_component(g, g.vertex(2))
866
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
867
868
869
    [1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1
     1 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1
     1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0]
870
871
872

    The in-component can be obtained by reversing the graph.

Tiago Peixoto's avatar
Tiago Peixoto committed
873
    >>> l = gt.label_out_component(gt.GraphView(g, reversed=True, directed=True),
874
    ...                            g.vertex(1))
875
    >>> print(l.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
876
877
878
    [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
879
880
881
882
883
884
885
886
887
    """

    label = g.new_vertex_property("bool")
    libgraph_tool_topology.\
             label_out_component(g._Graph__graph, int(root),
                                 _prop("v", g, label))
    return label


888
def label_biconnected_components(g, eprop=None, vprop=None):
889
890
891
892
    """
    Label the edges of biconnected components, and the vertices which are
    articulation points.

893
894
895
896
    An edge property map with the component labels is returned, together a
    boolean vertex map marking the articulation points, and an histogram of
    component labels.

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.

    eprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Edge property to label the biconnected components.

    vprop : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to mark the articulation points. If none is supplied,
        one is created.


    Returns
    -------
    bicomp : :class:`~graph_tool.PropertyMap`
        Edge property map with the biconnected component labels.
    articulation : :class:`~graph_tool.PropertyMap`
        Boolean vertex property map which has value 1 for each vertex which is
        an articulation point, and zero otherwise.
    nc : int
        Number of biconnected components.

    Notes
    -----

    A connected graph is biconnected if the removal of any single vertex (and
    all edges incident on that vertex) can not disconnect the graph. More
    generally, the biconnected components of a graph are the maximal subsets of
    vertices such that the removal of a vertex from a particular component will
    not disconnect the component. Unlike connected components, vertices may
    belong to multiple biconnected components: those vertices that belong to
    more than one biconnected component are called "articulation points" or,
    equivalently, "cut vertices". Articulation points are vertices whose removal
    would increase the number of connected components in the graph. Thus, a
    graph without articulation points is biconnected. Vertices can be present in
    multiple biconnected components, but each edge can only be contained in a
    single biconnected component.

    The algorithm runs in :math:`O(V + E)` time.

    Examples
    --------
940
941
942
943
944
945
946
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

Tiago Peixoto's avatar
Tiago Peixoto committed
947
    >>> g = gt.random_graph(100, lambda: poisson(2), directed=False)
948
    >>> comp, art, hist = gt.label_biconnected_components(g)
949
    >>> print(comp.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
950
951
952
953
    [33 34 34 34 34 34  4 20 34 34 18 34 34 34 34 34 15 34 34 34 28 34 34 34 34
     34 34 34 34 34 34 11 14 34 34 34  3 34 34 34 34 34 34 34 34 27 34 34  7 10
     34 34 34 34 34 24 25 34  6 35 34 13 21 30 31 12  5 34  1 32 34 34 26 34 16
     34 34 23 34 34 34 34 34 36 34 34 34 34 34 29 22 17  0  2  8 37 34 38  9 19]
954
    >>> print(art.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
955
956
957
    [1 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0
     1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1
     1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0]
958
    >>> print(hist)
Tiago Peixoto's avatar
Tiago Peixoto committed
959
    [ 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
Tiago Peixoto's avatar
Tiago Peixoto committed
960
      1  1  1  1  1  1  1  1  1 62  1  1  1  1]
961
    """
962

963
    if vprop is None:
964
        vprop = g.new_vertex_property("bool")
965
    if eprop is None:
966
967
968
969
970
971
972
        eprop = g.new_edge_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    _check_prop_writable(eprop, name="eprop")
    _check_prop_scalar(eprop, name="eprop")

973
974
    g = GraphView(g, directed=False)
    hist = libgraph_tool_topology.\
975
976
             label_biconnected_components(g._Graph__graph, _prop("e", g, eprop),
                                          _prop("v", g, vprop))
977
    return eprop, vprop, hist
978

Tiago Peixoto's avatar
Tiago Peixoto committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
def kcore_decomposition(g, deg="out", vprop=None):
    """
    Perform a k-core decomposition of the given graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    deg : string
        Degree to be used for the decomposition. It can be either "in", "out" or
        "total", for in-, out-, or total degree of the vertices.
    vprop : :class:`~graph_tool.PropertyMap` (optional, default: ``None``)
        Vertex property to store the decomposition. If ``None`` is supplied,
        one is created.

    Returns
    -------
    kval : :class:`~graph_tool.PropertyMap`
        Vertex property map with the k-core decomposition, i.e. a given vertex v
        belongs to the ``kval[v]``-core.

    Notes
    -----

    The k-core is a maximal set of vertices such that its induced subgraph only
    contains vertices with degree larger than or equal to k.

    This algorithm is described in [batagelk-algorithm]_ and runs in :math:`O(V + E)`
    time.

    Examples
    --------

    >>> g = gt.collection.data["netscience"]
    >>> g = gt.GraphView(g, vfilt=gt.label_largest_component(g))
    >>> kcore = gt.kcore_decomposition(g)
    >>> gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.pdf")
    <...>

    .. testcode::
       :hide:

       gt.graph_draw(g, pos=g.vp["pos"], vertex_fill_color=kcore, vertex_text=kcore, output="netsci-kcore.png")

    .. figure:: netsci-kcore.*
        :align: center

        K-core decomposition of a network of network scientists.

    References
    ----------
    .. [k-core] http://en.wikipedia.org/wiki/Degeneracy_%28graph_theory%29
1031
1032
1033
1034
1035
    .. [batagelk-algorithm]  Vladimir Batagelj, Matjaž Zaveršnik, "Fast
       algorithms for determining (generalized) core groups in social
       networks", Advances in Data Analysis and Classification
       Volume 5, Issue 2, pp 129-145 (2011), :DOI:`10.1007/s11634-010-0079-y`,
       :arxiv:`cs/0310049`
Tiago Peixoto's avatar
Tiago Peixoto committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

    """

    if vprop is None:
        vprop = g.new_vertex_property("int32_t")

    _check_prop_writable(vprop, name="vprop")
    _check_prop_scalar(vprop, name="vprop")
    if deg not in ["in", "out", "total"]:
        raise ValueError("invalid degree: " + str(deg))

    if g.is_directed():
        if deg == "out":
            g = GraphView(g, reversed=True)
        if deg == "total":
            g = GraphView(g, directed=False)

    libgraph_tool_topology.\
               kcore_decomposition(g._Graph__graph, _prop("v", g, vprop),
                                   _degree(g, deg))
    return vprop

Tiago Peixoto's avatar
Tiago Peixoto committed
1058

1059
def shortest_distance(g, source=None, target=None, weights=None, max_dist=None,
1060
1061
                      directed=None, dense=False, dist_map=None,
                      pred_map=False):
1062
    """
1063
1064
1065
    Calculate the distance from a source to a target vertex, or to of all
    vertices from a given source, or the all pairs shortest paths, if the source
    is not specified.
1066
1067
1068
1069
1070
1071

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: None)
1072
        Source vertex of the search. If unspecified, the all pairs shortest
1073
        distances are computed.
1074
1075
1076
    target : :class:`~graph_tool.Vertex` (optional, default: None)
        Target vertex of the search. If unspecified, the distance to all
        vertices from the source will be computed.
1077
1078
1079
1080
1081
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
        The edge weights. If provided, the minimum spanning tree will minimize
        the edge weights.
    max_dist : scalar value (optional, default: None)
        If specified, this limits the maximum distance of the vertices
Tiago Peixoto's avatar
Tiago Peixoto committed
1082
        searched. This parameter has no effect if source is None.
1083
1084
1085
1086
    directed : bool (optional, default:None)
        Treat graph as directed or not, independently of its actual
        directionality.
    dense : bool (optional, default: False)
1087
1088
        If true, and source is None, the Floyd-Warshall algorithm is used,
        otherwise the Johnson algorithm is used. If source is not None, this option
1089
1090
1091
1092
        has no effect.
    dist_map : :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property to store the distances. If none is supplied, one
        is created.
1093
1094
1095
    pred_map : bool (optional, default: False)
        If true, a vertex property map with the predecessors is returned.
        Ignored if source=None.
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117

    Returns
    -------
    dist_map : :class:`~graph_tool.PropertyMap`
        Vertex property map with the distances from source. If source is 'None',
        it will have a vector value type, with the distances to every vertex.

    Notes
    -----

    If a source is given, the distances are calculated with a breadth-first
    search (BFS) or Dijkstra's algorithm [dijkstra]_, if weights are given. If
    source is not given, the distances are calculated with Johnson's algorithm
    [johnson-apsp]_. If dense=True, the Floyd-Warshall algorithm
    [floyd-warshall-apsp]_ is used instead.

    If source is specified, the algorithm runs in :math:`O(V + E)` time, or
    :math:`O(V \log V)` if weights are given. If source is not specified, it
    runs in :math:`O(VE\log V)` time, or :math:`O(V^3)` if dense == True.

    Examples
    --------
1118
1119
1120
1121
1122
1123
1124
1125
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
1126
1127
    >>> g = gt.random_graph(100, lambda: (poisson(3), poisson(3)))
    >>> dist = gt.shortest_distance(g, source=g.vertex(0))
1128
    >>> print(dist.a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1146

1147
    >>> dist = gt.shortest_distance(g)
1148
    >>> print(dist[g.vertex(0)].a)
Tiago Peixoto's avatar
Tiago Peixoto committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
    [         0          6          3          6 2147483647 2147483647
              6          5          2          4          5          6
              6          3          7          5          4          4
              3          4          2          4          3          3
              4          4          6          6          4          1
              5          2          4          5          3          5
              6          5          4          5 2147483647          9
              4          4          4          6          3          4
              6          6          3          2          4          4
              5          4          5          8          6          6
              5          5          4          5          6          3
              4          3          5          5 2147483647 2147483647
              5          5          8          3          7          4
              5          2          7          5          2          5
              5          5          7          7          4          3
              6          5          5          4          5          5
              4          4          6          5]
1166
1167
1168
1169
1170

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1171
1172
       Press;
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1173
1174
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1175
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1176
1177
1178
1179
    .. [johnson-apsp] http://www.boost.org/libs/graph/doc/johnson_all_pairs_shortest.html
    .. [floyd-warshall-apsp] http://www.boost.org/libs/graph/doc/floyd_warshall_shortest.html
    """

1180
    if weights is None:
1181
1182
1183
1184
        dist_type = 'int32_t'
    else:
        dist_type = weights.value_type()

1185
1186
    if dist_map is None:
        if source is not None:
1187
1188
1189
1190
1191
            dist_map = g.new_vertex_property(dist_type)
        else:
            dist_map = g.new_vertex_property("vector<%s>" % dist_type)

    _check_prop_writable(dist_map, name="dist_map")
1192
    if source is not None:
1193
1194
1195
1196
        _check_prop_scalar(dist_map, name="dist_map")
    else:
        _check_prop_vector(dist_map, name="dist_map")

1197
    if max_dist is None:
1198
1199
        max_dist = 0

1200
    if directed is not None:
1201
1202
1203
        u = GraphView(g, directed=directed)
    else:
        u = g
1204

1205
1206
1207
    if target is None:
        target = -1

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
    if source is not None:
        pmap = g.copy_property(u.vertex_index, value_type="int64_t")
        libgraph_tool_topology.get_dists(g._Graph__graph,
                                         int(source),
                                         int(target),
                                         _prop("v", g, dist_map),
                                         _prop("e", g, weights),
                                         _prop("v", g, pmap),
                                         float(max_dist))
    else:
        libgraph_tool_topology.get_all_dists(u._Graph__graph,
1219
                                             _prop("v", g, dist_map),
1220
                                             _prop("e", g, weights), dense)
1221

1222
1223
1224
1225

    if source is not None and target != -1:
        dist_map = dist_map[target]

1226
    if source is not None and pred_map:
1227
1228
1229
1230
        return dist_map, pmap
    else:
        return dist_map

Tiago Peixoto's avatar
Tiago Peixoto committed
1231

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
def shortest_path(g, source, target, weights=None, pred_map=None):
    """
    Return the shortest path from `source` to `target`.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex`
        Source vertex of the search.
Tiago Peixoto's avatar
Tiago Peixoto committed
1242
    target : :class:`~graph_tool.Vertex`
1243
1244
        Target vertex of the search.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: None)
Tiago Peixoto's avatar
Tiago Peixoto committed
1245
        The edge weights.
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
    pred_map :  :class:`~graph_tool.PropertyMap` (optional, default: None)
        Vertex property map with the predecessors in the search tree. If this is
        provided, the shortest paths are not computed, and are obtained directly
        from this map.

    Returns
    -------
    vertex_list : list of :class:`~graph_tool.Vertex`
        List of vertices from `source` to `target` in the shortest path.
    edge_list : list of :class:`~graph_tool.Edge`
        List of edges from `source` to `target` in the shortest path.

    Notes
    -----

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1269
1270
1271
1272
1273
1274
1275
1276
1277
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(43)
       gt.seed_rng(43)

    >>> from numpy.random import poisson
    >>> g = gt.random_graph(300, lambda: (poisson(4), poisson(4)))
1278
    >>> vlist, elist = gt.shortest_path(g, g.vertex(10), g.vertex(11))
1279
    >>> print([str(v) for v in vlist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1280
    ['10', '131', '184', '265', '223', '11']
1281
    >>> print([str(e) for e in elist])
Tiago Peixoto's avatar
Tiago Peixoto committed
1282
    ['(10, 131)', '(131, 184)', '(184, 265)', '(265, 223)', '(223, 11)']
1283
1284
1285
1286
1287

    References
    ----------
    .. [bfs] Edward Moore, "The shortest path through a maze", International
       Symposium on the Theory of Switching (1959), Harvard University
Tiago Peixoto's avatar
Tiago Peixoto committed
1288
1289
       Press
    .. [bfs-boost] http://www.boost.org/libs/graph/doc/breadth_first_search.html
1290
1291
    .. [dijkstra] E. Dijkstra, "A note on two problems in connexion with
       graphs." Numerische Mathematik, 1:269-271, 1959.
Tiago Peixoto's avatar
Tiago Peixoto committed
1292
    .. [dijkstra-boost] http://www.boost.org/libs/graph/doc/dijkstra_shortest_paths.html
1293
1294
    """

1295
    if pred_map is None:
1296
1297
        pred_map = shortest_distance(g, source, target,
                                     weights=weights,
Tiago Peixoto's avatar
Tiago Peixoto committed
1298
                                     pred_map=True)[1]
1299

1300
    if pred_map[target] == int(target):  # no path to target
1301
1302
1303
1304
1305
        return [], []

    vlist = [target]
    elist = []

1306
    if weights is not None:
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        max_w = weights.a.max() + 1
    else:
        max_w = None

    v = target
    while v != source:
        p = g.vertex(pred_map[v])
        min_w = max_w
        pe = None
        s = None
        for e in v.in_edges() if g.is_directed() else v.out_edges():
            s = e.source() if g.is_directed() else e.target()
            if s == p:
1320
                if weights is not None:
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
                    if weights[e] < min_w:
                        min_w = weights[e]
                        pe = e
                else:
                    pe = e
                    break
        elist.insert(0, pe)
        vlist.insert(0, p)
        v = p
    return vlist, elist

1332

Tiago Peixoto's avatar
Tiago Peixoto committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
def pseudo_diameter(g, source=None, weights=None):
    """
    Compute the pseudo-diameter of the graph.

    Parameters
    ----------
    g : :class:`~graph_tool.Graph`
        Graph to be used.
    source : :class:`~graph_tool.Vertex` (optional, default: `None`)
        Source vertex of the search. If not supplied, the first vertex
        in the graph will be chosen.
    weights : :class:`~graph_tool.PropertyMap` (optional, default: `None`)
        The edge weights.

    Returns
    -------
    pseudo_diameter : int
        The pseudo-diameter of the graph.
    end_points : pair of :class:`~graph_tool.Vertex`
        The two vertices which correspond to the pseudo-diameter found.

    Notes
    -----

    The pseudo-diameter is an approximate graph diameter. It is obtained by
    starting from a vertex `source`, and finds a vertex `target` that is
    farthest away from `source`. This process is repeated by treating
    `target` as the new starting vertex, and ends when the graph distance no
    longer increases. A vertex from the last level set that has the smallest
    degree is chosen as the final starting vertex u, and a traversal is done
    to see if the graph distance can be increased. This graph distance is
    taken to be the pseudo-diameter.

    The paths are computed with a breadth-first search (BFS) or Dijkstra's
    algorithm [dijkstra]_, if weights are given.

    The algorithm runs in :math:`O(V + E)` time, or :math:`O(V \log V)` if
    weights are given.

    Examples
    --------
1374
1375
1376
1377
1378
1379
1380
1381
    .. testcode::
       :hide:

       import numpy.random
       numpy.random.seed(42)
       gt.seed_rng(42)

    >>> from numpy.random import poisson
Tiago Peixoto's avatar
Tiago Peixoto committed
1382
1383
    >>> g = gt.random_graph(300, lambda: (poisson(3), poisson(3)))
    >>> dist, ends = gt.pseudo_diameter(g)
1384
    >>> print(dist)
Tiago Peixoto's avatar
Tiago Peixoto committed
1385
    9.0
1386
    >>> print(int(ends[0]), int(ends[1]))
Tiago Peixoto's avatar
Tiago Peixoto committed
1387
    0 140
Tiago Peixoto's avatar
Tiago Peixoto committed
1388
1389
1390
1391
1392
1393
1394

    References
    ----------
    .. [pseudo-diameter] http://en.wikipedia.org/wiki/Distance_%28graph_theory%29
    """

    if source is None:
1395
        source = g.vertex(0, use_index=False)
Tiago Peixoto's avatar
Tiago Peixoto committed
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    dist, target = 0, source
    while True:
        new_source = target
        new_target, new_dist = libgraph_tool_topology.get_diam(g._Graph__graph,
                                                               int(new_source),
                                                               _prop("e", g, weights))
        if new_dist > dist:
            target = new_target
            source = new_source
            dist = new_dist
        else:
            break
    return dist, (g.vertex(source), g.vertex(target))


1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
14